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I. Introduction 
In solving a second order non-homogeneous Ordinary Differential equation we have many methods, 

namely:- Method of Undetermined Coefficient also called Method of Judicial Guessing, Method of Variation of 

Parameters, Inverse D-operator Method, etc [1]. 

However, as the order of the ordinary differential equations goes higher it becomes more tedious to 
solve this system of differential equations. In this case we have to reduce each into a system of n first order 

linear ordinary differential equations. 

Jervin Zen Lobo and Terence Johnson [1] gave the solution of a system of ordinary differential 

equations, using Exponential of a Matrix Method. They did not discuss special cases of the diagonalizable 

matrix that is not idempotent. They only considered the case of Nilpotent Matrix. They also did not apply the 

concept of Wronskian, to show that the set of solutions of the ordinary differential equations can form a 

fundamental matrix, so as to agree with other Methods, that the set of solutions can form a fundamental Matrix. 

 Jervin Zen Lobo and Terence Johnson [1], did not show that the set of solutions obtained using the exponential 

of a matrix in solving a system of ordinary differential equations, form a fundamental Matrix, if the Wronskian 

is not equal to zero. In this paper, we have shown that the set of solutions obtained using the exponential of a 

matrix in solving a system of ordinary differential equations can form a fundamental matrix. 
 

II. Proposed Method 
 We consider a system of difference equations, in order to later write it as a Matrix, A,  where the solution 

   Uk  = Ak Uo  ,                                                                               ………………………………….                     (1) 

depends on the power of . It is equally true for ordinary differential equations, where the solution of 
du

dt
 = 

AU      is given by 

                                    U(t) = ce−At                                                     …………………………………………...    (2) 

 depends on the exponential of A [1], where C is constant. From linear Algebra, we know that for any matrix A, 

the exponential of A is 

 eA=1+A+
A2

2!
+

A3

3!
 +...                                                           ………………………………………………….      (3) 

if A is idempotent. 

We can see that equation (3) imitates the power series definition of   

 ex=1 + x +
x2

2!
+ 

x3

3!
+                                                      ………………………………………………………   (4)                                                                                       

Which always converges, therefore equation (3) will also always converges. Since matrix A is now considered 

idempotent, diagonalizable and of degree n, n = 1, 2, 3,  …, we shall use the exponential of a matrix in the 

following way [1]. 

Step 1: Write down the given system of ordinary differential equations as a matrix, A. 

Step 2: Find the eigenvalues and eigenvectors of matrix, A. From another matrix S whose columns are 

eigenvectors of A. 

Step 3: Compute S−1AS which will be the diagonal. For example, S−1AS = diag (α, β, ϒ) where α, β and ϒ are 
constants.  

Step 4: Now, write A = S diag (α, β, ϒ) S−1. Hence, finally, etA  = S(etα , etβ , etγ ) S−1. 
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Step 5: using the result that the general solution of 
du

dt
 =AU is U(t) = etA c, therefore the solution of the system of 

the ordinary differential equations is etA C, obtained from step 4. 
 

III. The set of solutions of the System of ordinary differential equations. 
Theorem 1: If an n × n matrix A, has a basis of eigenvectors, then  

D= S−1AS                                                                                                                                    ------------------ (5) 

Is diagonal with the eigenvectors of A as entries on the main diagonal and S is a matrix with eigenvectors as 

column vectors. Also, Dm  =SAm S−1, for m= 1, 2, 3,                                                                     ---------------- (6) 

Proof: 

 Let s1, s2, s3, …. , sn  be a basis of eigenvectors of A for Rn , and the corresponding eigenvalues of A be λ1, λ2, 

λ3, …. , λn, respectively. So that As1 = λ1s1, As2 = λ2s2, … , Asn  = 

λnsn                                                                               --------------------(7) 

 then S=[s1, s2, …. , sn] has rank n since the rank r, of a matrix A equals the maximum number of linearly 

independent column vectors, and A and AT  have the same rank. 

So, A S = A [s1, s2, …. , sn]         } 

      = [As1, As2, …. , Asn]                          }                                                                        ------------- (8) 

     = [λ1s1, λ2s2 λs2, …. , λnsn]     } 

     = SD. 

