Con-S-K-Invariant Partial Orderings on Matrices

Dr G.Ramesh*, Dr B.K.N.Muthugobal**

*Associate Professor, Ramanujan Research Centre, Department of Mathematics, Govt. Arts College (Autonomous), Kumbakonam-612 001, **4, Noor Nagar,Kumbakonam- 612 001, India.

Abstract: In this paper it is shown that all standard partial orderings are preserved for con-s-k-EP matrices. *Keywords:* Con-s-k-EP Matrix, Partial Ordering.

I. Introduction

Let c_{nxn} be the space of nxn complex matrices of order n. let C_n be the space of all complex n tuples. For $A \epsilon c_{nxn}$. Let \overline{A} , A^T , A^* , A^S , \overline{A}^S , A^{\dagger} , R(A), N(A) and $\rho(A)$ denote the conjugate, transpose, conjugate transpose, secondary transpose, conjugate secondary transpose, Moore Penrose inverse range space, null space and rank of A respectively. A solution X of the equation AXA = A is called generalized inverse of A and is denoted by A^- . If A ϵc_{nxn} then the unique solution of the equations A XA

=A, XAX = X, $[AX]^* = AX$, $(XA)^* = XA$ [9] is called the Moore-Penrose inverse of A and is denoted by A^{\dagger} . A matrix A is called Con-s- $\mathcal{K} - EP_r$ if $\rho(A) = r$ and $N(A) = N(A^T VK)$ (or) $R(A)=R(KVA^T)$. Throughout this paper let " \mathcal{K} " be the fixed product of disjoint transposition in $S_n = \{1,2,...,n\}$ and k be the associated permutation matrix.

Let us define the function $\mathbf{k}(\mathbf{x}) = (x_{k(1)}, x_{k(2)}, \dots, x_{k(n)})$. A matrix $\mathbf{A} = (a_{ij}) \epsilon c_{nxn}$ is s-k-symmetric if $a_{ij} = a_{n-k(j)+1,n-k(i)+1}$ for i, j = 1,2,...,n. A matrix $\mathbf{A} \epsilon c_{nxn}$ is said to be Con-s-k-EP if it satisfies the condition $A_x = 0 \ll A^s \mathbf{k}(x) = 0$ or equivalently N(A) =N($A^T V \mathbf{K}$). In addition to that A is con-s-k-EP $\ll E^s \mathbf{k} \mathbf{k}(x) = 0$ or equivalently N(A) =N($A^T V \mathbf{K}$). In addition to that A is con-s-k-EP $\ll E^s \mathbf{k} \mathbf{k}(x) = 0$ or equivalently properties of con-s-k-EP matrices one may refer [6]. **Theorem 2** [2]

Let $A, B \in C_{nn}$. Then we have the following:

(i)
$$R(AB) \subseteq R(A); N(B) \subseteq N(AB)$$
.
(ii) $R(AB) = R(A) \Leftrightarrow \rho(AB) = \rho(A)$ and
 $N(AB) = N(B) \Leftrightarrow \rho(AB) = \rho(B)$
(iii) $N(A) = N(A^*A)$ and $R(A) = R(A^*A)$

(11) IV(21) = IV(21)

Theorem 2.1 [p.21, 8]

Let
$$A, B \in C_{nxn}$$
. Then
(i) $N(A) \subseteq N(B) \Leftrightarrow R(B^*) \subseteq R(A^*)$
 $\Leftrightarrow B = BA^-A$ for all $A^- \in A\{1\}$

(ii) $N(A^*) \subseteq N(B^*) \Leftrightarrow R(B) \subseteq R(A) \Leftrightarrow B = AA^-B$ for every $A^- \in A\{1\}$.

Definition 2.1.1

For $A, B \in C_{n \times n}$, (i) $A \ge_L B$ if $A - B \ge 0$. (ii) $A \ge_T B$ if $B^T B = B^T A$ and $B^T B = AB^T$ (iii) $A \ge_{rs} B$ if $\rho(A - B) = \rho(A) - \rho(B)$. The relationship between the transpose and minus orderings is studied by Baksalary [1], Mitra [8], Mitra and Puri [7] and Hartwig and Styan [4, 5].

