Strongly α^* Continuous Functions in Topological Spaces

S. Pious Missier1 & P. Anbarasi Rodrigo2

Associate Professor, PG and Research Department of Mathematics
VOC College, Thoothukudi

Full Time Research Scholar, PG and Research Department of Mathematics
VOC College, Thoothukudi

Abstract: The Purpose Of This Paper Is To Introduce Strongly And Perfectly α^*Continuous Maps And Basic Properties And Theorems Are Investigated. Also, We Introduced α^* Open And Closed Maps And Their Properties Are Discussed.

Mathematics Subject Classifications: 54ao5

Keywords and phrases: strongly α^* continuous functions, perfectly α^* continuous functions, α^*open maps and α^*closed maps.

I. Introduction

In 1960, Levine . N [3] introduced strong continuity in topological spaces. Beceren.Y [1] in 2000, introduced and studied on strongly α continuous functions. Also, in 1982 Malghan [5] introduced the generalized closed mappings. Recently, S. Pious Missier and P. Anbarasi Rodrigo[8] have introduced the concept of α^*-open sets and studied their properties. In this paper we introduce and investigate a new class of functions called strongly α^* continuous functions. Also we studied about α^* open and α^* closed maps and their relations with various maps.

II. Preliminaries

Throughout this paper (X, τ), (Y, σ) and (Z, η) or X, Y, Z represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), cl(A) and int(A) denote the closure and the interior of A respectively. The power set of X is denoted by $P(X)$.

Definition 2.1: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a strongly continuous [3] if $f^{-1}(O)$ is both open and closed in (X, τ) for each subset O in (Y, σ).

Definition 2.2: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a α-continuous [4] if $f^{-1}(O)$ is a α open set [6] of (X, τ) for every open set O of (Y, σ).

Definition 2.3: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a α^* continuous [9] if $f^{-1}(O)$ is a α^* open set of (X, τ) for every open set O of (Y, σ).

Definition 2.4: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a g-continuous [10] if $f^{-1}(O)$ is a g-open set [2] of (X, τ) for every open set O of (Y, σ).

Definition 2.5: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a perfectly continuous [7] if $f^{-1}(O)$ is both open and closed in (X, τ) for every open set O in (Y, σ).

Definition 2.6: A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a g-closed [5] if $f(O)$ is g-closed in (Y, σ) for every closed set O in (X, τ).

Definition 2.7: A Topological space X is said to be α^*T$_{1/2}$ space [9] if every α^* open set of X is open in X.

Theorem 2.8(8) :

(i) Every open set is α^* open and every closed set is α^*-closed set
(ii) Every α-open set is α^*-open and every α-closed set is α^*-closed.
(iii) Every g-open set is α^*-open and every g-closed set is α^*-closed.

III. Strongly α^* Continuous Function

We introduce the following definition.

Definition 3.1: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a strongly α^* continuous if the inverse image of every α^* open set in (Y, σ) is open in (X, τ).

Theorem 3.2: If a map $f: X \rightarrow Y$ from a topological spaces X into a topological spaces Y is strongly α^* continuous then it is continuous.
Strongly α * Continuous Functions in Topological Spaces

Proof: Let O be a open set in Y. Since every open set is α *open, O is α *open in Y. Since f is strongly α *continuous, \(f^{-1}(O) \) is open in X. Therefore f is continuous.

Remark 3.3: The following example supports that the converse of the above theorem is not in general.

Example 3.4: Let \(X = \{ a, b, c \}, \tau = \{ \emptyset, \{a\}, \{a,b\}, \{a,b,c\} \} \) and \(\sigma = \{ \emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\} \} \). Let g: \((X, \tau) \to (Y, \sigma) \) be defined by g(a) = g(b) = a, g(c) = b. Clearly, g is not strongly α *continuous, since \(\{a\} \) is α *open set in Y but \(g^{-1}(\{a\}) = \{a,b\} \) is not an open set of X. However, g is continuous.

