Contra gp*- Continuous Functions

S. Sekar, P.Jayakumar
Department of Mathematics Government Arts College (Autonomous) Salem- 636 007.India
Department of Mathematics Paavai Engineering College, Namakkal-637018.India

Abstract

In this paper, the authors introduce a new class of functions called contra gp*-continuous function in topological spaces. Some characterizations and several properties concerning contra gp*-continuous functions are obtained. Mathematics Subject Classification: 54 C 05, 54 C 08, 54 C10.

Keywords: gp*- open set, gp*-continuity, contra gp*-continuity.

I. Introduction

In 1970, Dontchev introduced the notions of contra continuous function. A new class of function called contra b-continuous function introduced by Nasef. In 2009, A.A.Omari and M.S.M.Noorani have studied further properties of contra b-continuous functions. In this paper, we introduce the concept of contra gp^{*}-continuous function via the notion of gp^{*}-open set and study some of the applications of this function. We also introduce and study two new spaces called gp*-Hausdorff spaces, gp*-normal spaces and obtain some new results.

Throughout this paper (X, τ) and (Y, σ) represent the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let $A \subseteq X$, the closure of A and interior of A will be denoted by $\mathrm{cl}(\mathrm{A})$ and int (A) respectively, union of all gp *-open sets X contained in A is called gp -interior of A and it is denoted by gp^{*}-int (A), the intersection of all $\mathrm{gp}{ }^{*}$-closed sets of X containing A is called gp^{*} closure of A and it is denoted by $\mathrm{gp} *-\mathrm{cl}(\mathrm{A})$.

II. Preliminaries.

Definition 2.1[8]: Let A subset A of a topological space (X, τ), is called a pre-open set if $\mathrm{A} \subseteq \operatorname{Int}(\mathrm{cl}(\mathrm{A}))$.
Definition 2.2 [16]: Let A subset A of a topological space (X, τ), is called a generalized closed set (briefly gclosed) if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in X .
Definition 2.3 [10]: Let A subset A of a topological space (X, τ), is called a generalized pre- closed set (briefly gp- closed) if $\operatorname{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
Definition 2.4 [7]: Let A subset A of a topological space (X, τ), is called a generalized pre-closed set (briefly pg-closed) if $\operatorname{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is pre-open in X .
Definition 2.5 [14]: Let A subset A of a topological space (X, τ), is called a generalized pre- closed set (briefly g^{*} - closed) if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is g -open in X .
Definition 2.6 [18]: Let A subset A of a topological space (X, τ), is called a generalized pre- closed set (briefly $\mathrm{g}^{*} \mathrm{p}$-closed) if $\mathrm{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is g-open in X.
Definition 2.7 [15]: Let A subset A of a topological space (X, τ), is called a generalized pre- closed set (briefly strongly g-closed) if $\mathrm{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
Definition 2.9 [17]: Let A subset A of a topological space (X, τ), is called a generalized pre- closed set (briefly g \# closed) if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\alpha \mathrm{g}$-open in X .
Definition 2.10 [4]: A subset A of a topological space (X, τ), is called $\mathrm{gp}{ }^{*}$-closed set if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $A \subseteq U$ and U is gp open in X.

Definition 2.2. A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called
(i) a contra continuous[1] if $\mathrm{f}^{1}(\mathrm{~V})$ is closed in (X, τ) for every open set V of (Y, σ).
(ii) a contra g^{*}-continuous [14] if $\mathrm{f}^{1}(\mathrm{~V})$ is g^{*}-closed in (X, τ) for every open set V of (Y, σ).
(iii) a contra pg-continuous [7] if $\mathrm{f}^{1}(\mathrm{~V})$ is pg-closed in (X, τ) for every open set V of (Y, σ).
(iv) a contra $\mathrm{g}^{*} \mathrm{p}$-continuous [18] if $\mathrm{f}^{1}(\mathrm{~V})$ is $\mathrm{g}^{*} \mathrm{p}$-closed in (X, $\left.\tau\right)$ for every open set V of (Y, σ).
(v) a contra strongly g-continuous [15] if $\mathrm{f}^{1}(\mathrm{~V})$ is strongly g-closed in (X, τ) for every open set V of (Y, σ).
(vi) a contra $\mathrm{g} \#$-continuous [17] if $\mathrm{f}^{1}(\mathrm{~V})$ is $\mathrm{g} \#$-closed in (X, τ) for every open set V of (Y, σ).