In the sequel, the following known results will be used. **Result 2.1.2 [5]**

For
$$A, B \in C_{n \times n}$$
, $A \ge_L B \Leftrightarrow \rho(A^{\dagger}B) \le 1$ and $R(B) \subseteq R(A)$ where

 $\mathbf{r}(A) = \max\{|\lambda| : \lambda \text{ is an eigen value of } A\}$ is the spectral radius. Result 2.1.3 [3]

For $A, B \in C_{n \times n}$, $A \ge_T B \iff A \ge_{rs} B$ and $(A - B)^{\dagger} = A^{\dagger} - B^{\dagger}$. For other conditions to be added to rank subtractivity to be equivalent to star order, one may refer [1]. **Result 2.1.4** [4]

For
$$A, B \in C_{n \times n}$$
, $A \ge_{rs} B \iff B = BA^{-}B = BA^{-}A = AA^{-}B$.

Definition 2.1.5

Let $A \in C_{n \times n}$, if $AA^{s} = A^{s}A = I$ then A is called s-orthogonal matrix. Theorem 2.1.6

For $A, B \in C_{n \times n}$, K is the permutation matrix associated with 'k' the set of all permutations in $S = \{1, 2, ..., n\}$ and V is the secondary diagonal matrix with units in its secondary diagonal then,

(i) $A \ge_L B \Leftrightarrow KVA \ge_L KVB \Leftrightarrow AVK \ge_L BVK$. (ii) $A \ge_T B \Leftrightarrow KVA \ge_T KVB \Leftrightarrow AVK \ge_T BVK$. (iii) $A \ge_{rs} B \Leftrightarrow KVA \ge_{rs} KVB \Leftrightarrow AVK \ge_{rs} BVK$.

Proof

(i)
$$A \ge_L B \Leftrightarrow \mathbf{r} (A^{\dagger}B) \le 1$$
 and $R(B) \subseteq R(A)$ (by result (2.1.2))
 $\Leftrightarrow \mathbf{r} (A^{\dagger}VKKVB) \le 1$ and $B = AA^{\dagger}B$ (by Theorem
(2.1)) $\Leftrightarrow \mathbf{r} (A^{\dagger}VKKVB) \le 1$ and $(KVB) = (KVA)(A^{\dagger}VK)(KVB)$

 \Leftrightarrow r ((KVA)[†](KVB)) ≤ 1 and $R(KVB) \subset R(KVA)$ (by (2.11) [6] and Theorem (2.1)) $\Leftrightarrow KVA \geq_{I} KVB$ (by result (2.1.2)) Also, $A \ge_I B \Leftrightarrow \mathbf{r} (A^{\dagger}B) \le 1$ and $R(B) \subseteq R(A)$ (by result (2.1.2)) \Leftrightarrow **r** (*KVA*[†]*BVK*) \leq 1 and *B* = *AA*[†]*B* (by Theorem(2.1)) \Leftrightarrow r $((AVK)^{\dagger}(BVK)) \leq 1$ and $(BVK) = (AVK)(AVK)^{\dagger}(BVK)$ \Leftrightarrow r ((AVK)[†](BVK)) ≤ 1 and $R(BVK) \subseteq R(AVK)$ (by Theorem (2.1)) $\Leftrightarrow AVK \geq_I BVK$ (by Result (2.1.2)) (ii) $A \ge_T B \iff B^T B = B^T A$ and $BB^T = AB^T$ (by definition of transpose ordering) $\Leftrightarrow B^T V K K V B = B^T V K K V A$ and $K V B B^T V K = K V A B^T V K$ $\Leftrightarrow (KVB)^T (KVB) = (KVB)^T (KVA)$ and $(KVB) (KVB)^T = (KVA) (KVB)^T$

 $\Leftrightarrow (KVA) \geq_T KVB$ (by definition of transpose ordering) Similarly it can be proved that, $A \geq_T B \Leftrightarrow AVK \geq_T BVK$.

(iii)
$$A \ge_{rs} B \Leftrightarrow \rho(A-B) = \rho(A) - \rho(B)$$
 (by definition of minus ordering)
 $\Leftrightarrow \rho(KV(A-B)) = \rho(KVA) - \rho(KVB)$
 $\Leftrightarrow \rho(KVA - KVB) = \rho(KVA) - \rho(KVB)$
 $\Leftrightarrow KVA \ge_{rs} KVB$.

Similarly it can be proved that, $A \ge_{rs} B \iff AVK \ge_{rs} BVK$.

Thus, all the three standard partial orderings are preserved for con-s-k-EP matrices.

The following results can be easily verified by using the **Theorem (2)**.

Result 2.1.7

Lowener ordering is preserved under unitary similarity, that is, $A \ge_L B \Leftrightarrow P^T A P \ge_L P^T B P$.

Result 2.1.8

Star ordering is preserved under unitary similarity, that is, $A \ge_T B \Leftrightarrow P^T A P \ge_T P^T B P$.

