Contra gp*- Continuous Functions

S. Sekar, P.Jayakumar

Department of Mathematics Government Arts College (Autonomous) Salem– 636 007.India Department of Mathematics Paavai Engineering College, Namakkal-637018.India

Abstract: In this paper, the authors introduce a new class of functions called contra gp*-continuous function in topological spaces. Some characterizations and several properties concerning contra gp*-continuous functions are obtained. Mathematics Subject Classification: 54 C 05, 54 C 08, 54 C10. **Keywords:** gp*- open set, gp*-continuity, contra gp*-continuity.

I. Introduction

In 1970, Dontchev introduced the notions of contra continuous function. A new class of function called contra b-continuous function introduced by Nasef. In 2009, A.A.Omari and M.S.M.Noorani have studied further properties of contra b-continuous functions. In this paper, we introduce the concept of contra gp*-continuous function via the notion of gp*-open set and study some of the applications of this function. We also introduce and study two new spaces called gp*-Hausdorff spaces, gp*-normal spaces and obtain some new results.

Throughout this paper (X, τ) and (Y, σ) represent the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let $A \subseteq X$, the closure of A and interior of A will be denoted by cl (A) and int (A) respectively, union of all gp*-open sets X contained in A is called gp*-interior of A and it is denoted by gp*-int (A), the intersection of all gp*-closed sets of X containing A is called gp*- closure of A and it is denoted by gp*-cl(A).

II. Preliminaries.

Definition 2.1[8]: Let A subset A of a topological space (X, τ), is called a pre-open set if A \subseteq Int(cl (A)).

Definition 2.2 [16]: Let A subset A of a topological space (X, τ), is called a generalized closed set (briefly gclosed) if cl (A) \subseteq U whenever A \subseteq U and U is open in X.

Definition 2.3 [10]: Let A subset A of a topological space (X, τ), is called a generalized pre-closed set (briefly gp-closed) if pcl (A) \subseteq U whenever A \subseteq U and U is open in X.

Definition 2.4 [7]: Let A subset A of a topological space (X, τ), is called a generalized pre-closed set (briefly pg-closed) if pcl(A) \subseteq U whenever A \subseteq U and U is pre-open in X.

Definition 2.5 [14]: Let A subset A of a topological space (X, τ), is called a generalized pre-closed set (briefly g*- closed) if cl (A) \subseteq U whenever A \subseteq U and U is g-open in X.

Definition 2.6 [18]: Let A subset A of a topological space (X, τ), is called a generalized pre-closed set (briefly g*p-closed) if pcl (A) \subseteq U whenever A \subseteq U and U is g-open in X.

Definition 2.7 [15]: Let A subset A of a topological space (X, τ), is called a generalized pre- closed set (briefly strongly g- closed) if cl (A) \subseteq U whenever A \subseteq U and U is g-open in X.

Definition 2.9 [17]: Let A subset A of a topological space (X, τ) , is called a generalized pre-closed set (briefly g# closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α g-open in X.

Definition 2.10 [4]: A subset A of a topological space (X, τ), is called gp^{*}-closed set if cl (A) \subseteq U whenever A \subset U and U is gp open in X.

Definition 2.2. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called

(i) a contra continuous[1] if $f^{1}(V)$ is closed in (X, τ) for every open set V of (Y, σ) .

(ii) a contra g*-continuous [14] if $f^{1}(V)$ is g*-closed in (X, τ) for every open set V of (Y, σ).

(iii) a contra pg-continuous [7] if $f^{1}(V)$ is pg-closed in (X, τ) for every open set V of (Y, σ) .

(iv) a contra g*p-continuous [18] if $f^{1}(V)$ is g*p-closed in (X, τ) for every open set V of (Y, σ).

(v) a contra strongly g-continuous [15] if $f^{1}(V)$ is strongly g-closed in (X, τ) for every open set V of (Y, σ).

(vi) a contra g#-continuous [17] if $f^{1}(V)$ is g#-closed in (X, τ) for every open set V of (Y, σ).

III. Contra gp*Continuous Functions

In this section, we introduce contra gp*-continuous functions and investigate some of their properties.

Definition 3.1. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called contra gp*-continuous if $f^{1}(V)$ is gp*-closed in (X, τ) for every open set V in (Y, σ) .

