Join distributive of super modular pair elements in super modular semi lattice.

Sri Rama Ravi Kumar. Emani
Dept. of Mathematics, V.R.Siddhartha Engineering college, Vijayawada, A.P. India.

Abstract: This study concerns with the concepts of join distributive, distributive elements of join semi lattice, modular and super modular semi lattice. We define a join distributive element in super modular semi lattice and obtained every join distributive element of super modular semi lattice is distributive. Also it is proved that every directed below modular semi lattice is a super modular semi lattice. It is defined a super modular pair elements in join semi lattice and proved that, in a super modular semi lattice S, if an element a is join distributive, the pair of elements (a, b) is super modular pair elements of S for b ∈ S.

1. Introduction

The concept of distributivity has been extended to join semi lattice by J. Katrinak (4) and of modularity by W.H.Cornish (2, 3). The concept of Super modular lattices were studied by Iqbalunnisa and W.B.Vasantha(4) and concept of super modularity in join semi lattices and characterization of super modular join semi lattices are analyzed by Venkateswara rao J and Sree Rama Ravi Kumar (9). In this paper the concept of join distributive element and distributive elements of join semi lattice was studied and defined join distributive element in Super modular semi lattice and obtained every join distributive element is distributive element in super modular semi lattice. Also defined super modular pair elements in super modular semi lattice and proved that, in super modular semi lattice S, if a ∈ S, is a join distributive element then the pair of elements (a, b) is super modular pair for b ∈ S. But converse need not be true.

1. Directed below semi lattice: A Join semi lattice S is said to be directed below semi lattice, for every pair of elements a, b in S, there exists d in S, such that d ≤ a and d ≤ b.

2. Distributive element: An element d of join semi lattice S is called distributive, if x ≤ d ∀ x, x ≤ d ∈ S, implies there exists c ∈ S, such that c ≤ a, c ≤ b and x ≤ d ∨ c.

3. Join distributive element: An element a in join semi lattice S, is said to be join distributive element, if for any x, y ∈ S, y ≤ a ∨ x implies there exists x₁ and a₁ in S such that a₁ ≤ a, x₁ ≤ x and a₁ ∨ x₁ = y.

4. Example: In a bounded semi lattice [0, 1] the elements 0 and 1 are join distributive elements.

5. Example for join distributive elements. Consider the semi lattice S = {a, b, c, d, 1} as follows.

Since c ≤ a ∨ b for c, b ∈ S, there does not exists a₁ ≤ a , b₁ ≤ b such that c = a₁ ∨ b₁. Therefore c is not join distributive. Similarly we prove the elements a and b are also not join distributive.

6. Result: Every join distributive element of as semi lattice (S, V) is distributive element.

Proof: Let an element a in join semi lattice S is join distributive element, then for x, y ∈ S, with y ≤ a∨ x, there exists x₁ and a₁ in S, such that a₁ ≤ a, x₁ ≤ x and a₁ ∨ x₁ = y. Since y ≤ a∨ y and a₁ ∨ x₁ = y then x₁ ≤ a₁ ∨ x₁ = y. Thus x₁ ≤ x and x₁ ≤ y and y ≤ a ∨ x₁. Hence a is distributive element.

7. Modular Semi lattice: A join semi lattice S is said to be modular if and only if a ≤ w ≤ a∨ b implies there exists y in S such that y ≤ b and w = a∨ y for a, b w ∈ S.

8. Super modular semi lattice: A join semi lattice S is called Super modular semi lattice whenever a ≤ x≤a∨b, a∨c, a∧d and then there exists s, t, u in S such that s≤b,c, a≤d; t≤c,d, a≤b; u ≤ d,b, a∧c and x=s∧t∨ u.

9. Example: Let S= {1, 2, 4, 8, 16, 32} be a finite chain with divisibility property. Then S is super modular semi lattice, by defining the operation a∧b = lcm {a, b} , when 1≤ a≤4∧16, 16, 1V16 then there exists 4,2,1 in S such that 4≤4,8,16,2; 8≤8,16,1V4; 1≤16,4,16V1 and 4=1V4V2V1.

