A New Bound for the Gamma FunctionIn the Direction of W.K.Hayman

K.S.L.N.Prasad
Associate professor,Dept.of Mathematics,Karnatak Arts College, Dharwad-580001.

Abstract: In this paper I have extended a result of W.K.Hayman to Euler's gamma function which is known to be a logarithmically Convex function.
 Key Words: Euler's gamma function, convex function.

I. Introduction And Main Results

By Bohr - Mollerup- Artin theorem, we can define the Euler gamma function as follows.
Theorem A: Let $f: R^{+} \rightarrow R^{+}$satisfy each of the following properties.
i) $\quad \log f(x)$ is a convex function
ii) $\quad \mathrm{f}(\mathrm{x}+1)=\mathrm{xf}(\mathrm{x}) \quad \forall \mathrm{x} \in \mathrm{R}^{+}$
iii) $\quad f(1)=1$

Then, $\mathrm{f}(\mathrm{x})=\Gamma(\mathrm{x}), \quad \forall \mathrm{x} \in \mathrm{R}^{+}$
But, Usually the Euler Gamma function is introduced as a function of a real variable and is defined via an integral

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t, x>0
$$

Here, we can observe that $\Gamma(\mathrm{x}+1)=\mathrm{x}$!
One can easily verify the following properties.
Property 1 :
$\Gamma(\mathrm{x})$ is a logarithmatically convex function
(or)
$f(x)=\log \Gamma(x)$ is a convex function.
The proof of this property follows directly from the following definition.
Definition :
Let $\Phi(x)$ be a real valued function on $[a, b]$ and let
$\Phi^{\|}(\mathrm{x}) \geq 0$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$. Or, Equivalently,Let Φ^{\mid}be non decreasing
on $[\mathrm{a}, \mathrm{b}]$.Then, Φ is a convex function on $[\mathrm{a}, \mathrm{b}]$.
Or Φ is said to be convex on $[\mathrm{a}, \mathrm{b}]$ iff

$$
\left|\begin{array}{lll}
\Phi\left(\mathrm{x}_{1}\right) & \mathrm{x}_{1} & 1 \\
\Phi\left(\mathrm{x}_{2}\right) & \mathrm{x}_{2} & 1 \\
\Phi\left(\mathrm{x}_{3}\right) & \mathrm{x}_{3} & 1
\end{array}\right| \leq 0
$$

i.e. $\Phi\left(\mathrm{x}_{1}\right)\left(\mathrm{x}_{3}-\mathrm{x}_{2}\right)+\Phi\left(\mathrm{x}_{3}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \geq \Phi\left(\mathrm{x}_{2}\right)\left(\mathrm{x}_{3}-\mathrm{x}_{1}\right) \xrightarrow{---\rightarrow(1)}$

Clearly, one can observe that $\Phi(\mathrm{x})=\log \Gamma(\mathrm{x})$ statisfies (1) and hence $\log \Gamma(\mathrm{x})$ is a convex function on $[\mathrm{a}$, b].
We wish to establish the following theorem.

Theorem :

Suppose that $g(x)=\log \Gamma(x)$ is a strictly increasing and convex function of x for $x \geq x_{0}$. Then given $k>1$ there exists a sequence $x_{n}->\infty$ such that $\overline{I f} f(x)$ is any other positive increasing and convex function of x such that $f(x)<g(x)$ for $x \geq x_{0}$, then we have,

$$
\Gamma\left(x_{n}\right) f^{\prime}\left(x_{n}\right)<e^{k} \Gamma^{\prime}\left(x_{n}\right)(n=1,2, \ldots \ldots)
$$