Example.3.2. Let X =Y={a,b,c} with $\tau = \{X, \varphi, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \varphi, \{a,b\}\}$. Define a function f: (X, τ) \rightarrow (Y, σ) by f(a) = b, f(b) = c, f(c) = a. Clearly f is contra gp*-continuous.

Definition3.3. [11] Let A be a subset of a space (X, τ) .

(i) The set $\cap \{F \subset X: A \subset F, F \text{ is gp*-closed}\}$ is called the gp*-closure of A and it is denoted by gp*-cl(A).

(ii) The set $\cup \{G \subset X: G \subset A, G \text{ is gp*-open}\}\$ is called the gp*-interior of A and it is denoted by gp*-int(A).

Lemma 3.4. For $x \in X$, $x \in gp^*$ -cl (A) if and only if $U \cap A \neq \phi$ for every gp^* -open set U containing x.

Proof.

Necessary part: Suppose there exists a gp*-open set U containing x such that $U \cap A = \varphi$. Since $A \subset X - U$, gp*-

 $cl(A) \subset X-U$. This implies $x \notin gp^*-cl(A)$. This is a contradiction. Sufficiency part: Suppose that $x \notin gp^*-cl(A)$. Then $\exists a gp^*-closed$ subset F containing A such that $x \notin F$. Then

 $x \in X$ -F is gp*-open, (X-F) $\cap A = \varphi$. This is contradiction.

Lemma 3.5. The following properties hold for subsets A, B of a space X:

- (i) $x \in ker(A)$ if and only if $A \cap F \neq \phi$ for any $F \in (X,x)$.
- (ii) $A \subset ker(A)$ and A = ker(A) if A is open in X.
- (iii) If $A \subset B$, then ker(A) \subset ker(B).

Theorem 3.6. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a map. The following conditions are equivalent:

(i) f is contra gp*-continuous,

(ii) The inverse image of each closed in (Y, σ) is gp*-open in (X, τ),

- (iii) For each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in gp^*-O(X)$, such that $f(U) \subset F$,
- (iv) $f(gp^*-cl(X)) \subset ker(f(A))$, for every subset A of X,
- (v) $gp^*(f^1(B)) \subset f^1(ker(B))$, for every subset B of Y.

Proof: (i) \Leftrightarrow (ii) and (ii) \Rightarrow (iii) are obvious.

(iii) \Rightarrow (ii): Let F be any closed set of Y and $x \in f^1(F)$. Then $f(x) \in F$ and there exists $U_x \in gp^*-O(X,x)$ such that $f(U_x) \subset F$. Hence we obtain $f^1(F) = \bigcup \{U_x / x \in f^1(F)\} \in gp^*-O(X,x)$. Thus the inverse of each closed set in (Y, σ) is gp*-open in (X, τ) .

(ii) \Rightarrow (iv). Let A be any subset of X. Suppose that $y \notin \text{kerf}(A)$). By lemma there exists $F \in C(Y,y)$ such that $f(A) \cap F = \varphi$. Then, we have $A \cap f^1(F) = \varphi$ and $gp^*-cl(A) \cap f^1(F) = \varphi$. Therefore, we obtain $f(gp^*-cl(A)) \cap F = \varphi$ and $y \notin f(gp^*-cl(A))$. Hence we have $f(gp^*-cl(X)) \subset \text{ker}(f(A))$.

(iv) \Rightarrow (v): Let B be any subset of Y. By (iv) and Lemma, We have $f(gp^*-cl(f^1(B))) \subset (ker(f(f^1(B))) \subset ker(B))$ $\subset ker(B)$ and $gp^*-cl(f^1(B)) \subset f^1(ker(B))$.

 $(v) \Rightarrow (i)$: Let V be any open set of Y. By lemma We have $gp^*-cl(f^1(V)) \subset f^1(ker(V)) = f^1(V)$ and $gp^*-cl(f^1(V)) = f^1(V)$. It follows that $f^1(V)$ is $gp^*-closed$ in X. We have f is contra $gp^*-continuous$.

Definition 3.7. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called gp*-continuous if the pre image of every open set of Y is gp*-open in X.

Remark 3.8: The following two examples will show that the concept of gp*-continuity and contra gp*-continuity are independent from each other.

