On Pairwise Completely Regular Ordered Spaces

A. F. Sayed

Mathematics Department, Al-Lith University College, Umm Al-Qura University P.O. Box 112, Al-Lith 21961, Makkah Al Mukarramah, Kingdom of Saudi Arabia

Abstract: In this paper, we introduce the concept of pairwise 0-completely regular filters on a pairwise completely regular ordered bitopological space; we define the category of bitopological ordered K-spaces, which is isomorphic to that found among both bitopological and ordered spaces.

Key words & Phrases: A bitopological ordered space; a bitopological partially ordered space; a pairwise completely regular ordered space; a pairwise 0-completely regular filter; pairwise continuous isotone; a pairwise compact ordered space; pairwise G_k -set; pairwise k-compact; pairwise k-Lindelöf; bitopological P-spaces

I. Introduction

In (1963) Kelly, J. C. [2] initiated the study of bitopological spaces. A set equipped with two topologies is called a bitopological space. Since sevsral others authors continued investigating such spaces; among them recently [4]. In (1965) Nachbin, L. [6] initiated the study of topological ordered spaces. A topological ordered space is a triple (X, τ , \leq), where τ is a topology on X and \leq is a partial order on X. In (1971) Singal, M. K. and Singal, A. R. [9] introduced the concept of a bitopological ordered space, and they studied some separation axioms for such spaces. Raghavan, T. G. [7, 8] and various other authors have contributed to development and construction some properties of such spaces. In (1976) Choe, T. H. and Hong, Y. H. [1] introduced the concept of 0-completely regular filters on a completely regular ordered space and gave some results with this concept. Kopperman, R. and Lawson, J. D. [5] defined bitopological and topological ordered K-spaces in order to handle the requirements of domain theory in theoretical computer science. The aim of this paper is to introduce the concept of pairwise 0-completely regular filters on a pairwise completely regular ordered bitopological space; we define the category of bitopological ordered K-spaces, which is isomorphic to that found among both bitopological and ordered spaces.

II. Preliminaries and notations

Let (X, \leq) be a partially ordered set (i.e. a set X together with a reflexive, antisymmetric and transitive relation \leq). For a subset A \subseteq X, we write:

 $L(A) = \{y \in X: y \le x \text{ for some } x \in A\}, \text{ and }$

 $M(A) = \{y \in X: x \le y \text{ for some } x \in A\}.$

In particular, if A is a singleton set, say $\{x\}$, then we write L(x) and M(x) respectively. A subset A of X is said to be decreasing (resp. increasing) if A = L(A) (resp. A = M(A)). The complement of a decreasing (resp. an increasing) set is an increasing (resp. a decreasing) set. A mapping $f: (X, \le) \to (X^*, \le^*)$ from a partially ordered set (X, \le) to a partially ordered set (X^*, \le^*) is increasing (resp. a decreasing) if $x \le y$ in X implies $f(x) \le^* f(y)$ (resp. $f(y) \le^* f(x)$). f is called **isotone** if its monotone icreasing and therefore order-preserving. f is called an order isomorphism if it is an increasing bijection such that f^{-1} is also increasing.

A bitopological ordered space [9] is a quadruple consisting of a bitopological space (X, τ_1, τ_2) , and a partial order \leq on X; it is denoted as $(X, \tau_1, \tau_2, \leq)$. The partial order \leq said to be continuous(resp. weakly continuous) [7] if its graph $G(\leq) = \{(x, y): x \leq y\}$ is closed in the product topology $\tau_i \times \tau_j$ (resp. $\tau_1 \times \tau_2$) where i, $j = 1, 2; i \neq j$, or equivalently, if L(x) and M(x) are τ_i -closed, where i, j = 1, 2 (resp. L(x) is τ_1 - closed and M(x) is τ_2 -closed), for each $x \in X$. If the bitopological space equipped with (weakly) continuous partial order, then the space is (weakly) pairwise Hausdorff. If a bitopological space (X, τ_1, τ_2) is equipped with a continuous partial order \leq ; then $(X, \tau_1, \tau_2, \leq)$ will be called a bitopological partially ordered space

For a subset A of a bitopological ordered space (X, τ_1 , τ_2 , \leq),

 $H_i^l(A) = \bigcap \{F \mid F \text{ is } \tau_i \text{ -decreasing closed subset of X containing A}\},\$

 $H_i^m(A) = \bigcap \{F \mid F \text{ is } \tau_i \text{-increasing closed subset of X containing } A\},\$

Clearly, H_i^m (A) (resp. H_i^l (A)) is the smallest τ_i -increasing closed set containing A. Further A is τ_i increasing (resp. τ_i -decreasing) closed if and only if A = H_i^m (A) = (resp. H_i^l (A)).

