On Pairwise Completely Regular Ordered Spaces

A. F. Sayed
Mathematics Department, Al-Lith University College, Umm Al-Qura University
P.O. Box 112, Al-Lith 21961, Makkah Al Mukarramah, Kingdom of Saudi Arabia

Abstract

In this paper, we introduce the concept of pairwise 0-completely regular filters on a pairwise completely regular ordered bitopological space; we define the category of bitopological ordered K-spaces, which is isomorphic to that found among both bitopological and ordered spaces. Key words \& Phrases: A bitopological ordered space; a bitopological partially ordered space; a pairwise completely regular ordered space; a pairwise 0-completely regular filter; pairwise continuous isotone; a pairwise compact ordered space; pairwise G_{k}-set; pairwise k-compact; pairwise k-Lindelöf; bitopological P spaces

I. Introduction

In (1963) Kelly, J. C. [2] initiated the study of bitopological spaces. A set equipped with two topologies is called a bitopological space. Since sevsral others authors continued investigating such spaces; among them recently [4]. In (1965) Nachbin, L. [6] initiated the study of topological ordered spaces. A topological ordered space is a triple (X, τ, \leq), where τ is a topology on X and \leq is a partial order on X. In (1971) Singal, M. K. and Singal, A. R. [9] introduced the concept of a bitopological ordered space, and they studied some separation axioms for such spaces. Raghavan, T. G. [7, 8] and various other authors have contributed to development and construction some properties of such spaces. In (1976) Choe, T. H. and Hong, Y. H. [1] introduced the concept of 0 -completely regular filters on a completely regular ordered space and gave some results with this concept. Kopperman, R. and Lawson, J. D. [5] defined bitopological and topological ordered K-spaces in order to handle the requirements of domain theory in theoretical computer science. The aim of this paper is to introduce the concept of pairwise 0 -completely regular filters on a pairwise completely regular ordered bitopological space; we define the category of bitopological ordered K-spaces, which is isomorphic to that found among both bitopological and ordered spaces.

II. Preliminaries and notations

Let (X, \leq) be a partially ordered set (i.e. a set X together with a reflexive, antisymmetric and transitive relation $\leq)$. For a subset $\mathrm{A} \subseteq \mathrm{X}$, we write:

$$
\begin{aligned}
& L(A)=\{y \in X: y \leq x \text { for some } x \in A\} \text {, and } \\
& M(A)=\{y \in X: x \leq y \text { for some } x \in A\} .
\end{aligned}
$$

In particular, if A is a singleton set, say $\{x\}$, then we write $L(x)$ and $M(x)$ respectively. A subset A of X is said to be decreasing (resp. increasing) if $A=L(A)$ (resp. $A=M(A)$). The complement of a decreasing (resp. an increasing) set is an increasing (resp. a decreasing) set. A mapping $f:(\mathrm{X}, \leq) \rightarrow\left(\mathrm{X}^{*}, \leq^{*}\right)$ from a partially ordered set (X, \leq) to a partially ordered set $\left(\mathrm{X}^{*}, \leq^{*}\right)$ is increasing (resp. a decreasing) if $\mathrm{x} \leq \mathrm{y}$ in X implies $f(\mathrm{x})$ $\leq^{*} f(\mathrm{y})$ (resp. $f(\mathrm{y}) \leq^{*} f(\mathrm{x})$). f is called isotone if its monotone icreasing and therefore order-preserving. f is called an order isomorphism if it is an increasing bijection such that f^{-1} is also increasing.