Example 3.9. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \varphi, \{b, c\}\}$. Define a function f: (X, τ) \rightarrow (Y, σ) by f(a) = a, f(b) = b, f(c) = c. Clearly f is contra gp*-continuous but f is not gp*-continuous. Because $f^{1}(\{b,c\}) = \{b,c\}$ is not gp*-open in(X, τ) where $\{b,c\}$ is open in (Y, σ). **Example 3.10.** Let X =Y={a,b,c} with $\tau = \{X, \varphi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \varphi, \{a,c\}\}$. Define a function f: (X, τ) \rightarrow (Y, σ) by f(a) = c, f(b) = a, f(c) = b. Clearly f is gp*-continuous but f is not contra gp*-continuous. Because f¹({a,c}) = {a,b} is not contra gp*-closed in(X, τ) where {a,c} is open in (Y, σ).

Theorem 3.11. If a function f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra gp*-continuous and (Y, σ) is regular then f is gp*-continuous.

Proof: Let x be an arbitrary point of (X, τ) and V be an open set of (Y, σ) containing f(x). Since (Y, σ) is regular, there exists an open set W of (Y, σ) containing f(x) such that $cl(W) \subset V$. Since f is contra gp*-continuous, by theorem

There exists $U \in gp^*-O(X,x)$ such that $f(U) \subset cl(W)$. Then $f(U) \subset cl(W) \subset V$. Hence f is gp*-continuous.

Theorem 3.12. Every contra g*-continuous function is contra gp*-continuous function.

Proof: Let V be an open set in (Y, σ) . Since f is contra g*-continuous function, $f^1(V)$ is g*-closed in (X, τ) . Every g*-closed set is gp*-closed. Hence $f^1(V)$ is gp*-closed in (X, τ) . Thus f is contra gp*-continuous function.

Remark 3.13. The converse of theorem need not be true as shown in the following example.

Example 3.14. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{b, c\}\}$. Define a function f: (X, τ) \rightarrow (Y, σ) by f(a) = b, f(b) = c, f(c) = a. Clearly f is contra gp*-continuous but f is not contra g*-continuous. Because $f^{1}(\{b, c\}) = \{a, b\}$ is not g*-closed in(X, τ) where $\{b, c\}$ is open in (Y, σ).

Theorem 3.15.

(i) Every contra pg-continuous function is contra gp*-continuous function.

(ii) Every contra g*p-continuous function is contra gp*-continuous function.

(iii)Every contra strongly g-continuous function is contra gp*-continuous function.

(iv) Every contra g#-continuous function is contra gp*-continuous function.

Remark 3.16. Converse of the above statements is not true as shown in the following example.

Example 3.17.

(i) Let X =Y={a,b,c}with $\tau = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{b,c\}\}\)$ and $\sigma = \{Y, \varphi, \{b,c\}\}\)$. Define a function f: (X, τ) \rightarrow (Y, σ) by f(a) = c, f(b) = a, f(c) = b. Clearly f is contra gp*-continuous but f is not contra pg-continuous. Because f¹({b,c}) = {a,c} is not pg-closed in(X, τ) where {b,c} is open in (Y, σ).

(ii). Let X =Y={a,b,c}with $\tau = \{X, \varphi, \{a\}, \{c\}, \{a,c\}, \{b,c\}\}\ and \sigma = \{Y, \varphi, \{a,b\}\}\$. Define a function f: (X, τ) \rightarrow (Y, σ) by f(a) = b, f(b) = c, f(c) = a. Clearly f is contra gp*-continuous but f is not contra g*p-continuous. Because f¹({a,b}) = {a,c} is not g*p-closed in(X, τ) where {a,b} is open in (Y, σ).

(iii) Let $X = Y = \{a,b,c\}$ with $\tau = \{X, \varphi, \{a,b\}\}$ and $\sigma = \{Y, \varphi, \{a\}\}$. Define a function f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c, f(b) = b, f(c) = a. Clearly f is contra gp*-continuous but f is not contra strongly g-continuous. Because $f^{1}(\{a\}) = \{c\}$ is not strongly g -closed in (X, τ) where $\{a\}$ is open in (Y, σ) .

(iv) Let X =Y={a,b,c} with $\tau = \{X, \varphi, \{b\}\}$ and $\sigma = \{Y, \varphi, \{a\}\}$. Define a function f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Clearly f is contra gp*-continuous but f is not contra g#-continuous. Because $f^{1}(\{a\}) = \{c\}$ is not g#-closed in(X, τ) where {a} is open in (Y, σ).

Remark 3.18 The concept of contra gp*-continuous and contra gp-continuous are independent as shown in the following examples.