Here, $f^{\prime}(x)$ denotes the right derivative of $f(x)$ and $\frac{\Gamma^{\mid}(x)}{\Gamma\left(x_{n}\right)}$ is the left derivative of $g(x)$.
To prove the above result, we require the following lemma [Hayman].
Lemma[1]: Suppose that $\Phi(\mathrm{x})$ is positive for $\mathrm{x} \geq \mathrm{x}_{0}$ and bounded in every interval $\left[\mathrm{x}_{0}, \mathrm{x}_{1}\right]$ when $\mathrm{x}_{0}<\mathrm{x}_{1}<\infty$. Then given $\mathrm{k}>1$ there exists a sequence $x_{n}->\infty$ such that
$\Phi(\mathrm{x})<\mathrm{k} \Phi\left(\mathrm{x}_{\mathrm{n}}\right)$ for $\mathrm{x}_{\mathrm{n}}<\mathrm{x}<\mathrm{x}_{\mathrm{n}}+\frac{1}{\log ^{+}\left[\Phi\left(\mathrm{x}_{\mathrm{n}}\right)\right]^{\mathrm{k}}}+\frac{1}{\Phi\left(\mathrm{x}_{\mathrm{n}}\right)}$

Proof of the theorem :

Since $g(x)=\log \Gamma(x)$ is convex, $g(x)$ is non decreasing. Since $g(x)$ is
strictly increasing, $g(x)>0$ for $x>x_{0}$. Also $g(x)$ is bounded above in any finite
interval $\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$ for $\mathrm{x}_{1}>\mathrm{x}_{0}$. Thus, we may apply the above lemma to the function $\Phi(\mathrm{x})=\frac{\mathrm{g}^{\mid}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}$ and hence we can find a sequence $\mathrm{x}_{\mathrm{n}}->\infty$ such that.
$\Phi(\mathrm{x})<\mathrm{k} \Phi\left(\mathrm{x}_{\mathrm{n}}\right)$ for $\mathrm{x}_{\mathrm{n}} \leq \mathrm{x} \leq \mathrm{x}_{\mathrm{n}}+\frac{1}{\Phi\left(\mathrm{x}_{\mathrm{n}}\right)}$
Also, if $\mathrm{x}_{\mathrm{n}}^{\mid}=\mathrm{x}_{\mathrm{n}}+\frac{1}{\Phi\left(\mathrm{x}_{\mathrm{n}}\right)}$, We have,

$$
\log g\left(x_{n}^{\prime}\right)-\log g\left(x_{n}\right)=\int_{x_{n}}^{x_{n}^{\prime}} \frac{g(x)}{g(x)} d x<\left(x_{n}^{\mid}-x_{n}\right) k \Phi\left(x_{n}\right)=k
$$

Hence, $g\left(X_{n}^{\mid}\right)<e^{k} g\left(x_{n}\right)$
Then, Since $f(x)$ is increasing, we have

$$
\begin{aligned}
f\left(x_{n}\right) \leq & \frac{1}{x_{n}^{\prime}-x_{n}} \int_{x_{n}}^{x_{n}^{\prime}} f^{\prime}(x) d x=\frac{f\left(x_{n}^{\prime}\right)-f\left(x_{n}\right)}{x_{n}^{\prime}-x_{n}} \leq \Phi\left(x_{n}\right) f\left(x_{n}^{\prime}\right) \\
& \leq \Phi\left(x_{n}\right) g\left(x_{n}^{\mid}\right) \\
& \leq e^{k} \Phi\left(x_{n}\right) g\left(x_{n}\right) \\
& =e^{k} g^{l}\left(x_{n}\right)
\end{aligned}
$$

Thus, $f\left(x_{n}\right) \leq e^{k} g\left(x_{n}\right)$
Or $\quad f^{\prime}\left(x_{n}\right) \leq e^{k} \frac{\Gamma^{\prime}\left(x_{n}\right)}{\Gamma\left(x_{n}\right)}$
Or $\quad \Gamma\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)<\mathrm{e}^{\mathrm{k}} \Gamma^{\mid}\left(\mathrm{x}_{\mathrm{n}}\right)(\mathrm{n}=1,2,3 \ldots \ldots)$

References

[1]. HAYMAN W.K (1964):Meromorphic functions,Oxford Univ, Press, London.
[2]. YANG LO,(1982): Value distribution theory,Science press,Beijing,.