A bitopological ordered space [9] is a quadruple consisting of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$), and a partial order \leq on X ; it is denoted as ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$). The partial order \leq said to be continuous(resp. weakly continuous) [7] if its graph $\mathrm{G}(\leq)=\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \leq \mathrm{y}\}$ is closed in the product topology $\tau_{\mathrm{i}} \times \tau_{\mathrm{j}}$ (resp. $\tau_{1} \times \tau_{2}$) where i , $j=1,2 ; i \neq j$, or equivalently, if $L(x)$ and $M(x)$ are τ_{i}-closed, where $i, j=1,2\left(\right.$ resp. $L(x)$ is τ_{1} - closed and $M(x)$ is τ_{2}-closed), for each $x \in X$. If the bitopological space equipped with (weakly) continuous partial order, then the space is (weakly) pairwise Hausdorff. If a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) is equipped with a continuous partial order \leq; then ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$) will be called a bitopological partially ordered space
For a subset A of a bitopological ordered space ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$),
$H_{i}^{l}(\mathrm{~A})=\cap\left\{\mathrm{F} \mid \mathrm{F}\right.$ is τ_{i}-decreasing closed subset of X containing A$\}$,
$H_{i}^{m}(\mathrm{~A})=\bigcap\left\{\mathrm{F} \mid \mathrm{F}\right.$ is τ_{i}-increasing closed subset of X containing A$\}$,
Clearly, $H_{i}^{m}(\mathrm{~A})\left(\right.$ resp. $\left.H_{i}^{l}(\mathrm{~A})\right)$ is the smallest τ_{i}-increasing closed set containing A . Further A is $\tau_{\mathrm{i}}-$ increasing (resp. τ_{i}-decreasing) closed if and only if $\mathrm{A}=H_{i}^{m}(\mathrm{~A})=\left(\right.$ resp. $H_{i}^{l}(\mathrm{~A})$).

A map $f:\left(\mathrm{X}, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(\mathrm{X}^{*}, \tau^{*}{ }_{1}, \tau^{*}{ }_{2}, \leq^{*}\right)$ is pairwise continuous isotone if $f:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{X}^{*}, \tau^{*}{ }_{1}\right.$, $\left.\tau^{*}{ }_{2}\right)$ is pairwise continuous and $f:(\mathrm{X}, \leq) \rightarrow\left(\mathrm{X}^{*}, \leq^{*}\right)$ is isotone.
The category of bitopological ordered spaces and pairwise continuous isotone functions will be denoted by BTOS. Let $\left(\mathrm{X}, \tau_{1}, \tau_{2}, \leq\right)$ a bitopological ordered space. Let \mathfrak{J} (resp. \mathfrak{R}) be a filter in X consisting of $\tau_{\mathrm{i}}-$ decreasing (resp. τ_{j}-increasing) closed subsets of X where $i, j=1,2 ; i \neq j$. A pair ($\mathfrak{J}, \mathfrak{R}$) of $\mathfrak{J}, \mathfrak{R}$ is called a pairwise filter on $X[7]$ if $F \cap G \neq \varnothing$ for any $F \in \mathfrak{I}$ and $G \in \mathfrak{R}$.
For given two $\left(\mathfrak{J}_{1}, \mathfrak{R}_{1}\right) \subseteq\left(\mathfrak{J}_{2}, \mathfrak{R}_{2}\right)\left(\mathfrak{J}_{1}, \mathfrak{R}_{1}\right)$ and $\left(\mathfrak{J}_{2}, \mathfrak{R}_{2}\right)$ we defined a relation $\left(\mathfrak{J}_{1}, \mathfrak{R}_{1}\right) \subseteq\left(\mathfrak{I}_{2}, \mathfrak{R}_{2}\right)$ if and only if $\mathfrak{J}_{1} \subseteq \mathfrak{J}_{2}$ and $\mathfrak{R}_{1} \subseteq \mathfrak{R}_{2}$, we can easily remark by Zorn's Lemma that every pairwise filter is contained in a maximal pairwise filter.