Example 3.19. Let X =Y={a,b,c} with $\tau = \{X, \varphi, \{a\}, \{c\}, \{a,c\}, \{b,c\}\}$ and $\sigma = \{Y, \varphi, \{b,c\}\}$. Define a function f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Clearly f is contra gp*-continuous but f is not contra gp-continuous. Because $f^{1}(\{b,c\}) = \{a,c\}$ is not gp-closed in (X, τ) where $\{b,c\}$ is open in (Y, σ) .

Example 3.20 Let $X = Y = \{a,b,c\}$ with $\tau = \{X, \varphi, \{c\}\}$ and $\sigma = \{Y, \varphi, \{a,b\}\}$. Define a function f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Clearly f is contra gp-continuous but f is not contra gp*-continuous. Because $f^{1}(\{a,b\}) = \{a,c\}$ is not gp*-closed in (X, τ) where $\{a,b\}$ is open in (Y, σ) .

Definition 3.21. A space (X, τ) is said to be (i) gp*-space if every gp*-open set of X is open in X, (ii) locally gp*-indiscrete if every gp*-open set of X is closed in X.

Theorem 3.22. If a function $f: X \rightarrow Y$ is contra gp*-continuous and X is gp*-space then f is contra continuous.

Proof: Let $V \in O(Y)$. Then $f^{1}(V)$ is gp*-closed in X. Since X is gp*-space, $f^{1}(V)$ is open in X. Hence f is contra continuous.

Theorem 3.23. Let X be locally gp*-indiscrete. If f: $X \rightarrow Y$ is contra gp*-continuous, then it is continuous.

Proof: Let $V \in O(Y)$. Then $f^1(V)$ is gp*-closed in X. Since X is locally gp*-indiscrete space, $f^1(V)$ is open in X. Hence f is continuous.

Definition 3.24. A function $f: X \rightarrow Y$, the subset $\{(x,f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G_{f} .

Definition 3.25. The graph G_f of a function $f: X \to Y$ is said to be contra gp^* -closed if for each $(x,y) \in (X \times Y) - G_f$ there exists $U \in gp^*$ -O(X,y) and $V \in C(Y,y)$ such that $(U \times V) \cap G_f$.

Theorem 3.26. If a function $f: X \rightarrow Y$ is contra gp*-continuous and Y is Urysohn, then G_f is contra gp*-closed in the product space $X \times Y$.

Proof: Let $(x,y) \in (X \times Y) - G_f$. Then $y \neq f(x)$ and there exist open sets H_1 , H_2 such that $f(x) \in H_1$, $y \in H_2$ and $cl(H_1) \cap cl(H_2) = \varphi$. From hypothesis, there exists $V \in gp^*-O(X,x)$ such that $f(V) \subset cl(H_1)$. Therefore, we have $f(V) \cap cl(H_2) = \varphi$. This shows that G_f is contra gp^* -closed in the product space $X \times Y$.

Theorem 3.27. If f: $X \rightarrow Y$ is gp*-continuous and Y is T_1 , then Gf is contra gp*-closed in $X \times Y$.

Proof. Let $(x,y) \in (X \times Y) - G_f$. Then $y \neq f(x)$ and there exist open set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is gp*-continuous, there exists $U \in (gp^*-O(X,x))$ such that $f(U) \subset V$. Therefore, we have $f(U) \cap (Y-V) = \varphi$ and $(Y-V) \in (gp^*-C(Y,y))$. This shows that G_f is contra gp*-closed in $X \times Y$.

Theorem 3.28. Let $f: X \rightarrow Y$ be a function and $g: X \rightarrow X \times Y$, the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is contra gp*-continuous, then f is contra gp*-continuous.

Proof. Let U be an open set in Y, then $X \times U$ is an open set in $X \times Y$. Since g is contra gp*-continuous. It follows that $f^{1}(U) = g^{-1}(X \times U)$ is an gp*-closed in X. Hence f is gp*-continuous.

Theorem 3.29. If $f: X \rightarrow Y$ is a contra gp*-continuous function and $g: Y \rightarrow Z$ is a continuous function, then $g \circ f: X \rightarrow Z$ is contra gp*-continuous.

Proof: Let $V \in O(Y)$. Then $g^{-1}(V)$ is open in Y. Since f is contra gp^* -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is gp^* -closed in X. Therefore, $g \circ f: X \rightarrow Z$ is contra gp^* -continuous.