III. Contra gp*Continuous Functions

In this section, we introduce contra gp^{*}-continuous functions and investigate some of their properties.
Definition 3.1. A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called contra $\mathrm{gp}{ }^{*}$-continuous if $\mathrm{f}^{1}(\mathrm{~V})$ is gp^{*}-closed in (X, τ) for every open set V in (Y, σ).

Example.3.2. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}, \mathrm{b}\}\}$. Define a function f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Clearly f is contra gp^{*}-continuous.

Definition3.3. [11] Let A be a subset of a space (X, τ).
(i) The set $\cap\left\{\mathrm{F} \subset \mathrm{X}: \mathrm{A} \subset \mathrm{F}, \mathrm{F}\right.$ is $\mathrm{gp}{ }^{*}$-closed $\}$ is called the $\mathrm{gp}{ }^{*}$-closure of A and it is denoted by $\mathrm{gp}{ }^{*}$-cl(A).
(ii) The set $\cup\left\{\mathrm{G} \subset \mathrm{X}: \mathrm{G} \subset \mathrm{A}, \mathrm{G}\right.$ is $\mathrm{gp}{ }^{*}$-open $\}$ is called the $\mathrm{gp}{ }^{*}$-interior of A and it is denoted by $\mathrm{gp} *$ - $\mathrm{int}(\mathrm{A})$.

Lemma 3.4. For $\mathrm{x} \in \mathrm{X}, \mathrm{x} \in \mathrm{g} p^{*}$-cl (A) if and only if $\mathrm{U} \cap \mathrm{A} \neq \phi$ for every $\mathrm{g} p^{*}$-open set U containing x .

Proof.

Necessary part: Suppose there exists a gp*-open set U containing x such that $U \cap A=\varphi$. Since $A \subset X-U$, gp*$\operatorname{cl}(\mathrm{A}) \subset \mathrm{X}-\mathrm{U}$. This implies $\mathrm{x} \notin \mathrm{gp} *-\mathrm{cl}(\mathrm{A})$. This is a contradiction.
Sufficiency part: Suppose that $\mathrm{x} \notin \mathrm{gp}{ }^{*}-\mathrm{cl}(\mathrm{A})$. Then $\exists \mathrm{ag} p^{*}$-closed subset F containing A such that $\mathrm{x} \notin \mathrm{F}$. Then $\mathrm{x} \in \mathrm{X}-\mathrm{F}$ is $\mathrm{gp} *$-open, $(\mathrm{X}-\mathrm{F}) \cap \mathrm{A}=\varphi$. This is contradiction.

Lemma 3.5. The following properties hold for subsets A, B of a space X :
(i) $x \in \operatorname{ker}(A)$ if and only if $A \cap F \neq \phi$ for any $F \in(X, x)$.
(ii) $A \subset \operatorname{ker}(A)$ and $A=\operatorname{ker}(A)$ if A is open in X.
(iii) If $A \subset B$, then $\operatorname{ker}(A) \subset \operatorname{ker}(B)$.

Theorem 3.6. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a map. The following conditions are equivalent:
(i) f is contra gp*-continuous,
(ii) The inverse image of each closed in (Y, σ) is gp^{*}-open in (X, τ),
(iii) For each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in g p^{*}-O(X)$, such that $f(U) \subset F$,
(iv) $\mathrm{f}\left(\mathrm{gp}^{*}-\mathrm{cl}(\mathrm{X})\right) \subset \operatorname{ker}(\mathrm{f}(\mathrm{A}))$, for every subset A of X ,
(v) $g p^{*}\left(f^{1}(B)\right) \subset f^{1}(\operatorname{ker}(B))$, for every subset B of Y.