III. Pairwise completely regular ordered spaces

Let I denote $[0,1]$, considered as a set $([0,1], \sigma, \omega)$; as a bitopological space, where $\sigma=\{(\mathrm{a}, 1] \mid \mathrm{a} \in[0,1]\} \cup$ $\{[0,1]\}$, and $\omega=\{[0, \mathrm{a}) \mid \mathrm{a} \in[0,1]\} \cup\{[0,1]\}$.
Definition 3.1: A bitopological partially ordered space ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$) will be called pairwise completely separated provided that whenever $\mathrm{x} \leq \mathrm{y}$ in X , there exists a pairwise continuous isotone $f: \mathrm{X} \rightarrow \mathrm{I}$ such that $f(\mathrm{x})$ $>f(\mathrm{y})$ where I is the unit interval with the usual order and bitopology.
The category of bitopological partially ordered spaces and pairwise continhous isotone functions will be denoted by BTPOS
Definition 3.2: A pairwise completely separated bitopological partially ordered space ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$) is said to be a pairwise completely regular ordered space if for any point $\mathrm{x} \in \mathrm{X}$ and for any τ_{i}-open neighborhood V of x there exists pairwise continuous isotone $f: \mathrm{X} \rightarrow \mathrm{I}$ and a pairwise continuous ant-isotone $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{I}$ such that $f(\mathrm{x})=1 \mathrm{~g}(\mathrm{x})$ and $\nu_{i}^{c} \subseteq f^{-1}(0) \cup g^{-1}(0)$ where v_{i}^{c} denotes the complement of V in X with respect to $\tau_{\mathrm{i}}, \mathrm{i}=1,2$. The category of pairwise completely regular ordered spaces and pairwise continuous isotone functions will be denoted by PCROS.
Definition 3.3: Let $\left(\mathrm{X}, \tau_{1}, \tau_{2}, \leq\right)$ be a pairwise completely regular ordered space. a pairwise filter $(\mathfrak{J}, \mathfrak{R})$ on X is said to be pairwise 0 -completely regular if \mathfrak{J} (resp. \mathfrak{R}) has a τ_{i}-(resp. τ_{j}-) open base B , satisfying that for each $\mathcal{U} \in \mathrm{B}$, there exists many pairwise continuous isotones $f_{1}, f_{2}, \ldots, f_{\mathrm{n}}: \mathrm{X} \rightarrow[-1,1]$ such that $f_{\mathrm{r}}(v)=0$ for each $\mathrm{r}=1,2, \ldots ., \mathrm{n}$ and $u_{i}^{c}\left(\right.$ resp. $\left.u_{j}^{c}\right)$ is contained in $\cup f_{r}^{-1}(\{-1,1\}), \mathrm{i}, \mathrm{j}=1,2 ; \mathrm{i} \neq \mathrm{j}$.

