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Abstract.  In this work, the deterministic model which describes the dynam- ics of interaction between two 

legumes has been defined. The motivation and benefits  of stabilizing this  system of complex  model 

equations  of continuous nonlinear first  order ordinary differential equations in the field of agriculture 

has been clearly well posed. We will expect this pioneering research to form a bench mark collaboration 

between modellers and crop science experts. 
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I. Introduction: 
Theoretical  Perspectives  of Stabilization 

In this  section,  we will  consider  the  theoretical  perspective  of the  theory  of stabilizing unstable steady-state 
solution ([5]). 

Consider the following system of continuous nonlinear first order ordinary dif- ferential equation: 

 

 

(1.1) 

 

(1.2) 

dy 

dt 
= y(t)(a1 − b1 y(t) − c1 z(t)),

 

dz 

dt 
= z(t)(a2 − b2 z(t) − c2 y(t)),

 

where y(0) = y0  > 0, z(0) = z0 > 0. Here ai , bi , ci , i = 1, 2 are positive constants. 

The steady states (ye , ze ) satisfy 

(1.3) (1.4) 

ye (a1 − b1 ye − c1 ze ) = 0, ye (a2 − b2 ye − c2 ze ) = 0. 

Four steady states 
 

 

ye = 0, ze = 0, 

y  = 0, z  = 
a2 

, 

e e 
c2 

y  = 
a1 

e 
b1 

 

, ze = 0, 

a1 c2 − c1 a2 b1 a2 − a1 b2 

ye = 

1   2 

− c1 b2 , ze = 

1   2 

. 

− c1 b2 

Question:  How do we stabilize (ye , ze ) if (ye , ze ) is unstable? 
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II. Linearized  system  about  (ye , ze ) 
Denote 

 

 

 

 

Consider the system 

 

F (y, z) = y(a1 − b1 y − c1 z). G(y, z) = z(a2 − b2 y − c2 z). 

 

 

dy 

= F (y, z), dt 

dz 

 

dt 

Taylor expansion about (ye , ze ), 

= G(y, z). 

 

F (y, z) = F (ye , ze ) + 

∂F (ye , ze ) 
(y − y ) 

∂y  
e
 

+ 
∂F (ye , ze ) 

∂z 

(z − ze ) + higher-order-terms, 

 

G(y, z) = G(ye , ze ) + 

∂G(ye , ze ) 
(y − y ) 

∂y  
e
 

+ 
∂G(ye , ze ) 

∂z 

(z − ze ) + higher-order-terms. 

Linearized system about (ye , ze ) 

The linearized systems about (ye , ze ) are 

dy 
= 

∂F (ye , ze ) 

dt ∂y 
dz 

= 
∂G(ye , ze ) 

dt ∂y 

 

(y − ye ) + 

 

(y − ye ) + 

∂F (ye , ze ) 

∂z 

∂G(ye , ze 
) 

∂z 

 

(z − ze ), 

 

(z − ze ). 

Substituting y − ye and z − ze by Y and Z seperately and denoting 

 

 

u = 

   
Y 

Z 

   

, A = 

 

 
∂F (ye 

,ze ) 
∂y 

∂G(ye 

,ze ) 

∂y 

∂F (ye ,ze )  
\

 

∂z 

∂G(ye ,ze ) 

∂z 

The linearized system about (ye , ze ) is 

 

du 

 

 

where 

dt 
= Au,  u(0) = u0 , 

u0  = 
   

y0 − ye  
   

. 
z0  − ze
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III. Stability  of the  steady  states 
Lemma 3.1. Assume that all the eigenvalues of A are negative, then the solution of equation (9) tends to 

the steady state (ye , ze ) as t → ∞ for some suitable initial value u0  = (y0  − ye , z0 − ze ). 

• If A has a positive eigenvalue, then the steady state (ye , ze ) is not stable. 

• We will use the feedback control to stabilize the unstable steady state. 

 
4. Stabilization  for  the  linearized  system 

Theorem 4.1. Assume that (ye , ze ) is unstable, then there exists V : [0, ∞) → R2 

such that 

du 

dt 
= Au + BV, u(0) = u0 , 

is exponentially stable at (ye , ze ), where 

V = −R−1 B∗ Πu. 

 

Here Π satisfies the Riccati equation 

A∗ Π + ΠA − ΠBB∗ Π + Q = 0, 

where R = I and Q is any positive definite matrix and B = 

r 
1 
l

, 

r 
0 
l 

or 

r 
1 
l

.
 

0 1 1 

Further there exists ρ > 0, such that for all u0  : /u0 / < ρ, there exist a unique solution u ∈  C 1 (0, +∞, R2 ) 

such that, with some γ > 0, C > 0, 

/u(t)/ ≤ C e−γt /u /. 