Proof: (i) \Leftrightarrow (ii) and (ii) \Rightarrow (iii) are obvious.
(iii) \Rightarrow (ii): Let F be any closed set of Y and $x \in f^{1}(F)$. Then $f(x) \in F$ and there exists $U_{x} \in g p^{*}-O(X, x)$ such that $f\left(U_{x}\right) \subset F$. Hence we obtain $f^{1}(F)=\bigcup\left\{U_{x} / x \in f^{1}(F)\right\} \in \mathrm{gp}^{*}-\mathrm{O}(X, x)$. Thus the inverse of each closed set in (Y, σ) is gp^{*}-open in (X, τ).
(ii) \Rightarrow (iv). Let A be any subset of X . Suppose that $\mathrm{y} \notin \operatorname{kerf}(\mathrm{A}))$. By lemma there exists $\mathrm{F} \in \mathrm{C}(\mathrm{Y}, \mathrm{y})$ such that $f(A) \cap F=\varphi$. Then, we have $A \cap f^{1}(F)=\varphi$ and $\quad g p^{*}-c l(A) \cap f^{1}(F)=\varphi$. Therefore, we obtain $\mathrm{f}(\mathrm{gp} *-\mathrm{cl}(\mathrm{A})) \cap \mathrm{F}=\varphi$ and $\mathrm{y} \notin \mathrm{f}(\mathrm{gp} *-\mathrm{cl}(\mathrm{A}))$. Hence we have $\mathrm{f}(\mathrm{gp} *-\mathrm{cl}(\mathrm{X})) \subset \operatorname{ker}(\mathrm{f}(\mathrm{A}))$.
(iv) $\Rightarrow(\mathrm{v})$: Let B be any subset of Y. By (iv) and Lemma, We have $\mathrm{f}\left(\mathrm{gp}^{*}-\mathrm{cl}\left(\mathrm{f}^{1}(\mathrm{~B})\right)\right) \subset\left(\operatorname{ker}\left(\mathrm{f}\left(\mathrm{f}^{1}(\mathrm{~B})\right)\right)\right.$ $\subset \operatorname{ker}(\mathrm{B})$ and $\mathrm{gp}^{*}-\mathrm{cl}\left(\mathrm{f}^{1}(\mathrm{~B})\right) \subset \mathrm{f}^{1}(\operatorname{ker}(\mathrm{~B}))$.
(v) \Rightarrow (i): Let V be any open set of Y. By lemma We have gp*-cl(f $\left.{ }^{1}(\mathrm{~V})\right) \subset \quad \mathrm{f}^{1}(\operatorname{ker}(\mathrm{~V}))=\mathrm{f}^{1}(\mathrm{~V})$ and gp*-cl($\left.f^{1}(V)\right)=f^{1}(V)$. It follows that $f^{1}(V)$ is $g p^{*}$-closed in X. We have f is contra $g p^{*}$-continuous.

Definition 3.7. A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called gp -continuous if the pre image of every open set of Y is gp*-open in X .

Remark 3.8: The following two examples will show that the concept of $\mathrm{gp} *$-continuity and contra gp^{*} continuity are independent from each other.

Example 3.9. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{b}, \mathrm{c}\}\}$. Define a function $\mathrm{f}:$ $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Clearly f is contra gp^{*}-continuous but f is not $\mathrm{gp}{ }^{*}$-continuous. Because $\mathrm{f}^{1}(\{\mathrm{~b}, \mathrm{c}\})=\{\mathrm{b}, \mathrm{c}\}$ is not $\mathrm{gp}{ }^{*}$-open in (X, τ) where $\{\mathrm{b}, \mathrm{c}\}$ is open in (Y, σ).

Example 3.10. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}, \mathrm{c}\}\}$. Define a function f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$. Clearly f is gp^{*}-continuous but f is not contra gp^{*}-continuous. Because $\mathrm{f}^{1}(\{\mathrm{a}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{b}\}$ is not contra gp^{*}-closed in (X, τ) where $\{\mathrm{a}, \mathrm{c}\}$ is open in (Y, σ).