By a maximal pairwise 0 -completely regular filter on X is meant a pairwise 0 -completely regular filter not contained in any other pairwise 0 -completely regular filter.
Remark 3.4: For every pairwise 0 -completely regular filter, there exists by Zorn's Lemma, a maximal pairwise 0 -completely regular filter containing it. In particular, a pairwise 0 -completely regular filter ($\mathfrak{J}, \mathfrak{R}$) on a pairwise completely regular ordered space X is a maximal pairwise 0 -completely regular filter iff for any pair of τ_{i}-(resp. τ_{j}) open sets u and v with $v \subseteq u$ and finitely many pairwise continuous isotones $f_{1}, f_{2}, \ldots ., f_{\mathrm{n}}: \mathrm{X} \rightarrow$ $[-1,1]$ such that $f_{\mathrm{r}}(v)=0$ for each $\mathrm{r}=1,2, \ldots ., \mathrm{n}$ and u_{i}^{c} (resp. u_{j}^{c}) is contained in $\cup f_{r}^{-1}(\{-1,1\})$, either $u \in \mathfrak{I}$ (resp. \mathfrak{R}) or $u \notin \mathfrak{I}$ (resp. \mathfrak{R}) and there exists some $\mathrm{F} \in \mathfrak{J}$ (resp. \mathfrak{R}) with $\mathrm{F} \cap \mathcal{v}=\varnothing, \mathrm{i}, \mathrm{j}=1,2 ; \mathrm{i} \neq \mathrm{j}$.
Theorem 3.5: A pairwise filter ($\mathfrak{J}, \mathfrak{R}$) on a pairwise completely regular ordered space ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$) contains a maximal pairwise 0 -completely regular filter iff
$\mathrm{f}(\mathfrak{J}, \mathfrak{R})$ is convergent for each pairwise continuous isotone $f: \mathrm{X} \rightarrow[-1,1]$.
Proof. Since pairwise filter containing a convergent pairwise filter is a gain convergent, its enough to show that every maximal pairwise 0 -completely regular filter satisfies the necessary conditions. Let ($\mathfrak{J}, \mathfrak{R}$) be a maximal pairwise 0 -completely regular filter on X and f a member of pairwise hom (X, $[-1,1]$).
Since [-1, 1] is pairwise compact, $\cap\left\{H_{i}^{l}(f(\mathrm{~F})) \mid \mathrm{F} \in \mathfrak{I}\right\}\left(\mathrm{resp} . \cap\left\{H_{j}^{m}(f(\mathrm{~F})) \mid \mathrm{F} \in \mathfrak{R}\right\}\right) 0 \neq \varnothing$. Using the above remark, it is easy to show that $\cap\left\{H_{i}^{l}(f(\mathrm{~F})) \mid \mathrm{F} \in \mathfrak{J}\right\}\left(\right.$ resp. $\cap\left\{H_{j}^{m}(f(\mathrm{~F})) \mid \mathrm{F} \in \mathfrak{R}\right\}$ is a singleton set and $f(\mathfrak{J}, \mathfrak{R})$ converges to the point.
Conversely, let (μ, v) be pairwise filter on X such that for any $f \in$ of pairwise hom $(\mathrm{X},[-1,1] f(\mu, v)$ is convergent. Let $\left(\mathrm{x}_{\mathrm{f}}, \mathrm{y}_{\mathrm{f}}\right)=\lim f(\mu, v)$. Then $f^{-1}\left(N_{i}\left(\mathrm{x}_{\mathrm{f}}\right)\right) \subseteq \mu\left(\right.$ resp. $f^{-1}\left(N_{j}\left(\mathrm{y}_{\mathrm{f}}\right)\right) \subseteq v$, where $N_{i}\left(\mathrm{x}_{\mathrm{f}}\right)$ $\left(\right.$ resp. $\left.N_{j}\left(\mathrm{y}_{\mathrm{f}}\right)\right)$ is the τ_{i}-(resp. $\left.\tau_{\mathrm{j}}\right)$ neighborhood filter of $\mathrm{x}_{\mathrm{f}}-\left(\right.$ resp. $\left.\left.\mathrm{y}_{\mathrm{f}}\right)\right)$.Hence $\cup\left\{f^{-1}\left(N_{i}\left(\mathrm{x}_{\mathrm{f}}\right)\right)\right\}(\mathrm{resp}$.
$\cup\left\{f^{-1}\left(N_{j}\left(\mathrm{y}_{\mathrm{f}}\right)\right)\right\} \mid \mathrm{f} \in$ pairwise hom $\left.(\mathrm{X},[-1,1])\right\}$ generates a pairwise filter; let $\mathfrak{J}=\vee f^{-1}\left(N_{i}\left(\mathrm{x}_{\mathrm{f}}\right)\right)$ (resp. $\left.\mathfrak{R}=\vee f^{-1}\left(N_{j}\left(\mathrm{y}_{\mathrm{f}}\right)\right)\right) \mid \mathrm{f} \in$ pairwise hom (X, [-1, 1]). It is easy to show that a join of pairwise 0 -completely regular filters is a gain pairwise 0 -completely regular filter and that $\left(f^{-1}\left(N_{i}\left(\mathrm{x}_{\mathrm{f}}\right)\right), f^{-1}\left(N_{j}\left(\mathrm{y}_{\mathrm{f}}\right)\right)\right.$) is a pairwise 0 -completely regular filter base. Hence $(\mathfrak{J}, \mathfrak{R})$ is a pairwise 0 -completely regular filter. Using the above remark, $(\mathfrak{J}, \mathfrak{R})$ is a maximal pairwise 0 -completely regular filter contained in $(\mu, v), \mathrm{i}, \mathrm{j}=1,2 ; \mathrm{i} \neq \mathrm{j}$. \square
Remark 3.6: For a maximal pairwise 0 -completely regular filter ($\mathfrak{J}, \mathfrak{R}$) on a pairwise completely regular ordered space $\left(\mathrm{X}, \tau_{1}, \tau_{2}, \leq\right)$ and $\mathrm{f} \in$ pairwise hom $(\mathrm{X},[-1,1])$, let $\mathrm{x}_{\mathrm{f}}=\lim f(\mathfrak{J})\left(\right.$ resp. $\left.\mathrm{y}_{\mathrm{f}}=\lim f(\mathfrak{R})\right)$. Then $\mathfrak{J}=\vee f^{-1}\left(N_{i}\left(\mathrm{x}_{\mathrm{f}}\right)\right)\left(\right.$ resp. $\left.\mathfrak{R}=\vee f^{-1}\left(N_{j}\left(\mathrm{y}_{\mathrm{f}}\right)\right)\right) \mid \mathrm{f} \in$ pairwise hom $(\mathrm{X},[-1,1])$.

By the definition of pairwise completely regular ordered space and the above theorem, we have,
Corollary 3.7: Every neighborhood pairwise filter of pairwise completely regular ordered space is a maximal pairwise 0 -completely regular filter.