A map $f: (X, \tau_1, \tau_2, \le) \to (X^*, \tau^*_1, \tau^*_2, \le^*)$ is pairwise continuous isotone if $f: (X, \tau_1, \tau_2) \to (X^*, \tau^*_1, \tau^*_2)$ is pairwise continuous and $f: (X, \le) \to (X^*, \le^*)$ is isotone.

The category of bitopological ordered spaces and pairwise continuous isotone functions will be denoted by BTOS. Let $(X, \tau_1, \tau_2, \leq)$ a bitopological ordered space. Let \mathfrak{T} (resp. \mathfrak{R}) be a filter in X consisting of τ_i -decreasing (resp. τ_j -increasing) closed subsets of X where i, j =1, 2; i $\neq j$. A pair $(\mathfrak{T}, \mathfrak{R})$ of \mathfrak{T} , \mathfrak{R} is called a pairwise filter on X [7] if $F \cap G \neq \emptyset$ for any $F \in \mathfrak{T}$ and $G \in \mathfrak{R}$.

For given two $(\mathfrak{I}_1, \mathfrak{R}_1) \subseteq (\mathfrak{I}_2, \mathfrak{R}_2) (\mathfrak{I}_1, \mathfrak{R}_1)$ and $(\mathfrak{I}_2, \mathfrak{R}_2)$ we defined a relation $(\mathfrak{I}_1, \mathfrak{R}_1) \subseteq (\mathfrak{I}_2, \mathfrak{R}_2)$ if and only if $\mathfrak{I}_1 \subseteq \mathfrak{I}_2$ and $\mathfrak{R}_1 \subseteq \mathfrak{R}_2$, we can easily remark by Zorn's Lemma that every pairwise filter is contained in a maximal pairwise filter.

III. Pairwise completely regular ordered spaces

Let I denote [0, 1], considered as a set ([0, 1], σ , ω); as a bitopological space, where $\sigma = \{ (a, 1] | a \in [0, 1] \} \cup \{ [0, 1] \}$, and $\omega = \{ [0, a) | a \in [0, 1] \} \cup \{ [0, 1] \}$.

Definition 3.1: A bitopological partially ordered space $(X, \tau_1, \tau_2, \leq)$ will be called pairwise completely separated provided that whenever $x \leq y$ in X, there exists a pairwise continuous isotone $f: X \to I$ such that f(x) > f(y) where I is the unit interval with the usual order and bitopology.

The category of bitopological partially ordered spaces and pairwise continuous isotone functions will be denoted by BTPOS.

Definition 3.2: A pairwise completely separated bitopological partially ordered space $(X, \tau_1, \tau_2, \leq)$ is said to be a pairwise completely regular ordered space if for any point $x \in X$ and for any τ_i -open neighborhood V of x there exists pairwise continuous isotone $f: X \to I$ and a pairwise continuous ant-isotone $g: X \to I$ such that

f(x)=1 g(x) and $v_i^c \subseteq f^{-1}(0) \cup g^{-1}(0)$ where v_i^c denotes the complement of V in X with respect to τ_i , i = 1, 2.

The category of pairwise completely regular ordered spaces and pairwise continuous isotone functions will be denoted by PCROS.