Theorem 3.11. If a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is contra $\mathrm{gp}{ }^{*}$-continuous and $\quad(\mathrm{Y}, \sigma)$ is regular then f is gp*-continuous.

Proof: Let x be an arbitrary point of (X, τ) and V be an open set of (Y, σ) containing $\mathrm{f}(\mathrm{x})$. Since (Y, σ) is regular, there exists an open set W of (Y, σ) containing $\mathrm{f}(\mathrm{x})$ such that $\mathrm{cl}(\mathrm{W}) \subset \mathrm{V}$. Since f is contra gp^{*} continuous, by theorem
There exists $U \in g^{*}-O(X, x)$ such that $f(U) \subset \operatorname{cl}(W)$. Then $f(U) \subset \operatorname{cl}(W) \subset V$. Hence f is $g p^{*}$-continuous.
Theorem 3.12. Every contra g^{*}-continuous function is contra gp^{*}-continuous function.
Proof: Let V be an open set in (Y, σ). Since f is contra g^{*}-continuous function, $\mathrm{f}^{1}(\mathrm{~V})$ is g^{*}-closed in (X, τ). Every g^{*}-closed set is $\mathrm{gp} *$-closed. Hence $\mathrm{f}^{1}(\mathrm{~V})$ is gp^{*}-closed in (X, τ). Thus f is contra $\mathrm{gp} *$-continuous function.

Remark 3.13. The converse of theorem need not be true as shown in the following example.
Example 3.14. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \varphi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{b}, \mathrm{c}\}\}$. Define a function f : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Clearly f is contra gp^{*}-continuous but f is not contra g^{*} continuous. Because $\mathrm{f}^{1}(\{\mathrm{~b}, \mathrm{c}\}) \quad=\{\mathrm{a}, \mathrm{b}\}$ is not g^{*}-closed in (X, τ) where $\{\mathrm{b}, \mathrm{c}\}$ is open in (Y, σ).

Theorem 3.15.

(i) Every contra pg-continuous function is contra gp*-continuous function.
(ii) Every contra g^{*} p-continuous function is contra $g p^{*}$-continuous function.
(iii)Every contra strongly g-continuous function is contra gp^{*}-continuous function.
(iv) Every contra g\#-continuous function is contra gp*-continuous function.

Remark 3.16. Converse of the above statements is not true as shown in the following example.

Example 3.17.

(i) Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{b}, \mathrm{c}\}\}$. Define a function f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$. Clearly f is contra $\mathrm{gp} *$-continuous but f is not contra pgcontinuous. Because $\mathrm{f}^{1}(\{\mathrm{~b}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{c}\}$ is not pg -closed in (X, τ) where $\{\mathrm{b}, \mathrm{c}\}$ is open in (Y, σ).
(ii). Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}, \mathrm{b}\}\}$. Define a function f : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Clearly f is contra gp^{*}-continuous but f is not contra $\mathrm{g}^{*} \mathrm{p}$ continuous. Because $\mathrm{f}^{1}(\{\mathrm{a}, \mathrm{b}\})=\{\mathrm{a}, \mathrm{c}\}$ is not $\mathrm{g}^{*} \mathrm{p}$-closed in (X, τ) where $\{\mathrm{a}, \mathrm{b}\}$ is open in (Y, σ).
(iii) Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}\}\}$. Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Clearly f is contra $\quad \mathrm{gp*}$-continuous but f is not contra strongly g -continuous. Because $f^{1}(\{a\})=\{c\}$ is not strongly g-closed $\operatorname{in}(X, \tau)$ where $\{a\}$ is open in (Y, σ).
(iv) Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \varphi,\{\mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}\}\}$. Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})$ $=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Clearly f is contra gp *-continuous but f is not contra $\mathrm{g} \#$-continuous. Because $f^{1}(\{a\})=\{c\}^{`}$ is not g\#-closed in (X, τ) where $\{a\}$ is open in (Y, σ).