IV. Pairwise compact and k - compact ordered spaces

The following definition of pairwise compactness is due to Kim [3].
Definition 4.1: Let $\left(\mathrm{X}, \tau_{1}, \tau_{2}, \leq\right)$ be a bitopological ordered space. Let $\tau(\mathrm{i}, \mathrm{V})=\left\{\varnothing, \mathrm{X},\left\{\mathrm{U} \cup \mathrm{V} \mid \mathrm{U} \in \tau_{\mathrm{i}}\right\}\right\}$ where $\mathrm{V} \in \tau_{\mathrm{j}}, \mathrm{i}, \mathrm{j}=1,2 ; \mathrm{i} \neq \mathrm{j}$. If $\tau(\mathrm{i}, \mathrm{V})$ is compact for every $\mathrm{V} \in \tau_{\mathrm{j}}$. hen the space is called pairwise compact.
Definition 4.2: A pairwise compact bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) equipped with a continuous partial order is called a pairwise compact ordered space.
Note that, if a continuous partial order is replaced by a weakly continuous partial order in the above definition, then we obtain on the definition of a pairwise G- compact space due to Raghavan, T. G. [8].
The proofs of the two following lemmas are similar to which in [7]
Lemma 4.3: If $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ is bitopological space equipped with a continuous partial order, then if K is τ_{i}-(resp. $\tau_{j^{-}}$) compact then $L(K)($ resp. $M(K))$ is τ_{j-} (resp. τ_{i}) closed , $\mathrm{i}, \mathrm{j}=1,2 ; \mathrm{i} \neq \mathrm{j}$.
Lemma 4.4: Let ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$) be a pairwise compact ordered space. If P is an increasing τ_{i}-(resp. a decreasing τ_{j}) set and V is a τ_{i} (resp. τ_{j}-) neighborhood of P , then there exists an increasing τ_{i}-(resp. a decreasing τ_{j}) open set U such that $P \subset U \subset V, i, j=1,2 ; i \neq j$.
Definition 4.5: Let k be an infinite cardinal. A pairwise completely regular ordered space ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$) is called pairwise k-compact if every maximal pairwise 0 -completely regular filter on X with the k -intersection property is convergent.
Definition 4.6 [1]: Let k be an infinite cardinal, and let (X, τ) be a topological space. A subset of X is called a G_{k}-set if it is an intersection of fewer than k-open subsets of X . A subset of X is called k -closed if it is closed with respect to the topology generated by all G_{k}-sets of X .