Definition 3.3: Let $(X, \tau_1, \tau_2, \leq)$ be a pairwise completely regular ordered space. a pairwise filter $(\mathfrak{T}, \mathfrak{R})$ on X is said to be pairwise 0-completely regular if \mathfrak{T} (resp. \mathfrak{R}) has a τ_i -(resp. τ_j -) open base B, satisfying that for each $\mathcal{U} \in B$, there exists many pairwise continuous isotones $f_1, f_2, \ldots, f_n : X \to [-1, 1]$ such that $f_r(\mathcal{V}) = 0$ for each $r = 1, 2, \ldots, n$ and u_i^c (resp. u_j^c) is contained in $\cup f_r^{-1}(\{-1, 1\})$, i, j = 1, 2; $i \neq j$.

By a maximal pairwise 0-completely regular filter on X is meant a pairwise 0-completely regular filter not contained in any other pairwise 0-completely regular filter.

Remark 3.4: For every pairwise 0-completely regular filter, there exists by Zorn's Lemma, a maximal pairwise 0-completely regular filter containing it. In particular, a pairwise 0-completely regular filter (\Im , \Re) on a pairwise completely regular ordered space X is a maximal pairwise 0-completely regular filter iff for any pair of τ_i -(resp. τ_j -) open sets u and v with $v \subseteq u$ and finitely many pairwise continuous isotones $f_1, f_2, \ldots, f_n : X \rightarrow$ [-1, 1] such that $f_r(v) = 0$ for each $r = 1, 2, \ldots, n$ and u_i^c (resp. u_i^c) is contained in $\cup f_r^{-1}(\{-1, 1\})$, either

 $u \in \mathfrak{T}$ (resp. \mathfrak{R}) or $u \notin \mathfrak{T}$ (resp. \mathfrak{R}) and there exists some $F \in \mathfrak{T}$ (resp. \mathfrak{R}) with $F \cap v = \emptyset$, i, j = 1, 2; i \neq j.

Theorem 3.5: A pairwise filter (\mathfrak{I} , \mathfrak{R}) on a pairwise completely regular ordered space (X, τ_1 , τ_2 , \leq) contains a maximal pairwise 0-completely regular filter iff

 $f(\mathfrak{I}, \mathfrak{R})$ is convergent for each pairwise continuous isotone $f: X \to [-1, 1]$.

Proof. Since pairwise filter containing a convergent pairwise filter is a gain convergent, its enough to show that every maximal pairwise 0-completely regular filter satisfies the necessary conditions. Let $(\mathfrak{I}, \mathfrak{R})$ be a maximal pairwise 0-completely regular filter on X and f a member of pairwise hom (X, [-1, 1]).

Since [-1, 1] is pairwise compact, $\cap \{H_i^l(f(F)) \mid F \in \mathfrak{F}\}\$ (resp. $\cap \{H_j^m(f(F)) \mid F \in \mathfrak{R}\}\) 0 \neq \emptyset$. Using the above remark, it is easy to show that $\cap \{H_i^l(f(F)) \mid F \in \mathfrak{F}\}\$ (resp. $\cap \{H_j^m(f(F)) \mid F \in \mathfrak{R}\}\$ is a singleton set and $f(\mathfrak{T}, \mathfrak{R})$ converges to the point.