Theorem 3.5: A map f: X \to Y from a topological spaces X into a topological spaces Y is strongly α * continuous if and only if the inverse image of every α * closed set in Y is closed in X.

Proof: Assume that f is strongly α *continuous. Let O be any α * closed set in Y. Then \(f^{-1}(O) \) is open in X. Since f is strongly α * continuous, \(f^{-1}(O) \) is open in X. Therefore f is continuous.

Remark 3.7: The converse of the above theorem need not be true.

Example 3.8: Let X = \{ a, b, c, d \}, \tau = \{ \emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\} \} and \(\sigma = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \} \). Let f: \((X, \tau) \to (Y, \sigma) \) be defined by f(a) = f(d) = a, f(b) = b, f(c) = c. Clearly, f is strongly α *continuous. But f\(^{-1}\)(\{a\}) = \{a,b\} is open in X, but not closed in X. Therefore f is not strongly continuous.

Theorem 3.9: If a map f: X \to Y is strongly α * continuous then it is strongly α *continuous.

Proof: Let O be any open set in Y. By [8] \(f^{-1}(O) \) is α *open in X. Therefore f is strongly α *continuous.

Remark 3.10: The converse of the above theorem need not be true.

Example 3.11: Let X = \{ a, b, c, d \}, \tau = \{ \emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\} \} and \(\sigma = \{ \emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\} \} \). Let f: \((X, \tau) \to (Y, \sigma) \) be defined by f(a) = f(d) = a, f(b) = b, f(c) = c. Clearly, f is not strongly continuous. But f\(^{-1}\)(\{a\}) = \{a,d\} is not open in X. Therefore f is not strongly continuous.

Theorem 3.12: If a map f: X \to Y is strongly α * continuous and a map g: Y \to Z is α *continuous then \(g \circ f: X \to Z \) is continuous.

Proof: Let O be any open set in Z. Since g is α *continuous, \(g^{-1}(O) \) is α *open in Y. Since f is strongly α *continuous, \(f^{-1}(g^{-1}(O)) \) is open in X. But \((g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O)) \) is open in X. Therefore, \(g \circ f: X \to Z \) is strongly α *continuous.

Theorem 3.13: If a map f: X \to Y is strongly α *continuous and a map g: Y \to Z is α *irresolute, then \(g \circ f: X \to Z \) is strongly α * continuous.

Proof: Let O be any α *open set in Z. Since g is α *irresolute, \(g^{-1}(O) \) is α *open in Y. Also, f is strongly α *continuous, \(f^{-1}(g^{-1}(O)) \) is open in X. But \((g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O)) \) is open in X. Hence, \(g \circ f: X \to Z \) is strongly α *continuous.

Theorem 3.14: If a map f: X \to Y is α *continuous and a map g: Y \to Z is strongly α *continuous, then \(g \circ f: X \to Z \) is strongly α *irresolute.

Proof: Let O be any α *open set in Z. Since g is strongly α *continuous, \(g^{-1}(O) \) is open in Y. Also, f is strongly α *continuous, \(f^{-1}(g^{-1}(O)) \) is α *open in X. But \((g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O)) \) is open in X. Hence, \(g \circ f: X \to Z \) is α *irresolute.

Theorem 3.15: Let X be any topological spaces and Y be a \(\alpha *T_{1/2} \) space and f: X \to Y be a map. Then the following are equivalent:

1) f is strongly α *continuous
2) f is continuous

Proof: (1) \(\Rightarrow \) (2) Let O be any open set in Y. By thm \[O \] is α *open in Y. Then \(f^{-1}(O) \) is open in X. Hence, f is continuous.

(2) \(\Rightarrow \) (1) Let O be any α *open in \((Y, \sigma) \). Since, \((Y, \sigma) \) is a \(\alpha *T_{1/2} \) space, O is open in \((Y, \sigma) \). Since, f is continuous. Then \(f^{-1}(O) \) is open in \((X, \tau) \). Hence, f is strongly α *continuous.