Remark 3.18 The concept of contra gp*-continuous and contra gp-continuous are independent as shown in the following examples.

Example 3.19. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{b}, \mathrm{c}\}\}$. Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Clearly f is contra gp^{*}-continuous but f is not contra gp-continuous. Because $\mathrm{f}^{1}(\{\mathrm{~b}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{c}\}$ is not gp-closed $\operatorname{in}(\mathrm{X}, \tau)$ where $\{\mathrm{b}, \mathrm{c}\}$ is open in (Y, σ).

Example 3.20 Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \varphi,\{\mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}, \mathrm{b}\}\}$. Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}$, σ) by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Clearly f is contra gp-continuous but f is not contra gp^{*}-continuous. Because $\mathrm{f}^{1}(\{\mathrm{a}, \mathrm{b}\})=\{\mathrm{a}, \mathrm{c}\}$ is not gp^{*}-closed $\operatorname{in}(\mathrm{X}, \tau)$ where $\{\mathrm{a}, \mathrm{b}\}$ is open in (Y, σ).

Definition 3.21. A space (X, τ) is said to be (i) gp*-space if every $g p^{*}$-open set of X is open in X, (ii) locally gp*-indiscrete if every gp*-open set of X is closed in X.

Theorem 3.22. If a function $f: X \rightarrow Y$ is contra $g p^{*}$-continuous and X is $g p^{*}$-space then f is contra continuous.

Proof: Let $V \in O(Y)$. Then $f^{1}(V)$ is $g p^{*}$-closed in X. Since X is $g p^{*}$-space, $f^{1}(V)$ is open in X. Hence f is contra continuous.

Theorem 3.23. Let X be locally gp*-indiscrete. If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is contra $\mathrm{gp} *$-continuous, then it is continuous.
Proof: Let $V \in O(Y)$. Then $f^{1}(V)$ is $g p^{*}$-closed in X. Since X is locally $g p^{*}$-indiscrete space, $f^{1}(V)$ is open in X. Hence f is continuous.

Definition 3.24. A function $f: X \rightarrow Y$, the subset $\{(x, f(x)): x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G_{f}.

Definition 3.25. The graph G_{f} of a function $f: X \rightarrow Y$ is said to be contra $g p^{*}$-closed if for each $(x, y) \in(X \times$ $\mathrm{Y})-\mathrm{G}_{\mathrm{f}}$ there exists $\mathrm{U} \in \mathrm{gp} *-\mathrm{O}(\mathrm{X}, \mathrm{y})$ and $\mathrm{V} \in \mathrm{C}(\mathrm{Y}, \mathrm{y})$ such that $(\mathrm{U} \times \mathrm{V}) \cap \mathrm{G}_{\mathrm{f}}$.

Theorem 3.26. If a function $f: X \rightarrow Y$ is contra $g p^{*}$-continuous and Y is Urysohn, then G_{f} is contra $g p^{*}$ closed in the product space $\mathrm{X} \times \mathrm{Y}$.

Proof: Let $(x, y) \in(X \times Y)-G_{f}$. Then $y \neq f(x)$ and there exist open sets H_{1}, H_{2} such that $f(x) \in H_{1}, y \in H_{2}$ and $\operatorname{cl}\left(\mathrm{H}_{1}\right) \cap \mathrm{cl}\left(\mathrm{H}_{2}\right)=\varphi$. From hypothesis, there exists $\mathrm{V} \in \mathrm{gp} *-\mathrm{O}(\mathrm{X}, \mathrm{x})$ such that $\mathrm{f}(\mathrm{V}) \subset \mathrm{cl}\left(\mathrm{H}_{1}\right)$. Therefore, we have $\mathrm{f}(\mathrm{V}) \cap \mathrm{cl}\left(\mathrm{H}_{2}\right)=\varphi$. This shows that G_{f} is contra gp*-closed in the product space $\mathrm{X} \times \mathrm{Y}$.