Conversely, let (μ, υ) be pairwise filter on X such that for any $f \in$ of pairwise hom (X, [-1, 1] $f(\mu, \upsilon)$ is convergent. Let $(\mathbf{x}_{f}, \mathbf{y}_{f}) = \lim f(\mu, \upsilon)$. Then $f^{-1}(N_{i}(\mathbf{x}_{f})) \subseteq \mu$ (resp. $f^{-1}(N_{j}(\mathbf{y}_{f})) \subseteq \upsilon$, where $N_{i}(\mathbf{x}_{f})$ (resp. $N_{j}(\mathbf{y}_{f})$) is the τ_{i} -(resp. τ_{j} -) neighborhood filter of \mathbf{x}_{f} -(resp. \mathbf{y}_{f})).Hence $\cup \{f^{-1}(N_{i}(\mathbf{x}_{f}))\}$ (resp. $\cup \{ f^{-1}(N_j(y_f)) \} \mid f \in \text{ pairwise hom } (X, [-1, 1]) \}$ generates a pairwise filter; let $\mathfrak{T} = \bigvee f^{-1}(N_i(x_f))$ (resp. $\mathfrak{R} = \bigvee f^{-1}(N_j(y_f)) \mid f \in \text{ pairwise hom } (X, [-1, 1])$. It is easy to show that a join of pairwise 0-completely regular filters is a gain pairwise 0-completely regular filter and that $(f^{-1}(N_i(x_f)), f^{-1}(N_j(y_f)))$ is a pairwise 0-completely regular filter base. Hence $(\mathfrak{T}, \mathfrak{R})$ is a pairwise 0-completely regular filter. Using the above remark, $(\mathfrak{T}, \mathfrak{R})$ is a maximal pairwise 0-completely regular filter contained in (μ, υ) , i, j =1, 2; i \neq j. \square **Remark 3.6:** For a maximal pairwise 0-completely regular filter $(\mathfrak{T}, \mathfrak{R})$ on a pairwise completely regular ordered space $(X, \tau_1, \tau_2, \leq)$ and $f \in$ pairwise hom (X, [-1, 1]), let $x_f = \lim f(\mathfrak{T})$ (resp. $y_f = \lim f(\mathfrak{R})$). Then $\mathfrak{T} = \bigvee f^{-1}(N_i(x_f))$ (resp. $\mathfrak{R} = \bigvee f^{-1}(N_i(y_f))$) | $f \in$ pairwise hom (X, [-1, 1]).

By the definition of pairwise completely regular ordered space and the above theorem, we have, **Corollary 3.7:** Every neighborhood pairwise filter of pairwise completely regular ordered space is a maximal pairwise 0-completely regular filter.

IV. Pairwise compact and k- compact ordered spaces

The following definition of pairwise compactness is due to Kim [3].

Definition 4.1: Let $(X, \tau_1, \tau_2, \leq)$ be a bitopological ordered space. Let $\tau(i, V) = \{\emptyset, X, \{U \cup V \mid U \in \tau_i\}\}$ where $V \in \tau_i$, i, j = 1, 2; $i \neq j$. If $\tau(i, V)$ is compact for every $V \in \tau_i$. hen the space is called pairwise compact.

Definition 4.2: A pairwise compact bitopological space (X, τ_1, τ_2) equipped with a continuous partial order is called a pairwise compact ordered space.

Note that, if a continuous partial order is replaced by a weakly continuous partial order in the above definition, then we obtain on the definition of a pairwise G- compact space due to Raghavan, T. G. [8].

The proofs of the two following lemmas are similar to which in [7]

Lemma 4.3: If (X, τ_1, τ_2) is bitopological space equipped with a continuous partial order, then if K is τ_i -(resp. τ_j -) compact then L(K) (resp. M(K)) is τ_j -(resp. τ_i -) closed , i, j =1, 2; i \neq j.

Lemma 4.4: Let $(X, \tau_1, \tau_2, \leq)$ be a pairwise compact ordered space. If P is an increasing τ_i -(resp. a decreasing τ_j -) set and V is a τ_i -(resp. τ_j -) neighborhood of P, then there exists an increasing τ_i -(resp. a decreasing τ_j -) open set U such that $P \subset U \subset V$, $i, j = 1, 2; i \neq j$.

Definition 4.5: Let k be an infinite cardinal. A pairwise completely regular ordered space $(X, \tau_1, \tau_2, \leq)$ is called pairwise k-compact if every maximal pairwise 0-completely regular filter on X with the k-intersection property is convergent.

Definition 4.6 [1]: Let k be an infinite cardinal, and let (X, τ) be a topological space. A subset of X is called a G_k -set if it is an intersection of fewer than k-open subsets of X. A subset of X is called k-closed if it is closed with respect to the topology generated by all G_k -sets of X.

Let (X, τ_1, τ_2) be a bitopological space, $A \subseteq X$, we say that A is a pairwise G_k -set if A is G_k -set with respect to both τ_1 and τ_2 . A subset of X is called pairwise closed if it is closed with respect to both τ_1 and τ_2 .