 
 

IV. Stabilization  for  the  nonlinear  system 

Theorem 5.1. Assume that 

r 
ye 

ze 

l 

is unstable.  Then 

 

V = −R−1 B∗ Π 

r 
y − ye  

l 

, z − ze 

 

will stabilize exponentially the nonlinear system 

 

(5.1) d 
r 

y 
l 

= 

r 
F (y, z) 

l 

+ BV (t).
 

dt z G(y, z) 

More precisely, there exists ρ > 0 such that for all 

r 
y0 

l r 

y0 

: 

l r 

ye 

− 

l  

<
 

z0  z0  ze 

ρ, there exists a unique solution 

r 
y 

z 

∈  C 1 (0, ∞, R2 ), such that, with some con- 

stant C and γ > 0,  

  r 
y0   

l 

 

r  
ye   

l   

 

−γt 
  r  

y0   
l   

z0 
−

 
< C e 

ze 
  . 

z0 
  

 

 

 

Consider 
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V. Numerical  approximation 

d 
r 

y 

dt z 
where 

l r 
F (y, z) 

= 
G(y, z) 

l 
+ BV (t). 

V = −R−1 B∗ Π 

r 
y − ye  

l

 

z − ze 

Substituting y − ye and z − ze by Y and Z , we get 

 

d 
r 

Y 

dt Z 

where 

l r 
F (Y + ye , Z + ze ) 

= 
G(Y + ye , Z + ze ) 

l 
+ BV (t). 

 

 

Error Estimates 
V = −R−1 B∗ Π 

r 
Y  

l

 

Z 
• Global Lipschitz condition 

/F (u) − F (v)/ ≤ C1 /u − v/, ∀ u, v ∈  R2 . 

• Linear growth condition 

/F (u)/ ≤ C2 /u/ 

 

Theorem 6.1. Let T > 0. Assume that F satisfies the global Lipschitz condition and growth condition.  

Then there exists a constant C (T ) such that, for any ǫ > 0, 

−ǫ
 

/U n − u(tn )/ ≤ C (T )k1 /u0 /. 

Proof [see Yan et al. (2009) for the detailed proof ] 

 

VI. Numerical  Examples 
 

Four illustrating numerical examples of mathematical models of interacting pop- ulation  systems  

which admit  the  classical  notion  of deterministic  stabilization  of their unstable steady-state solutions 

based on the theory and application of ([5]) have been considered.  Four classical examples in which the 

unstable steady-state solutions were fully stabilized have been illustrated in the work of ([5]). 

 

VII. Mathematical  Formulation 
The model of competition between cowpea and groundnut legumes has the fol- lowing form 

 
 

Here y and z denote the populations of the two legumes at time t.  Here the nonnegative  constants  a and d are 

called  the intrinsic  growth  rates,  b and f are called  the  intra-species  competitive  parameters  and the  inter-

species  competitive parameters are represented by the constants c and e. 
 

8.1. Stability:  Motivation for Stabilization.  The above model equations have four steady states 

y = 0, z = 0, 

y = 0, z = 3.3534, 

y = 3.2599, z = 0, 

y = 3.1908, z = 0.9543 

 

Here,  a  = 0.0225, b  = 0.006902,  c = 0.0005, d = 0.0446, e  = 0.01, and f = 0.0133. In this 

example, the trivial steady-state solution is said to be unstable because its two positive eigenvalues are λ1   = 

0.0228 and λ2   = 0.0446. Following the theory of stabilization ([5]),the trivial steady-state solution would 
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K1 

K2 

K1 

K2 

need to be stabilized  by constructing  a controller  which can drive  this  steady-state  solution from the risk of 

extinction into stabiization.  That is, over a long time interval, this controller will propel this steady-state 

solution to converge to the zero steady-state. 
 

The first border steady-state solution (0, 3.3534) is unstable having two eigenval- ues of opposite signs 

λ1  = −0.0446 and λ2  = 0.0208. Similarly, the second border 

steady-state solution (3.2599, 0) is unstable having two eigenvalues of opposite signs 

λ1   = −0.0225 and λ2   = 0.0120. On the basis of the theory of stabilization,  the 

two border steady-state solutions would require to be stabilized.  The unique pos- 
itive steady-state solution otherwise called the co-existence steady-state solution (3.1908, 0.9543) is said to be 

stable having two negative eigenvalues λ1  = −0.0234 and λ2   = −0.0113. Although,  the  coexistence  steady-

state  solution  is  stable,  it would require a further stabilization which is a more challenging numerical deter- 

ministic stabilization problem which one can attempt to tackle.  Having known that it is stable, it would be 

scientifically relevant to find out the extent of its stabilization for the purpose of planning and managing a crop-

crop system.  Not all crop-crop systems with these qualitative behaviour will interact and survive together.  

Fol- lowing [1], the cowpea and groundnut legumes will survive together having satisfied 

the well established survival inequalities such as α12  = 0.0724 < 0.9721 = K1 

and 

α21  = 0.7519 < 1.0287 =  K2 . 