Theorem 3.27. If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{gp}{ }^{*}$-continuous and Y is T_{1}, then Gf is contra $\mathrm{gp}{ }^{*}$-closed in $X \times Y$.
Proof. Let $(x, y) \in(X \times Y)-G_{f}$. Then $y \neq f(x)$ and there exist open set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is $g p^{*}$-continuous, there exists $U \in\left(g p^{*}-O(X, x)\right.$ such that $f(U) \subset V$. Therefore, we have $f(U) \cap(Y-V)$ $=\varphi$ and $(\mathrm{Y}-\mathrm{V}) \in\left(\mathrm{gp}^{*}-\mathrm{C}(\mathrm{Y}, \mathrm{y})\right.$. This shows that G_{f} is contra $\mathrm{gp} *$-closed in $\mathrm{X} \times \mathrm{Y}$.

Theorem 3.28. Let $f: X \rightarrow Y$ be a function and $g: X \rightarrow X \times Y$, the graph function of f, defined by $g(x)=(x$, $f(x))$ for every $x \in X$. If g is contra $g p^{*}$-continuous, then f is contra $g p^{*}$-continuous.

Proof. Let U be an open set in Y, then $X \times U$ is an open set in $X \times Y$. Since g is contra gp^{*}-continuous. It follows that $f^{1}(U)=g^{-1}(X \times U)$ is an $g p^{*}$-closed in X. Hence f is $g p^{*}$-continuous.

Theorem 3.29. If $f: X \rightarrow Y$ is a contra $g p^{*}$-continuous function and $g: Y \rightarrow Z$ is a continuous function, then $\mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is contra gp^{*}-continuous.

Proof: Let $V \in O(Y)$. Then $g^{-1}(V)$ is open in Y. Since f is contra $g p^{*}$-continuous, $f^{1}\left(g^{-1}(V)\right)=(g \circ f)^{-1}(V)$ is gp*-closed in X . Therefore, $\mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is contra $\mathrm{gp} *$-continuous.

Theorem 3.30. Let $p: X \times Y \rightarrow Y$ be a projection. If A is $g p^{*}$-closed subset $p f X$, then $p^{-1}(A)=A \times Y$ is $g p^{*}$ closed subset of $\mathrm{X} \times \mathrm{Y}$.

Proof: Let $A \times Y \subset U$ and U be a regular open set of $X \times Y$. Then $U=X \times Y$ for some regular open set of X. Since A is $g p^{*}$-closed in $\mathrm{X}, \operatorname{bcl}(\mathrm{A})$ and so $\operatorname{bcl}(\mathrm{A}) \times \mathrm{Y} \subset \mathrm{V} \times \mathrm{Y}=\mathrm{U}$. Therefore $\operatorname{bcl}(\mathrm{A} \times \mathrm{Y}) \subset \mathrm{U}$. Hence $\mathrm{A} \times \mathrm{Y}$ is gp*-closed sub set of $\mathrm{X} \times \mathrm{Y}$.

IV. Applications.

Definition 4.1. A topological space (X, τ) is said to be $\mathrm{gp} *$-Hausdorff space if for each pair of distinct points x and y in X there exists $\mathrm{U} \in \mathrm{gp} \mathrm{p}^{*} \mathrm{O}(\mathrm{X}, \mathrm{x})$ and $\mathrm{V} \in \mathrm{gp}^{*}-\mathrm{O}(\mathrm{X}, \mathrm{y})$ such that $\mathrm{U} \cap \mathrm{V}=\varphi$
Example 4.2. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$. Let x and y be two distinct points of X, there exists an $g p^{*}$-open neighbourhood of x and y respectively such that $\{x\} \cap\{y\}=\varphi$. Hence (X, τ) is gp*-Hausdorff space.

Theorem 4.3. If X is a topological space and for each pair of distinct points x_{1} and x_{2} in X, there exists a function f of X into Uryshon topological space Y such that $\mathrm{f}\left(\mathrm{x}_{1}\right) \neq f\left(\mathrm{x}_{2}\right)$ and f is contra $\mathrm{gp} *$-continuous at x_{1} and x_{2}, then X is gp^{*}-Hausdorff space.