For a pairwise completely regular ordered space $(X, \tau_1, \tau_2, \leq)$. Let $\beta_0 X$ be the set of all maximal pairwise 0completely regular filters on X, endowed with the topologies τ_i (resp. τ_j) generated by { $U^* | U^* = \{(\mu, \upsilon) \in \beta_0 X | U \in \mu \text{ (resp.} \in \upsilon), U \text{ is an increasing } \tau_i \text{-(resp. a decreasing } \tau_j \text{-) open set, } i, j = 1, 2; i \neq j.$ And a relation \leq^*

defined as follows: $(\mu_1, \nu_1) \leq^* (\mu_2, \nu_2)$ in $\beta_0 X$ if $\lim f(\mu_1) \leq \lim f(\mu_2)$ and

 $\lim f(\mathcal{U}_1) \leq \lim f(\mathcal{U}_2) \text{ for all } f \in \text{hom } (X, [-1, 1] \text{ It is abvious that } (\beta_o X, \leq) \text{ is a patially ordered set and that } \{ U^* | U^* \in \beta_o X | U \text{ is a } \tau_i \text{-open set, } i = 1, 2. \}$

Let $\beta_0: X \to \beta_0 X$ be a map defined by $\beta_0(x) = N_i(x)$ for $x \in X$, i = 1, 2. By the construction of $\beta_0 X$, $\beta_0 X$ is precisely the strict extension of X with all maximal pairwise 0-completely regular filters of X as the pairwise filter trace. Furthermore for any $x \in X$ and any $f \in hom(X, [-1, 1], \lim f(N_i(x)) = f(x) \text{ and } X$ is pairwise completely regular; it follows that β_0 is order isomorphism. Consequently the map $\beta_0: X \to \beta_0 X$ is a dense embedding.

Lemma 4.7: The space $(\beta_0 X, \leq, \tau^*_1, \tau^*_2)$ is a bitopological partially ordered space.

Proof. We wish to prove that the partial order \leq is continuous in the product $\tau^*_i \times \tau^*_j$, i, j =1, 2; i \neq j. Let (μ_1, ν_1) , (μ_2, ν_2) are two elements of $\beta_0 X$ with $(\mu_1, \nu_1) \not\leq (\mu_2, \nu_2)$ in $\beta_0 X$, and we wish to find τ_i -increasing (resp. τ_j -decreasing) neighborhood of (μ_1, ν_1) , (resp. (μ_2, ν_2)). Since $(\mu_1, \nu_1) \not\leq (\mu_2, \nu_2)$ implies to $\mu_1, \not\leq \mu_2$ and $\nu_1 \not\leq \nu_2$, there are $f \in \text{hom}(X, [-1, 1] \text{ with } f(\mu_2) \leq \lim_{n \to \infty} f(\mu_1) \text{ and } f(\nu_2) \leq \lim_{n \to \infty} f(\nu_1)$.

Let r_1 and r_2 be elements of [-1, 1] with $\lim f(\mu_2, \nu_2) < r_1 < r_2 < \lim f(\mu_1, \nu_1)$ and let $U = f^{-1}$ ([-1, r_1 [and $V = f^{-1}$ (] r_2 , 1]). Then it is obvious that U^* (resp. V^*) is a τ_i – (resp. τ_j -) neighborhood of (μ_1 , ν_1), (resp. (μ_2 , ν_2)) and that for any ($\mathfrak{T}_1, \mathfrak{R}_1$) $\in V^*$ and any ($\mathfrak{T}_2, \mathfrak{R}_2$) $\in U^*$, ($\mathfrak{T}_1, \mathfrak{R}_1$) \leq ($\mathfrak{T}_2, \mathfrak{R}_2$); i.e. U^* (resp. V^*) is an increasing (resp. decreasing) as a desired. \Box

Lemma 4.8: A pairwise completely regular ordered space $(X, \tau_1, \tau_2, \leq)$ is called a pairwise k-compact iff it is pairwise k-closed in $\beta_0 X$.

Proof. Noting that $\beta_0 X$ is the strict extension of X with all pairwise 0-completely regular filters as the pairwise filter trace, the proof is immediate from Lemma 4.3. \Box

For an infinite cardinal k, the category of pairwise k-compact ordered spaces and pairwise conttinuouss isotones will be denoted by PKCOS.

Definition 4.9 [1]: Let k be an infinite cardinal. A Hausdorff space is said to be k- Lindelöf if every filter with the k-intersection property has a cluster point.