Theorem 3.16: Let f: \((X, \tau) \to (Y, \sigma) \) be a map. Both \((X, \tau) \) and \((Y, \sigma) \) are \(\alpha *T_{1/2} \) space. Then the following are equivalent:

1) f is α *irresolute
2) f is strongly α *continuous
3) f is continuous
4) f is α *continuous
Strongly α * Continuous Functions in Topological Spaces

Proof: The proof is obvious.

Theorem 3.17: The composition of two strongly α * continuous maps is strongly α * continuous.

Proof: Let O be a α * open set in (Z, η). Since, g is strongly α * continuous, we get $g^{-1}(O)$ is open in (Y, σ). By thm [8] $g^{-1}(O)$ is α * open in (Y, σ). As f is also strongly α * continuous, $f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O)$ is open in (X, τ). Hence, $(g \circ f)$ is strongly α * continuous.

Theorem 3.18: If $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be any two maps. Then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is strongly α * continuous if g is strongly α * continuous and f is continuous.

Proof: Let O be a α * open set in (Z, η). Since, g is strongly α * continuous, $g^{-1}(O)$ is open in (Y, σ). Since f is continuous, $f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O)$ is open in (X, τ). Hence, $(g \circ f)$ is strongly α * continuous.

IV. Perfectly α * Continuous Function

Definition 4.1: A map $f: (X, \tau) \to (Y, \sigma)$ is said to be perfectly α * continuous if the inverse image of every α * open set in (Y, σ) is also perfectly α * open in (X, τ).

Theorem 4.2: If a map $f: (X, \tau) \to (Y, \sigma)$ from a topological space (X, τ) into a topological space (Y, σ) is perfectly α * continuous then it is strongly α * continuous.

Proof: Assume that f is perfectly α * continuous. Let O be any α * open set in (Y, σ). Since, f is perfectly α * continuous, $f^{-1}(O)$ is open in (X, τ). Therefore, f is strongly α * continuous.

Remark 4.3: The converse of the above theorem need not be true.

Example 4.4: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{ab\}, \{bc\}, \{abc\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{c\}, \{ac\}, \{bc\}, \{abc\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = a, f(b) = b, f(c) = c$. Clearly, f is perfectly α * continuous. But the inverse image of α * open set in (Y, σ) $f^{-1}(\{ac\}) = \{ac\}$ is not open and closed in X. Therefore, f is not perfectly α * continuous.

Theorem 4.5: If a map $f: (X, \tau) \to (Y, \sigma)$ from a topological space (X, τ) into a topological space (Y, σ) is perfectly α * then it is perfectly continuous.

Proof: Let O be an open set in Y. By thm [8] O is an α * open set in (Y, σ). Since f is perfectly α * continuous, $f^{-1}(O)$ is both open and closed in (X, τ). Therefore, f is perfectly continuous.

Remark 4.6: The converse of the above theorem need not be true.

Example 4.7: Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{bc\}, X\}$ and $\sigma = \{\emptyset, \{a\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = a, f(b) = b, f(c) = c$. Clearly, f is perfectly continuous. But the inverse image of α * open set in (Y, σ) $f^{-1}(\{ac\}) = \{ac\}$ is not open and closed in X. Therefore, f is not perfectly α * continuous.

Theorem 4.8: A map $f: (X, \tau) \to (Y, \sigma)$ from a topological space (X, τ) into a topological space (Y, σ) is perfectly α * continuous if and only if $f^{-1}(O)$ is both open and closed in (X, τ) for every α * closed set in (Y, σ).

Proof: Let O be any α * closed set in (Y, σ). Then O^c is α * open in (Y, σ). Since, f is perfectly α * continuous, $f^{-1}(O^c)$ is both open and closed in (X, τ). But $f^{-1}(O^c) = X / f^{-1}(O)$ and so $f^{-1}(O)$ is both open and closed in (X, τ).