The fourth equality in (8) follows direct calculation, the third uses, SK = λk sk.  

The second equality results if we note that the first column of AS, is A times the first column of S, which is s1 

and so on. For instance, when n = 2, we have, s1 = [s11, s21], s2 = [s12, s22] so that  

A S = A s1 s2                                                                                } 

=  
a11 a12

a21 a12
  +  

s11 s12

s21 s22
              } --------------- (9) 

= 
a11 s11 +  a12 s12 a11 s12 +  a12 s22

a21 s11 +  a22s21 a21s12 +  a22 s22
                                } 

=  As1 As2              } 
 

If we multiply (9) by S−1 from the right, we get (8), since it is a similarity transformation. D has the same 

eigenvalues as A and (9) follows if we note that:- 

D2 = DD  

      =  SAS−1  SAS−1  
      = SA(S−1S)AS−1  

      = SA AS−1 
      = S A2 S-1 

Hence, Dm = S Am S-1 

Theorem 2:- The solution of the homogenous system of differential equations   
du

dt
  =AU + g where, 

A =  

a11 a12 a13 … . a1n

a21 a22 a23 …… a2n

⋮ ⋮ ⋮ ⋮
an1 an2 an3 … . . ann

 , U =  

u1

u2

⋮
un

   and g =  

g1

g2

⋮
gn

                                                                 ---- (10) 

On some interval I is a linearly independent set of n solutions, U
(1)

, U
(2)

, U
(3)

, ….. , U
(n)

 if and only if the 

determinant is not equal to zero. 

Proof : Let U = c1U
(1) +   c2U

(2) + …… + U(n)                                                                                                                   ----------------- (11),  

be a linear combination of 
du

dt
 = AU on some interval I. it can be shown that if ajk (t) in 

du

dt
 = AU sin  are 

continous on I then 
du

dt
= AU has a basis of solutions on I. We write these n solutions as an   n × n  matrix in the 

form  
𝑈= [U(1), U(2), ….. , U(n)]                                                                                                                        -------- (12) 
The Wronskian, W (U) is  

W (U(1), U(2), ….. , U(n)) =   
 

u1
(1)

 u1
(2)

        
u1

(3)
… . . u1

(n)

u2
(1)

u2
(2)

u2
 3 

… . . u2
(n)

⋮ ⋮ ⋮ ⋯…… ⋮

un
(1)

un
(2)

      un
(3)

… . . , un
(n)

 
 
 

If W(U)≠ 0, then U = c1U
(1) +   c2U

(2) + …… + cnU
(n) forms a basis and U = [U(1), U(2), ….. , U(n) ] is called 

Fundamental Matrix. 
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IV. Application Of The Concept Of Wronskian [2][4] 

Since the general solution of 
du

dt
= AU as established using the exponential of Matrix, A, in the solution of 

system of ordinary differential equations, is U(t) = CeAt , therefore the n solutions of 
du

dt
= AU are U(1), U(2), ….. , 

U(n)  on Some interval I. it ollows that U(t)= c1U
(1)+c2U

(2)+c3U
(3)+ …… + cnU

(n )                           ---------- (13) 

We now write these n solutions of 
du

dt
 = AU on some interval I as columns of an n × n matrix 

U= [U(1), U(2), U(3)….. , U(n) ]                                                                                                             ---------- (14)  

 Where U(r) = [U1
(r)

 U2
(r)

 U3
(r)

… Un
(r) ], r = 1, 2, 3, … , n.                                                              -------------- (15) 

The Wronskian, 

 W(U(1), U(2), ….. , U(n) ) =    
 

u1
(1)

 u1
(2)

        
u1

(3)
… . . u1

(n)

u2
(1)

u2
(2)

u2
 3 

… . . u2
(n)

⋮ ⋮ ⋮ ⋯… … ⋮

un
(1)

un
(2)

      un
(3)

… . . , un
(n)

 
 
                      ……………………………(16)  

 If W(U) ≠ 0, then this set of solution forms Fundamental system of solutions (basis) of the homogenous 

ordinary differential equation, 
du

dt
 = AU and U in equation (14) is called a Fundamental Matrix. 

