A New Bound for the Gamma FunctionIn the Direction of W.K.Hayman

K.S.L.N.Prasad

Associate professor, Dept. of Mathematics, Karnatak Arts College, Dharwad-580001.

Abstract: In this paper I have extended a result of W.K.Hayman to Euler's gamma function which is known to be a logarithmically Convex function. **Key Words:** Euler's gamma function, convex function.

I. Introduction And Main Results

By Bohr – Mollerup- Artin theorem, we can define the Euler gamma function as follows.

<u>Theorem A:</u> Let $f: R^+ \rightarrow R^+$ satisfy each of the following properties.

i) Log f(x) is a convex function

ii)
$$f(x+1) = x f(x) \quad \forall x \in R^+$$

iii) f(1) = 1

Then, $f(x) = \Gamma(x)$, $\forall x \in \mathbb{R}^+$

But, Usually the Euler Gamma function is introduced as a function of a real variable and is defined via an integral

$$\Gamma(\mathbf{x}) = \int_{0}^{\infty} e^{-t} t^{\mathbf{x}-1} dt , \mathbf{x} > 0$$

Here, we can observe that $\Gamma(x+1) = x!$ One can easily verify the following properties. **Property 1**:

$\Gamma(\mathbf{x})$ is a logarithmatically convex function

(or)

$f(x) = \log \Gamma(x)$ is a convex function.

The proof of this property follows directly from the following definition. **Definition :**

Let $\Phi(x)$ be a real valued function on [a, b] and let $\Phi^{\parallel}(x) \ge 0$ for all $x \in [a, b]$. Or, Equivalently,Let Φ^{\parallel} be non decreasing on [a, b]. Then, Φ is a convex function on [a, b].

Or Φ is said to be convex on [a, b] iff

$$\begin{vmatrix} \Phi(\mathbf{x}_{1}) & \mathbf{x}_{1} & \mathbf{1} \\ \Phi(\mathbf{x}_{2}) & \mathbf{x}_{2} & \mathbf{1} \\ \Phi(\mathbf{x}_{3}) & \mathbf{x}_{3} & \mathbf{1} \end{vmatrix} \leq 0$$

i.e. $\Phi(x_1)(x_3-x_2) + \Phi(x_3)(x_2-x_1) \ge \Phi(x_2)(x_3-x_1) \dashrightarrow (1)$

Clearly, one can observe that $\Phi(x) = \log \Gamma(x)$ statisfies (1) and hence $\log \Gamma(x)$ is a convex function on [a, b].

We wish to establish the following theorem.

Theorem :

Suppose that $g(x) = \log \Gamma(x)$ is a strictly increasing and convex function of x for $x \ge x_0$. Then given $k \ge 1$ there exists a sequence $x_n \ge \infty$ such that If f(x) is any other positive increasing and convex

function of x such that f(x) < g(x) for $x \ge x_0$, then we have,

$$\Gamma(x_n)f^{\dagger}(x_n) < e^k \Gamma^{\dagger}(x_n)$$
 (n=1,2,....)

Here, f'(x) denotes the right derivative of f(x) and $\frac{\Gamma'(x)}{\Gamma(x_n)}$ is the left derivative of g(x).

To prove the above result, we require the following lemma [Hayman]. Lemma[1] : Suppose that $\Phi(x)$ is positive for $x \ge x_0$ and bounded in every interval $[x_0,x_1]$ when $x_0\!<\!x_1\!<\infty\,$. Then given $k\!>\!1$ there exists a sequence $x_n \rightarrow \infty$ such that

$$\Phi(\mathbf{x}) < \mathbf{k} \ \Phi(\mathbf{x}_{n}) \text{ for } \mathbf{x}_{n} < \mathbf{x} < \mathbf{x}_{n} + \frac{1}{\log^{+} [\Phi(\mathbf{x}_{n})]^{k}} + \frac{1}{\Phi(\mathbf{x}_{n})}$$

Proof of the theorem :

Since $g(x) = \log \Gamma(x)$ is convex, g'(x) is non decreasing. Since g(x) is strictly increasing, $g'(x) \ge 0$ for $x \ge x_0$. Also g'(x) is bounded above in any finite

interval (x_0, x_1) for $x_1 > x_0$. Thus, we may apply the above lemma to the function $\Phi(x) = \frac{g'(x)}{g(x)}$ and hence we

can find a sequence $x_n \rightarrow \infty$ such that.

$$\Phi(\mathbf{x}) < \mathbf{k} \ \Phi(\mathbf{x}_n) \text{ for } \mathbf{x}_n \leq \mathbf{x} \leq \mathbf{x}_n + \frac{1}{\Phi(\mathbf{x}_n)}$$

$$1$$

Also, if $x_n^{\dagger} = x_n + \frac{1}{\Phi(x_n)}$, We have,

Log g(x_n[|]) - log g(x_n) =
$$\int_{x_n}^{x_n^{|}} \frac{g^{|}(x)}{g(x)} dx < (x_n^{|} - x_n) k \Phi(x_n) = k$$

Hence, $g(x_n^{\dagger}) < e^k g(x_n)$ Then, Since f(x) is increasing, we have

$$\begin{split} f(x_n) &\leq \frac{1}{x_n^{|} - x_n} \int_{x_n}^{x_n^{|}} f^{|}(x) dx = \frac{f(x_n^{|}) - f(x_n)}{x_n^{|} - x_n} \leq \Phi(x_n) f(x_n^{|}) \\ &\leq \Phi(x_n) g(x_n^{|}) \\ &\leq e^k \Phi(x_n) g(x_n) \\ &= e^k g^{|}(x_n) \\ Thus, f(x_n) \leq e^k g^{|}(x_n) \end{split}$$

Or
$$f(x_n) \le e^k \frac{1}{I}$$

Or
$$\Gamma(\mathbf{x}_{n})\mathbf{f}^{\dagger}(\mathbf{x}_{n}) < \mathbf{e}^{k}\Gamma^{\dagger}(\mathbf{x}_{n}) \ (n = 1, 2, 3.....)$$

References

HAYMAN W.K (1964):Meromorphic functions,Oxford Univ ,Press, London. [1]. [2]. YANG LO,(1982): Value distribution theory, Science press, Beijing,.

www.iosrjournals.org