Conversely, assume that the inverse image of every α * closed set in (Y, σ) is both open and closed in (X, τ). Let O be any α * open in (Y, σ). Then O^c is α * closed in (Y, σ). By assumption $f^{-1}(O^c)$ is both open and closed in (X, τ). But $f^{-1}(O^c) = X / f^{-1}(O)$ and so $f^{-1}(O)$ is both open and closed in (X, τ).

Theorem 4.9: Let (X, τ) be a discrete topological space and (Y, σ) be any topological space. Let $f: (X, \tau) \to (Y, \sigma)$ be a map, then the following statements are true.

1) f is strongly α * continuous

2) f is perfectly α * continuous

Proof: (1) \Rightarrow (2) Let O be any α * open set in (Y, σ). By hypothesis, $f^{-1}(O)$ is open in (X, τ). Since (X, τ) is a discrete space, $f^{-1}(O)$ is both open and closed in (X, τ). Hence, f is perfectly α * continuous.

(2) \Rightarrow (1) Let O be any α * open set in (Y, σ). Then, $f^{-1}(O)$ is both open and closed in (X, τ). Hence, f is strongly α * continuous.

Theorem 4.10: If $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ are perfectly α * continuous, then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is also perfectly α * continuous.

Proof: Let O be a α * open set in (Z, η). Since, g is perfectly α * continuous. We get that $g^{-1}(O)$ is open and closed in (Y, σ). By thm [8] $g^{-1}(O)$ is α * open in (Y, σ). Since f is perfectly α * continuous, $f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O)$ is both open and closed in (X, τ). Hence, $(g \circ f)$ is perfectly α * continuous.
Theorem 4.11: If \(f: (X, \tau) \to (Y, \sigma) \) and \(g: (Y, \sigma) \to (Z, \eta) \) be any two maps. Then their composition is strongly \(\alpha \ast \) continuous if \(g \) is perfectly \(\alpha \ast \) continuous and \(f \) is continuous.

Proof: Let \(O \) be any \(\alpha \ast \) open set in \((Z, \eta)\). Then, \(g^{-1}(O) \) is open and closed in \((Y, \sigma)\). Since, \(f \) is continuous, \(f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O) \) is open in \((X, \tau)\). Hence, \(g \circ f \) is strongly \(\alpha \ast \) continuous.

Theorem 4.12: If a map \(f: (X, \tau) \to (Y, \sigma) \) is perfectly \(\alpha \ast \) continuous and a map \(g: (Y, \sigma) \to (Z, \eta) \) is strongly \(\alpha \ast \) continuous then the composition \(g \circ f: (X, \tau) \to (Z, \eta) \) is perfectly \(\alpha \ast \) continuous.

Proof: Let \(O \) be any \(\alpha \ast \) open set in \((Z, \eta)\). Then, \(g^{-1}(O) \) is open in \((Y, \sigma)\). By Thm [8] \(g^{-1}(O) \) is \(\alpha \ast \) open in \((Y, \sigma)\). By hypothesis, \(f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O) \) is both open and closed in \((X, \tau)\). Therefore, \(g \circ f \) is perfectly \(\alpha \ast \) continuous.

V. \(\alpha \ast \) Open maps and \(\alpha \ast \) Closed maps

Definition 5.1: A map \(f: (X, \tau) \to (Y, \sigma) \) is called a \(\alpha \ast \) open if image of each open set in \(X \) is \(\alpha \ast \) open in \(Y \).

Definition 5.2: A map \(f: (X, \tau) \to (Y, \sigma) \) is called a \(\alpha \ast \) closed if image of each closed set in \(X \) is \(\alpha \ast \) closed in \(Y \).

Theorem 5.3: Every closed map is \(\alpha \ast \) closed map.