Theorem 3.30. Let p: $X \times Y \rightarrow Y$ be a projection. If A is gp*-closed subset pf X, then $p^{-1}(A) = A \times Y$ is gp*-closed subset of X × Y.

Proof: Let $A \times Y \subset U$ and U be a regular open set of $X \times Y$. Then $U = X \times Y$ for some regular open set of X. Since A is gp*-closed in X, bcl(A) and so bcl(A) $\times Y \subset V \times Y = U$. Therefore bcl($A \times Y$) $\subset U$. Hence $A \times Y$ is gp*-closed sub set of $X \times Y$.

IV. Applications.

Definition 4.1. A topological space (X, τ) is said to be gp*-Hausdorff space if for each pair of distinct points x and y in X there exists $U \in \text{gp*-O}(X,x)$ and $V \in \text{gp*-O}(X,y)$ such that $U \cap V = \varphi$

Example 4.2. Let $X = \{a,b,c\}$ with $\tau = \{X, \varphi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}\}$. Let x and y be two distinct points of X, there exists an gp*-open neighbourhood of x and y respectively such that $\{x\} \cap \{y\} = \varphi$. Hence (X, τ) is gp*-Hausdorff space.

Theorem 4.3. If X is a topological space and for each pair of distinct points x_1 and x_2 in X, there exists a function f of X into Uryshon topological space Y such that $f(x_1) \neq f(x_2)$ and f is contra gp*-continuous at x_1 and x_2 , then X is gp*-Hausdorff space.

Proof: Let x_1 and x_2 be any distinct points in X. By hypothesis, there is a Uryshon space Y and a function $f: X \rightarrow Y$ such that $f(x_1) \neq f(x_2)$ and f is contra gp*-continuous at x_1 and x_2 . Let $y_i = f(x_i)$ for i = 1, 2 then $y_1 \neq y_2$. Since Y is Uryshon, there exists open sets U_{y_1} and U_{y_2} containing y_1 and y_2 respectively in Y such that $cl(U_{y_1}) \cap cl(U_{y_2}) = \varphi$. Since f is contra gp*-continuous at x_1 and x_2 , there exists and gp*-open sets V_{x_1} and V_{x_2} containing x_1 and x_2 respectively in X such that $f(V_{x_1}) \subset cl(U_{y_1})$ for i = 1, 2. Hence we have $(V_{x_1}) \cap (V_{x_2}) = \varphi$. Therefore X is gp*-Hausdorff space.

Corollary 4.4. If f is contra gp*-continuous injection of a topological space X into a Uryshon space Y then Y is gp*-Hausdorff.

Proof: Let x_1 and x_2 be any distinct points in X. By hypothesis, f is contra gp*-continuous function of X into a Uryshon space Y such that $f(x_1) \neq f(x_2)$, because f is injective. Hence by theorem, X is gp*-Hausdorff.

Definition 4.5. A topological space (X, τ) is said to be gp*-normal if each pair of non-empty disjoint closed sets in (X, τ) can be separated by disjoint gp*-open sets in (X, τ) .

Definition 4.6. A topological space (X, τ) is said to be ultra normal if each pair of non-empty disjoint closed sets in (X, τ) can be separated by disjoint clopen sets in (X, τ) .

Theorem 4.7. If $f: X \rightarrow Y$ is a contra gp*-continuous function, closed, injection and Y is Ultra normal, then X is gp*-normal.

Proof: Let U and V be disjoint closed subsets of X. Since f is closed and injective, f(U) and f(V) are disjoint subsets of Y. Since Y is ultra normal, there exists disjoint closed sets A and B such that $f(U) \subset A$ and $f(V) \subset B$. Hence $U \subset f^1(A)$ and $V \subset f^1(B)$. Since f is contra gp*-continuous and injective, $f^1(A)$ and $f^1(B)$ are disjoint gp*-open sets in X. Hence X is gp*-normal.

Definition4.8. [13] A topological space X is said to be gp*-connected if X is not the union of two disjoint nonempty gp*-open sets of X.

Theorem 4.9. A contra gp*-continuous image of a gp*-connected space is connected.