Definition 4.10: Let (X, τ_1, τ_2) be a bitopological space. Let $\tau(i, V) = \{\emptyset, X, \{U \cup V \mid U \in \tau_i\}\}$ where $V \in \tau_j$, i, j =1, 2; i \neq j. If $\tau(i, V)$ is k-Lindelöf for every $V \in \tau_j$. then the space is called pairwise k-Lindelöf.

The notion of P-space is well-known. A topological space is called a P-space if and only if every G_{δ} -set is open . A space (X, τ_1, τ_2) is called a bitopological P-space [8] if and only if (X, τ_1) and (X, τ_2) are both P-spaces.

Definition 4.11: A bitopological P- orderd space $(X, \tau_1, \tau_2, \leq)$ is called pairwise k-ordered Lindelöf if and only if the (X, τ_1, τ_2) is pairwise k-Lindelöf and the partial order \leq is continuous.

Proposition 4.12: A pairwise k-Lindelöf completely regular ordered space X a is pairwise k-compact ordered space.

Proof. For any maximal pairwise 0-completely regular filter $(\mathfrak{I}, \mathfrak{R})$ on X with the k-intersection property, let x (resp.y) be a cluster point of \mathfrak{I} (resp. \mathfrak{R}). Then N(x) $\vee \mathfrak{I}$ (resp. N(y) $\vee \mathfrak{R}$) exists; N(x) = \mathfrak{I} (resp. N(y) = \mathfrak{R}). Hence $(\mathfrak{I}, \mathfrak{R})$ is convergent as a desired.

Proposition 4.13: If a pairwise filter $(\mathfrak{I}, \mathfrak{R})$ on a pairwise completely regular ordered space $(X, \tau_1, \tau_2, \leq)$ contains a maximal pairwise 0-completely regular filter with the countable intersection property then $f(\mathfrak{I})$ (resp. $f(\mathfrak{R})$) is convergent for any pairwise continuous isotone $f: X \to \mathbb{R}$.

Proof. It is enough to show that for any maximal pairwise 0-completely regular filter $(\mathfrak{I}, \mathfrak{R})$ with the countable intersection property and a pairwise continuous isotone $f: X \to \mathbb{R}$, $f(\mathfrak{I})$ (resp. $f(\mathfrak{R})$) is convergent. Since $f(\mathfrak{I})$ (resp. $f(\mathfrak{R})$) is a filter τ_i - (resp. τ_j -) base with the countable intersection property and \mathbb{R} is pairwise Lindelöf, $f(\mathfrak{I})$ (resp. $f(\mathfrak{R})$) has a cluster point. Moreover, by the same argument as that in the proof of theorem 3.4, one can easily show that $f(\mathfrak{I})$ (resp. $f(\mathfrak{R})$) has only one cluster point and that $f(\mathfrak{I})$ (resp. $f(\mathfrak{R})$) converges to the point.

References

- [1]. Choe, T. H. and Hong, Y. H., Extensions of completely regular ordered spaces, Pacific J. of Mathematics, 66 (1) (1976), 37-48.
- [2]. Kelley, J. C., Bitopological spaces, Proc. Landon Math. Soc. 13 (1963), 71-89.
- [3]. Kim, Y. W., Pairwise compactness, Publicatione Mathematicae, 15 (1968), 87-90.
- [4]. Kopperman, R. Asymmetry and Duality in topology, Topology and its Applications, 66 (1995)1-39.
- Kopperman, R. and Lawson, J. D., Bitopological and topological ordered K- spaces, Topology and its Applications, 146-147 (2005) 385-396.
- [6]. Nachbin, L., Topology and Order, D.Van Nostrand Inc., Princeton, New Jersey, 1965.
- [7]. Raghavan, T. G., Quasi-ordered bitopological spaces. The Mathematics student XLI (1973), 276-284.
- [8]. Raghavan, T. G., Quasi-ordered bitopological spaces II. Kyungpook Math.J. 20 (1980), 145-158.
- [9]. Singal, M. K. and Singal, A. R., Bitopological ordered spaces. The Mathematics student. XXXIX (1971), 440-447.