Let $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ be a bitopological space, $\mathrm{A} \subset \mathrm{X}$, we say that A is a pairwise G_{k}-set if A is G_{k}-set with respect to both τ_{1} and τ_{2}. A subset of X is called pairwise closed if it is closed with respect to both τ_{1} and τ_{2}.
For a pairwise completely regular ordered space ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$). Let $\beta_{0} \mathrm{X}$ be the set of all maximal pairwise 0 completely regular filters on X, endowed with the topologies τ_{i} (resp. $\left.\tau_{j}\right)$ generated by $\left\{U^{*} \mid U^{*}=\left\{(\mu, v) \in \beta_{0} X\right.\right.$ $\mid \mathrm{U} \in \mu$ (resp. $\in \mathcal{V}$), U is an increasing τ_{i} (resp. a decreasing τ_{j}) open set, $\mathrm{i}, \mathrm{j}=1,2 ; \mathrm{i} \neq \mathrm{j}$. And a relation \leq^{*} defined as follows: $\left(\mu_{1}, v_{1}\right) \leq^{*}\left(\mu_{2}, v_{2}\right)$ in $\beta_{0} \mathrm{X}$ if $\lim f\left(\mu_{1}\right) \leq \lim f\left(\mu_{2}\right)$ and
$\lim f\left(v_{1}\right) \leq \lim f\left(v_{2}\right)$ for all $\mathrm{f} \in \operatorname{hom}\left(\mathrm{X},[-1,1]\right.$ It is abvious that $\left(\beta_{0} \mathrm{X}, \leq\right)$ is a patially ordered set and that $\{$ $U^{*}\left|U^{*} \in \beta_{0} X\right| U$ is a τ_{i}-open set, $i=1,2$.
Let $\beta_{0}: \mathrm{X} \rightarrow \beta_{0} \mathrm{X}$ be a map defined by $\beta_{\mathrm{o}}(\mathrm{x})=N_{i}(\mathrm{x})$ for $\mathrm{x} \in \mathrm{X}, \mathrm{i}=1$, 2. By the construction of $\beta_{0} \mathrm{X}, \beta_{0} \mathrm{X}$ is precisely the strict extension of X with all maximal pairwise 0 -completely regular filters of X as the pairwise filter trace. Furthermore for any $\mathrm{x} \in \mathrm{X}$ and any $\mathrm{f} \in \operatorname{hom}\left(\mathrm{X},[-1,1], \lim \mathrm{f}\left(N_{i}(\mathrm{x})\right)=\mathrm{f}(\mathrm{x})\right.$ and X is pairwise completely regular; it follows that β_{o} is order isomorphism. Consequently the map $\beta_{0}: \mathrm{X} \rightarrow \beta_{0} \mathrm{X}$ is a dense embedding.
Lemma 4.7: The space $\left(\beta_{0} X, \leq, \tau^{*}{ }_{1}, \tau^{*}{ }_{2}\right)$ is a bitopological partially ordered space.
Proof. We wish to prove that the partial order \leq is continuous in the product $\tau^{*}{ }_{i} \times \tau^{*}{ }_{j}, i, j=1,2 ; i \neq j$. Let $\left(\mu_{1}, v_{1}\right),\left(\mu_{2}, v_{2}\right)$ are two elements of $\beta_{0} \mathrm{X}$ with $\left(\mu_{1}, v_{1}\right) \not 又\left(\mu_{2}, v_{2}\right)$ in $\beta_{0} \mathrm{X}$, and we wish to find $\tau_{\mathrm{i}}-$ increasing (resp. τ_{j}-decreasing) neighborhood of $\left(\mu_{1}, v_{1}\right)$, (resp. $\left(\mu_{2}, v_{2}\right)$). Since $\left(\mu_{1}, v_{1}\right) \not \not 又\left(\mu_{2}, v_{2}\right)$ implies to $\mu_{1}, \not \leq \mu_{2}$ and $v_{1} \not \leq v_{2}$, there are $\mathrm{f} \in \operatorname{hom}\left(\mathrm{X},[-1,1]\right.$ with $f\left(\mu_{2}\right) \not \leq \lim f\left(\mu_{1}\right)$ and $f\left(v_{2}\right) \not \leq \lim f\left(v_{1}\right)$.

Let r_{1} and r_{2} be elements of [-1, 1] with $\lim f\left(\mu_{2}, v_{2}\right)<\mathrm{r}_{1}<\mathrm{r}_{2}<\lim f\left(\mu_{1}, v_{1}\right)$ and let $\mathrm{U}=f^{-1}$ ([-1, r_{1} [and $\left.\left.\mathrm{V}=f^{-1}(] r_{2}, 1\right]\right)$. Then it is obvious that $\mathrm{U}^{*}\left(\right.$ resp. $\left.\mathrm{V}^{*}\right)$ is a $\tau_{\mathrm{i}}-\left(\right.$ resp. τ_{j}) neighborhood of $\left(\mu_{1}, v_{1}\right)$, (resp. $\left.\left(\mu_{2}, v_{2}\right)\right)$ and that for any $\left(\mathfrak{J}_{1}, \mathfrak{R}_{1}\right) \in \mathrm{V}^{*}$ and any $\left(\mathfrak{J}_{2}, \mathfrak{R}_{2}\right) \in \mathrm{U}^{*},\left(\mathfrak{J}_{1}, \mathfrak{R}_{1}\right) \not \leq\left(\mathfrak{J}_{2}, \mathfrak{R}_{2}\right) ;$ i .e. U^{*} (resp. V^{*}) is an increasing (resp. decreasing) as a desired. \square
Lemma 4.8: A pairwise completely regular ordered space ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$) is called a pairwise k-compact iff it is pairwise k-closed in $\beta_{0} X$.
Proof. Noting that $\beta_{0} \mathrm{X}$ is the strict extension of X with all pairwise 0 -completely regular filters as the pairwise filter trace, the proof is immediate from Lemma 4.3. \square