Result 2.1.9

Rank subtractivity ordering is preserved under unitary similarity, that is, $A \ge_{rs} B \iff P^T A P \ge_{rs} P^T B P.$

Theorem 2.1.10

Lowener order, transpose order and rank subtractivity order are all preserved for s-k-orthogonal similarity. **Proof**

(i) Lowener ordering is preserved for s-k-orthogonal similarity. We have to prove that, $A \ge_L B \Leftrightarrow KVP^{-1}KVAP \ge_L KVP^1KVBP$ for some orthogonal matrix P.

For
$$A \ge_I B \Leftrightarrow KVA \ge_I KVB$$

(by Theorem (2.1.6))

 $\Leftrightarrow P^{T}KVAP \geq_{L} P^{T}KVBP.$ $\Leftrightarrow KVP^{T}KVAP \geq_{L} KVP^{T}KVBP.$ $\Leftrightarrow (KVP^{-1}KV)AP \geq_{L} (KVP^{-1}KV)BP$ $\Leftrightarrow C \geq_{L} D$

Where $C = KVP^{-1}KVAP$ is orthogonaly s-k-similar to A

 $D = KVP^{-1}KVBP$ is orthogonaly s-k-similar to B Thus, Lowener ordering is preserved for s-k-orthogonal similarity.

(ii) Star ordering is preserved for s-k-orthogonal similarity, we have to prove that, $A \ge_T B \iff (KVP^{-1}KV)AP \ge_T (KVP^{-1}KV)BP$, for some orthogonal matrix P.

For
$$A \geq_{T} B \Leftrightarrow KVA \geq_{T} KVB$$
 (by Theorem (2.1.6))
 $\Leftrightarrow P^{T}KVAP \geq_{T} P^{T}KVBP$ (by result (2.1.8))
 $\Leftrightarrow KVP^{T}KVAP \geq_{T} KVP^{T}KVBP$ (by Theorem (2.1.6))
 $\Leftrightarrow (KVP^{-1}VK)AP \geq_{T} (KVP^{-1}VK)BP.$

Thus transpose ordering is preserved for s-k-orthogonal similarity.

(iii) Rank subtractivity ordering is preserved for s-k-orthogonal similarity, we have to show that,

$$A \ge_{rs} B \Leftrightarrow (KVP^{-1}KV)AP \ge_{rs} (KVP^{-1}KV)BP$$
 for some orthogonal matrix P .
For, $A \ge_{rs} B \Leftrightarrow KVA \ge_{rs} KVB$ (by Theorem (2.1.6))
 $\Leftrightarrow P^T KVAP \ge_{rs} P^T KVBP$ (by result (2.1.9))

$\Leftrightarrow KVP^{T}KVAP \geq_{rs} KVP^{T}KVBP$

(by Theorem (2.1.6))

$\Leftrightarrow (KVP^{-1}KV)AP \ge_{rs} (KVP^{-1}KV)BP$

Thus rank subtractivity is preserved for s-k-orthogonal similarity. Thus all the three standard partial orderings are preserved for s-k-orthogonal similarity.

References

- [1]. Baksalary, J.K., "Relationship between the star and minus orderings." Lin. Alg. Appl., 82 (1986), 163-168.
- [2]. Ben-Israel, A. and Greville, T.N.E., "Generalized Inverses: Theory and Applications." 2nd Edition, Springer, New York (2003).
- [3]. Hartwig, R.E. and Styan, G.P.H., "On some characterizations of the star partial ordering for matrices and rank subtractivity." Lin. Alg. Appl. 82 (1986), 145-161.
- [4]. Hartwig. R.E. and Styan. G.P.H., "Partially ordered idempotent matrices." Proc. Second International Tampere Conference in Statistics, (1987), 361-383.
- [5]. Hauke, J. and Markiewicz, A., "On partial orderings on the set of rectangular matrices." Lin. Alg. Appl., 219 (1995), 187-193.
- [6]. Krishnamoorthy, S., Gunasekaran, K. and Muthugobal, B.K.N., "Con-s-k-EP matrices", Journal of Mathematical Sciences and Engineering Applications, Vol. 5, No.1, 2011, 353 – 364.
- [7]. Mitra, S.K. and Puri, M.L., "The fundamental barded matrix of linear estimation and the Duffin Morley general linear electro mechanical systems." Applicable Analys., 14 (1983), 241-258.
- [8]. Mitra. S.K., "Matrix partial orderings through generalized inverses: unified theory." Lin. Alg. Appl., 148 (1991), 237-263.
- [9]. Rao, C.R. and Mitra, S.K., "Generalized Inverse of Matrices and Its Applications", Wiley and Sons, New York, 1971.