Proof: Let x_{1} and x_{2} be any distinct points in X. By hypothesis, there is a Uryshon space Y and a function f : $X \rightarrow Y$ such that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ and f is contra $g p^{*}$-continuous at x_{1} and x_{2}. Let $y_{i}=f\left(x_{i}\right)$ for $i=1,2$ then $y_{1} \neq y_{2}$. Since Y is Uryshon, there exists open sets $U_{y 1}$ and $U_{y 2}$ containing y_{1} and y_{2} respectively in Y such that $\operatorname{cl}\left(\mathrm{U}_{\mathrm{y} 1}\right) \cap \operatorname{cl}\left(\mathrm{U}_{\mathrm{y} 2}\right)=\varphi$. Since f is contra gp^{*}-continuous at x_{1} and x_{2}, there exists and $\mathrm{gp}{ }^{*}$-open sets $\mathrm{V}_{\mathrm{x} 1}$ and $\mathrm{V}_{\mathrm{x} 2}$ containing x_{1} and x_{2} respectively in X such that $\mathrm{f}\left(\mathrm{V}_{\mathrm{x} i}\right) \subset \mathrm{cl}\left(\mathrm{U}_{\mathrm{y}}\right)$ for $\mathrm{i}=1,2$. Hence we have $\left(\mathrm{V}_{\mathrm{x} 1}\right) \cap\left(\mathrm{V}_{\mathrm{x} 2}\right)=\varphi$. Therefore X is gp^{*}-Hausdorff space.

Corollary 4.4. If f is contra gp^{*}-continuous injection of a topological space X into a Uryshon space Y then Y is gp*-Hausdorff.

Proof: Let x_{1} and x_{2} be any distinct points in X . By hypothesis, f is contra gp*-continuous function of X into a Uryshon space Y such that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$, because f is injective. Hence by theorem, X is $\mathrm{gp} *$-Hausdorff.

Definition 4.5. A topological space (X, τ) is said to be $\mathrm{gp}{ }^{*}$-normal if each pair of non-empty disjoint closed sets in (X, τ) can be separated by disjoint gp*-open sets in (X, τ).

Definition 4.6. A topological space (X, τ) is said to be ultra normal if each pair of non-empty disjoint closed sets in (X, τ) can be separated by disjoint clopen sets in (X, τ).

Theorem 4.7. If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a contra $\mathrm{gp}{ }^{*}$-continuous function, closed, injection and Y is Ultra normal, then X is $\mathrm{gp} *$-normal.

Proof: Let U and V be disjoint closed subsets of X. Since f is closed and injective, $f(U)$ and $f(V)$ are disjoint subsets of Y. Since Y is ultra normal, there exists disjoint closed sets A and B such that $f(U) \subset A$ and $f(V) \subset B$. Hence $U \subset f^{1}(A)$ and $V \subset f^{1}(B)$. Since f is contra $g p^{*}$-continuous and injective, $f^{1}(A)$ and $f^{1}(B)$ are disjoint gp*-open sets in X. Hence X is $g p^{*}$-normal.

Definition4.8. [13] A topological space X is said to be gp^{*}-connected if X is not the union of two disjoint nonempty gp*-open sets of X.

Theorem 4.9. A contra gp*-continuous image of a gp*-connected space is connected.
Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a contra gp^{*}-continuous function of $\mathrm{gp}{ }^{*}$-connected space X onto a topological space Y . If possible, let Y be disconnected. Let A and B form disconnectedness of Y . Then A and B are clopen and $\mathrm{Y}=$ $A \cup B$ where $A \cap B=\varphi$. Since f is contra $g p^{*}$-continuous, $X=f^{1}(Y)=f^{1}(A \cup B)=f^{1}(A) \cup f^{1}(B)$ where f ${ }^{1}(A)$ and $f^{1}(B)$ are non-empty $g p^{*}$-open sets in X. Also $f^{1}(A) \cap f^{1}(B)=\varphi$. Hence X is non-gp*-connected which a contradiction is. Therefore Y is connected.
Theorem 4.10. Let X be $g p^{*}$-connected and Y be T_{1}. If $f: X \rightarrow Y$ is a contra $g p^{*}$-continuous, then f is constant.
Proof: Since Y is T_{1} space $v=\left\{f^{1}(y): y \in Y\right\}$ is a disjoint $g p^{*}$-open partition of X. If $|v| \geq 2$, then X is the union of two non empty gp^{*}-open sets. Since X is $\mathrm{gp}{ }^{*}$-connected, $|\mathrm{v}|=1$. Hence f is constant.