For an infinite cardinal k, the category of pairwise k-compact ordered spaces and pairwise conttinuouss isotones will be denoted by PKCOS.
Definition 4.9 [1]: Let k be an infinite cardinal. A Hausdorff space is said to be k - Lindelöf if every filter with the k-intersection property has a cluster point.
Definition 4.10: Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space. Let $\tau(\mathrm{i}, \mathrm{V})=\left\{\varnothing, \mathrm{X},\left\{\mathrm{U} \cup \mathrm{V} \mid \mathrm{U} \in \tau_{\mathrm{i}}\right\}\right\}$ where $\mathrm{V} \in \tau_{\mathrm{j}}, \mathrm{i}, \mathrm{j}$ $=1,2 ; \mathrm{i} \neq \mathrm{j}$. If $\tau(\mathrm{i}, \mathrm{V})$ is k -Lindelöf for every $\mathrm{V} \in \tau_{\mathrm{j}}$. then the space is called pairwise k -Lindelöf.
The notion of P -space is well-known. A topological space is called a P-space if and only if every G_{δ}-set is open . A space ($\mathrm{X}, \tau_{1}, \tau_{2}$) is called a bitopological P-space [8] if and only if (X, τ_{1}) and (X, τ_{2}) are both P-spaces.
Definition 4.11: A bitopological P - orderd space ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$) is called pairwise k-ordered Lindelöf if and only if the $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ is pairwise k -Lindelöf and the partial order \leq is continuous.
Proposition 4.12: A pairwise k-Lindelöf completely regular ordered space X a is pairwise k -compact ordered space.
Proof. For any maximal pairwise 0 -completely regular filter $(\mathfrak{J}, \mathfrak{R})$ on X with the k-intersection property, let x (resp.y) be a cluster point of $\mathfrak{J}($ resp. $\mathfrak{R})$. Then $\mathrm{N}(\mathrm{x}) \vee \mathfrak{J}$ (resp. $\mathrm{N}(\mathrm{y}) \vee \mathfrak{R}$) exists; $\mathrm{N}(\mathrm{x})=\mathfrak{J}$ (resp. $\mathrm{N}(\mathrm{y})$ $=\mathfrak{R}$). Hence $(\mathfrak{J}, \mathfrak{R})$ is convergent as a desired. \square
Proposition 4.13: If a pairwise filter ($\mathfrak{J}, \mathfrak{R}$) on a pairwise completely regular ordered space ($\mathrm{X}, \tau_{1}, \tau_{2}, \leq$) contains a maximal pairwise 0 -completely regular filter with the countable intersection property then $f(\mathfrak{J})$ (resp. $f(\mathfrak{R})$) is convergent for any pairwise continuous isotone $f: \mathrm{X} \rightarrow \mathrm{R}$.
Proof. It is enough to show that for any maximal pairwise 0 -completely regular filter ($\mathfrak{J}, \mathfrak{R}$) with the countable intersection property and a pairwise continuous isotone $f: \mathrm{X} \rightarrow \mathrm{R}, f(\mathfrak{J})$ (resp. $f(\mathfrak{R})$) is convergent. Since $f(\mathfrak{J})$ (resp. $f(\mathfrak{R})$) is a filter τ_{i} - (resp. τ_{j}) base with the countable intersection property and R is pairwise Lindelöf, $f(\mathfrak{J})$ (resp. $f(\mathfrak{R})$) has a cluster point. Moreover, by the same argument as that in the proof of theorem 3.4, one can easily show that $f(\mathfrak{J})$ (resp. $f(\mathfrak{R})$) has only one cluster point and that $f(\mathfrak{J})$ (resp. $f(\mathfrak{R})$) converges to the point. \square

References

[1]. Choe, T. H. and Hong, Y. H., Extensions of completely regular ordered spaces, Pacific J. of Mathematics, 66 (1) (1976), 37-48.
[2]. Kelley, J. C., Bitopological spaces, Proc. Landon Math. Soc. 13 (1963), 71-89.
[3]. Kim, Y. W., Pairwise compactness, Publicatione Mathematicae, 15 (1968), 87-90.
[4]. Kopperman, R. Asymmetry and Duality in topology, Topology and its Applications, 66 (1995)1-39.
[5]. Kopperman, R. and Lawson, J. D., Bitopological and topological ordered K- spaces, Topology and its Applications, 146-147 (2005) 385-396.
[6]. Nachbin, L., Topology and Order, D.Van Nostrand Inc., Princeton, New Jersey, 1965.
[7]. Raghavan, T. G., Quasi-ordered bitopological spaces. The Mathematics student XLI (1973), 276-284.
[8]. Raghavan, T. G., Quasi-ordered bitopological spaces II. Kyungpook Math.J. 20 (1980), 145-158.
[9]. Singal, M. K. and Singal, A. R., Bitopological ordered spaces. The Mathematics student. XXXIX (1971), 440-447.