Proof: Let $f: X \to Y$ is a contra gp*-continuous function of gp*-connected space X onto a topological space Y. If possible, let Y be disconnected. Let A and B form disconnectedness of Y. Then A and B are clopen and $Y = A \cup B$ where $A \cap B = \varphi$. Since f is contra gp*-continuous, $X = f^1(Y) = f^1(A \cup B) = f^1(A) \cup f^1(B)$ where f ¹(A) and f¹(B) are non-empty gp*-open sets in X. Also $f^1(A) \cap f^1(B) = \varphi$. Hence X is non-gp*-connected which a contradiction is. Therefore Y is connected.

Theorem 4.10. Let X be gp*-connected and Y be T_1 . If $f : X \rightarrow Y$ is a contra gp*-continuous, then f is constant.

Proof: Since Y is T_1 space $v = \{f^1(y): y \in Y\}$ is a disjoint gp*-open partition of X. If $|v| \ge 2$, then X is the union of two non empty gp*-open sets. Since X is gp*-connected, |v| = 1. Hence f is constant.

Theorem 4.11. If f: $X \rightarrow Y$ is a contra gp*-continuous function from gp*-connected space X onto space Y, then Y is not a discrete space.

Proof: Suppose that Y is discrete. Let A be a proper non-empty open and closed subset of Y. Then $f^{1}(A)$ is a proper non-empty gp*-clopen subset of X, which is a contradiction to the fact X is gp*-connected.

References

- [1]. Dontchev J., Contra continuous functions and strongly S-closed spaces. Int Math Sci, 19 (1996) 303-310.
- [2]. Dontchev J. and Noiri T., Contra semi continuous functions. Math Pannonica, 10 (1999) 159-168.
- [3]. Jafari.S and T. Noiri, On contra-precontinuous functions, Bull. Malays. Math. Sci. Soc. (2) 25(2) (2002), 115–128.
 [4]. Jayakymar.P, Mariappa.K and S.Sekar, On generalized gp*- closed set in Topological Spaces, Int. Journal of Math.
- [4]. Jayakymar.P, Mariappa.K and S.Sekar, On generalized gp*- closed set in Topological Spaces, Int. Journal of Math. Analysis, Vol. 7, 2013, no.33,1635 1645.
- [5]. Levine.N, Generalized closed sets in topology, Tend Circ., Mat. Palermo (2) 19 (1970), 89-96.
- [6]. Maki.H, R.Devi and K.Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets Mem. Fac. Sci. Kochi. Univ. Ser. A.Math. 15 (1994), 51-63.
- [7]. Maki.H, R.J.Umehara and T.Noiri, Every topological space is pre-T_{1/2}, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. 17(1996), 33-42.
- [8]. Mashor Abd.El-Monsef.M.E and Ei-Deeb.S.N., On Pre continous and weak pre-continous mapping, Proc.Math., Phys.Soc.Egypt, 53 (1982), 47-53.
- [9]. Metin Akdag and Alkan Ozkan, Some properties of Contra gb-continuous functions, Journal of New results in Science 1 (2012) 40-49.
- [10]. Njastad.O, On some classes of nearly open sets, Pacific J Math., 15(1965),961-970.
- [11]. Sekar.S and Jayakumar.P, On gp*- continuous map in Topological Spaces-Communicated.
- [12]. Sekar.S and Jayakumar.P, On gp*-interior and gp*-closure in Topological Spaces -Communicated.
- [13]. Sekar.S and Jayakumar.P On gp*- connectedness and gp*-compactness in Topological spaces-Communicated.
- [14]. Sekar.S and Jayakumar.P, On Generalized gp*- Closed Map in Topological Spaces, Applied Mathematical Sciences, Vol. 8, 2014, no. 9, 415 – 422.
- [15]. Somasundaram.S., Murugalingam.M. and Palaniammal.S. 2005. A generalized Star Sets.Bulletin of Pure and Applied Sciences.Vol.24E (No.2): 233-238.
- [16]. Sundaram.P. and A.Pushpaplatha.2001.Strongly generalized closed sets in topological spaces. Far East J.Math.Sci., 3(4): 563-575.
- [17]. Veerakumar. M.K.R.S., Between closed sets and g-closed sets. Mem. Fac. Sci, Kochi Univ.Ser.A.Math, 1721 (2000),1-19.
- [18]. Veerakumar.M.K.R.S., g#-closed sets in topological spaces, Kochi J.Math., 24(2003),1-13
- [19]. Veera kumar.M.K.R.S., g*- pre-closed sets, Acta Ciencia India, Vol XXVIII M, No 1, (2002), 51 60.