 

V. Examples 
Example 1: Diagonalizable Matrix 

Let  A =  
7.3 0.2 −3.7

−11.5 1 5.5
17.7 1.8 −9.3

                                                                                        ------------------------- (17) 

To diagonalise A, the characteristic determinant of A gives the characteristics equation –λ3 – λ2 + 12λ = 0 

The roots of A are therefore λ1 = 3, λ2 = -4, and λ3 = 0. 

From (A - λI)U = 0 with λ = λ1, λ2, λ3, we find the eigenvectors and then U−1 The results are   

U =  
−1 1 2
3 −1 1

−1 3 4
  ,           U−1 =  

−0.7 0.2 0.3
−1.3 −0.2 0.7
0.8 0.2 −0.2

                                                                ----------- (18) 

UAU−1

=  
−0.7 0.2 0.3
−1.3 −0.2 0.7
0.8 0.2 −0.2

    
7.3 0.2 −3.7

−11.5 1 5.5
17.7 1.8 −9.3

   
−1 1 2
3 −1 1

−1 3 4
                                                                                                                                                                                                                  

=  
3 0 0
0 −4 0
0 0 0

                                                                                         ………………………………  (19) 

 

Example 2: Calculating the Wronskian [5], 

The system of ordinary differential equations [1], 
dx

dt
= x − y + 4z   

dy

dt
= 3x − 2y + z                                                                                                                    ----------------------------- (20) 

dz

dt
= 2x − y + z  z, 

 using the exponential of a matrix Method, has the general solution X = etA c , which can be written  as 

 
x
y
z
  = 

1

6
 

et +  3e3t + 2−2t

14e−t +  6e3t −  2e−2t
−2et +  2e−2t 3et +  3e2t −  6e−2t

8et  −2e−2t 12et +  6e3t +  6e−2t

−et + 3e3t −  2e−2t 2et −  2e−2t −3et +  3e3t + 6e−2t

  

c1

c2

c3

          ………………      (21) 

Where c1, c2, c3 are arbitrary constants. The Wronskian, W(X) of equation (21) is  

W(x) =   

 et + 3e3t +  2−2t c1

(14e−t +  6e3t −  2e−2t)c1

 −2et +  2e−2t c2 (3et +  3e2t −  6e−2t)c3

 8et  −2e−2t)c2 (12et +  6e3t +  6e−2t c3

 −et +  3e3t −  2e−2t c1 (2et −  2e−2t)c2 (−3et +  3e3t +  6e−2t)c3

  

          = f (e−t , e−2t , et , e3t)                                                                                                         ----------------- (22) 

W(x) ≠ 0 for all t in the interval I, that is, X the set of solutions of the system of ordinary differential equations 

is a Fundamental Matrix and the set X of the solutions is linearly independent. 
 

VI. Discussing Special Cases Of The Matrix, 𝐀. 

(a) When A is a nilpotent matrix, then for eA  = 1 + A + 
A2

2!
 + 

A3

3!
 + …, there exist a number m such that A

m
 = 0. 

Therefore the series will terminate at some point.  
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(b) When A is an idempotent matrix, the series eA  does not terminate for any Am , because Am = A for an 
idempotent matrix. 

(c) If A is a symmetric matrix, i.eAT = A , it means that eA  = eAT
. 

(d) If A is a skew- symmetric matrix, i.e AT = −A, therefore e−A  = eAT
. 

 

VII. Conclusion 
In using the method of exponential of a matrix, it is clear that we need the matrix to be idempotent and 

diagonalizable and that the set of solutions obtained can form a Fundamental Matrix. 

The concept of a fundamental matrix is used for construction site applications in civil Engineering, by 

estimating the fundamental matrix, to determine the epipolar geometry between a pair of images or video frames 

[6]. The estimation of fundamental matrix is also one of the most crucial steps in many computer vision 

applications such as 3D reconstruction, autocalibration and motion segmentation [7]. It is therefore hoped that 

this research will stimulate the interest of more investigators on the concept of fundamental matrix. 
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