10. Theorem: Every directed below semi lattice is a Super modular.

Proof: Let S be a modular semi lattice. Let w, b ∈ S, then for w ≤ w ≤ w ∨ b, there exists y in S such that y ≤ b and w = w ∨ y. Hence w = w ∨ y ≥ y, implies y ≤ w and y ≤ b for w, b ∈ S. Therefore modular semi lattice S is...
Join distributive of super modular pair elements in super modular semi lattice.

directed below. Now Suppose S is directed below modular semi lattice. To prove that S is super modular. For a, b ∈ S, a ≤ x ≤ aVx, b, x ∈ aVb there exists S in such that x ≤ a and \(x = aVb \). Similarly, for x ≤ aVc, there exists t in S such that t ≤ c and \(x = aVt \) and aVt and for a ≤ x ≤ aVt there exists u in S such that u ≤ d and \(x = auV \). Then for a ≤ x ≤ aVb, aVc, aVd there exists s,t,u in S such that s ≤ b, t ≤ c, u ≤ d and \(x = avVtvU \). Since x ≤ aVd and \(x = aVb \), we have aV ≤ aVd, implies s ≤ aV, s ≤ aVt; implies s ≤ aVd. Also, since x≤aVc and x≤aVb, we have aV ≤ aVc; implies s ≤ c. Hence s ≤ b,c, aV. Similarly we can prove that t ≤ c, d, aVb and u ≤ d, b, aVc. Therefore S is super modular.

11. Join distributive element in super modular semi lattice: An element a is said to be join distributive element in super modular semi lattice if \(x \leq a \leq x \) for \(x \leq a \leq x \), y, a

12. Example: Let \(S = \{1,2,4,8\} \) be a finite chain with divisibility order. Define \(aVb = lcm \{a, b\} \) for a, b ∈ S, then clearly S is a super modular semi lattice. And an element 1 in S is a join distributive element, since \(2 \leq 1 \leq 1 \), \(4 \leq 2 \leq 4 \), \(8 \leq 4 \) and \(1 \leq 2 \) and \(4 \leq 1 \). Similarly the elements 2, 4 and 8 are also join distributive elements of S.

13. Theorem: Every join distributive element of super modular semi lattice S is a distributive.

Proof: Let an element a in S be a join distributive element, then for \(x \leq a \leq a \), y, a

14. Super modular pair elements: Let \((S, V) \) be a join semi lattice and \(a, b \in S \), we call \((a,b) \) a super modular pair denoted by aSb, if for \(b \leq a \leq a \), x, y, a

15. Example: Let \(S = \{1,2,4,8,16\} \) be a finite chain with divisibility order. Since \(aVb = lcm(a, b) \). Since \(2 \leq 1 \leq 1 \), \(4 \leq 2 \leq 4 \), \(8 \leq 4 \) and \(1 \leq 2 \) and \(4 \leq 1 \). Thus \((1, 2) \) is super modular pair elements of S.

16. Theorem: Let \((S, V) \) be a Super modular semi lattice and \(a, b \in S \), if a is a join distributive element of S then \(a \in S \). Converse need not be true.

Proof: Let an element a be a join distributive element of super modular semi lattice S. To prove that \((a, b) \) be a super modular pair elements of S, consider \(b \leq a \leq a \), y, a

In this paper, a join distributive element in super modular semi lattice is defined and obtained every join distributive element of super modular semi lattice is distributive. Also it is proved that every directed below modular semi lattice is a super modular semi lattice. It is defined a super modular pair elements in join semi lattice and proved that, in a super modular semi lattice S, if an element a is join distributive, the pair of elements \((a, b) \) is super modular pair elements of S for \(b \in S \).

II. Conclusion

In this paper, a join distributive element in super modular semi lattice is defined and obtained every join distributive element of super modular semi lattice is distributive. Also it is proved that every directed below modular semi lattice is a super modular semi lattice. It is defined a super modular pair elements in join semi lattice and proved that, in a super modular semi lattice S, if an element a is join distributive, the pair of elements \((a, b) \) is super modular pair elements of S for \(b \in S \).

References:

[4] Iglalumna and W.B. Vasantha – Characterization of Super modular lattices

www.iosrjournals.org 18 | Page