Next,  the  interaction  between  cowpea and groundnut  can be defined  using  a 

2-norm selection  inter-specific  model  with  the  following deterministic  precise  pa- rameter  values  such  as a = 
0.0225,   b = 0.0075, c = 0.02, d = 0.0446,  e = 0.1 and f = 0.0121. The stability  characterization  of this  

model  is displayed  in the following Table 

 
Each Type of Steady-State  Solution Qualitative  Stability  Behaviour 

Example λ1 λ2 Stability 

(0, 0) 0.0225 0.0446 Unstable 

(0, 3.6860) -0.0446 -0.0512 Stable 

(3, 0) -0.0225 -0.2554 Stable 

(0.3246, 1.0033) 0.0187 -0.0333 Unstable 

Table  1. Calculation of the steady-state solutions for a 2-norm cowpea-groundnut interaction model 

 

What do we learn from this Table 1? For this specific selected 2-norm cowpea- groundnut interaction 
model, we observe that this system has four steady-state solutions.   From the  theory  of a steady-state  solution  

([1]), the  trivial  case  and the coexistence case are said to be unstable and would need to be stabilized ([5]) 

whereas the two border steady-state solutions are said to be stable and hence will require a further stabilization.  

We also observe in this scenario that despite the fact that the cowpea and groundnut legumes will coexist 

together, these two legumes tend to go into the ecological risk of extinction because α12  = 2.6667 > 0.8139 =  K1 

and α21   = 8.2645 > 1.2287 = K2 .  This observation is not necessarily a counter- intuitive  deduction  in 

the  sense  of two  likely  intrinsic  factors  which may inhibit the  survival  of these  two  legumes.   Firstly,  the  

population  size  of cowpea in the coexistence arrangement is 0.3246 which is far below the carrying capacity 

value of the cowpea hereby calculated to be 3 grams per square area while the the population size of groundnut in the 

coexistence arrangement is 1.0033 which is smaller than the carrying capacity value of groundnut having a 
calculated value of 3.6860 grams per square area.  Secondly, the inhibiting effect of cowpea on the growth of 

groundnut which is 8.2645 is four times bigger than the inhibiting effect of groundnut on the growth of cowpea 

which is 2.6667. 

In another 2-norm selection model, we consider the following precise parameter values are a = 0.0225,  b 

= 0.0075, c = 0.004, d = 0.0446, e = 0.002, and f = 0.0121. In this  scenario,  the  qualitative  behaviour  of 

stability  is  quite  different  from the previous example.  Our contribution is displayed in the Table below: 

 
Each Type of Steady-State  Solution Qualitative  Stability  Behaviour 
Example λ1 λ2 Stability 
(0, 0) 0.0225 0.0446 Unstable 
(0, 3.6860) -0.0446 0.0078 Unstable 
(3, 0) -0.0225 0.0386 Unstable 
(1.1341, 3.4985) -0.0076 -0.0432 Stable 

Table 2. Calculation of the steady-state solutions for another 2- norm cowpea-groundnut interaction model 
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K2 

K1 

What  do we learn  from this  Table  2?  From this  Table  and without  loss  of generality,  we observe  

that  the  trivial  and the  border  steady-state  solutions  are said to be unstable while the coexistence steady-state 

solution is said to be stable. Therefore, the three unstable steady-state solutions in this context will require to be 
stabilized while the stable coexistence steady-state solution would need to be further stabilized in order to enhance 

an efficient ecosystem planning and management. 

For the infinity-norm selection model,  precise parameter values which we con- sidered  are  a = 0.0225,   

b = 0.008065, c = 0.0045, d = 0.0446,  e = 0.0110, and f = 0.002. In this scenario, the qualitative behaviour 

of stability is quite different from the previous example.  Our contribution is displayed in the Table below: 

 
Each Type of Steady-State  Solution Qualitative  Stability  Behaviour 

Example λ1 λ2 Stability 

(0, 0) 0.0225 0.0446 Unstable 

(0, 22.3) -0.0446 0.0113 Unstable 

(2.7898, 0) -0.0225 0.0139 Unstable 

(2.1355, 10.5549) -0.0079 -0.0305 Stable 

Table  3. Calculation  of the  steady-state  solutions  for ∞-norm 

cowpea-groundnut interaction model 

 

Similarly, we observe from Table 3 that the trivial and the border steady-state solutions are unstable 

and will require constructing a controller to stabilize these three steady-state solutions.  The unique positive 

coexistence steady-state solution is  said  to  be stable  and would only require  a further  stabilization  ([5]).  In 

this example,  the  cowpea and groundnut  legumes  will  survive  together  ([1]) because 

α12  = 0.0620 < 0.1251 =  K1 and α21  = 5.5 < 7.9933 =  K2 . 

 

VIII. Discussion of Results 
In these series of systematic literature reviews on other works which are related to  the  stabilization  of 

unstable  steady-states  of interacting  population  systems, we have found several steady-state solutions which are 

unstable and hence would require to construct a controller which can be utilized to stabilize them.  The stable 

steady-state solutions can also be further stabilized. 

 

IX. Concluding  Remarks  and Further  Research 
The idea of stabilizing a mathematical model of interacting population systems can be extended to 

determine the delayed stabilization of a mathematical model of two interacting legumes such as cowpea and 

groundnut in a deterministic sense. The practical realization of this crucial application in agriculture will be 

the focus of our next presentations. 
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