Theorem 4.11. If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a contra $\mathrm{gp*}$-continuous function from $\mathrm{gp*}$-connected space X onto space Y , then Y is not a discrete space.
Proof: Suppose that Y is discrete. Let A be a proper non-empty open and closed subset of Y. Then $f^{1}(A)$ is a proper non-empty gp^{*}-clopen subset of X , which is a contradiction to the fact X is $\mathrm{gp}{ }^{*}$-connected.

References

[1]. Dontchev J., Contra continuous functions and strongly S-closed spaces. Int Math Sci, 19 (1996) 303-310.
[2]. Dontchev J. and Noiri T., Contra semi continuous functions. Math Pannonica, 10 (1999) 159-168.
[3]. Jafari.S and T. Noiri, On contra-precontinuous functions, Bull. Malays. Math. Sci. Soc. (2) 25(2) (2002), 115-128.
[4]. Jayakymar.P, Mariappa.K and S.Sekar, On generalized gp*- closed set in Topological Spaces, Int. Journal of Math. Analysis, Vol. 7, 2013, no.33,1635-1645.
[5]. Levine.N, Generalized closed sets in topology, Tend Circ., Mat. Palermo (2) 19 (1970), 89-96.
[6]. Maki.H, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets Mem. Fac. Sci. Kochi. Univ. Ser. A.Math. 15 (1994), 51-63.
[7]. Maki.H, R.J.Umehara and T.Noiri, Every topological space is pre-T ${ }_{1 / 2}$, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. 17(1996), 3342.
[8]. Mashor Abd.El-Monsef.M.E and Ei-Deeb.S.N., On Pre continous and weak pre-continous mapping, Proc.Math.,Phys.Soc.Egypt, 53 (1982), 47-53.
[9]. Metin Akdag and Alkan Ozkan, Some properties of Contra gb-continuous functions, Journal of New results in Science 1 (2012) 4049.
[10]. Njastad.O, On some classes of nearly open sets, Pacific J Math., 15(1965),961-970 .
[11]. Sekar.S and Jayakumar.P, On gp*- continuous map in Topological Spaces-Communicated.
[12]. Sekar.S and Jayakumar.P, On gp*-interior and gp*-closure in Topological Spaces -Communicated.
[13]. Sekar.S and Jayakumar.P On gp*- connectedness and gp*-compactness in Topological spaces-Communicated.
[14]. Sekar.S and Jayakumar.P, On Generalized gp*- Closed Map in Topological Spaces, Applied Mathematical Sciences, Vol. 8, 2014, no. 9, 415-422.
[15]. Somasundaram.S., Murugalingam.M. and Palaniammal.S. 2005. A generalized Star Sets.Bulletin of Pure and Applied Sciences.Vol.24E (No.2) : 233-238.
[16]. Sundaram.P. and A.Pushpaplatha.2001.Strongly generalized closed sets in topological spaces. Far East J.Math.Sci., 3(4): 563-575.
[17]. Veerakumar. M.K.R.S., Between closed sets and g-closed sets. Mem. Fac. Sci, Kochi Univ.Ser.A.Math, 1721 (2000),1-19.
[18]. Veerakumar.M.K.R.S., g\#-closed sets in topological spaces, Kochi J.Math., 24(2003),1-13
[19]. Veera kumar.M.K.R.S., g*- pre-closed sets, Acta Ciencia India, Vol XXVIII M, No 1, (2002), $51-60$.