Proof: The proof follows from the definitions and fact that every closed set is \(\alpha \ast \) closed.

Remark 5.4: The converse of the above theorem need not be true.

Example 5.5: Let \(X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\} \) and \(\sigma = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\} \). Let \(f: (X, \tau) \to (Y, \sigma) \) be defined by \(f(a) = a \), \(f(b) = b \), \(f(c) = c \). Clearly, \(f \) is \(\alpha \ast \) closed but not closed as the image of closed set \{b\} in \(X \) is \{b\} which is not closed set in \(Y \).

Theorem 5.6: Every g-closed map is \(\alpha \ast \) closed.

Proof: Let \(O \) be a closed set in \(X \). Since \(f \) is g-closed map, \(f(O) \) is g-closed in \(Y \). By [8] \(f(O) \) is \(\alpha \ast \) closed in \(Y \). Therefore, \(f \) is \(\alpha \ast \) closed map.

Remark 5.7: The converse of the above theorem need not be true.

Example 5.8: Let \(X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} \) and \(\sigma = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} \). Let \(f: (X, \tau) \to (Y, \sigma) \) be defined by \(f(a) = a \), \(f(b) = b \), \(f(c) = c \). Clearly, \(f \) is \(\alpha \ast \) closed but not \(\alpha \ast \) closed as the image of closed set \{b\} in \(X \) is \{b\} which is not closed set in \(Y \).

Theorem 5.9: Every \(\alpha \ast \) closed map is \(\alpha \ast \) closed.

Proof: The proof follows from the definition and by Thm [8].

Remark 5.10: The converse of the above theorem need not be true.

Example 5.11: Consider \(X = Y = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\} \) and \(\sigma = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} \). Let \(f: (X, \tau) \to (Y, \sigma) \) be defined by \(f(a) = a \), \(f(b) = b \), \(f(c) = c \). Clearly, \(f \) is \(\alpha \ast \) closed but not \(\alpha \ast \) closed as the image of closed set \{d\} in \(X \) is \{d\} which is not \(\alpha \ast \) closed set in \(Y \).

Remark 5.12: The composition of \(\alpha \ast \) closed maps need not be \(\alpha \ast \) closed in general as shown in the following example.

Example 5.13: Consider \(X = Y = Z = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\} \) and \(\sigma = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} \). Let \(f: (X, \tau) \to (Y, \sigma) \) be defined by \(f(a) = a \), \(f(b) = b \), \(f(c) = c \). Clearly, \(f \) is \(\alpha \ast \) closed. Consider the map \(g: Y \to Z \) defined \(g(a) = a \), \(g(b) = b \), \(g(c) = c \), \(g(d) = d \). Clearly, \(g \) is \(\alpha \ast \) closed. But \(g \circ f: X \to Z \) is not a \(\alpha \ast \) closed, \(g \circ f(|d|) = g(f(|d|)) = g(|d|) = ac \) which is not a \(\alpha \ast \) closed in \(Z \).

Theorem 5.14: A map \(f: (X, \tau) \to (Y, \sigma) \) is \(\alpha \ast \) closed if and only if \(\alpha \ast \mathfrak{cl} (f(A)) \subseteq \mathfrak{cl}(f(A)) \) for each set \(A \) in \(X \).

Proof: Suppose that \(f \) is a \(\alpha \ast \) closed map. Since for each set \(A \) in \(X \), \(\mathfrak{cl}(A) \) is closed set in \(X \), then \(\mathfrak{cl}(f(A)) \) is a \(\alpha \ast \) closed set in \(Y \). Since, \(f(A) \subseteq \mathfrak{cl}(f(A)) \), then \(\alpha \ast \mathfrak{cl}(f(A)) \subseteq \mathfrak{cl}(f(A)) \).

Conversely, suppose \(A \) is a closed set in \(X \). Since \(\alpha \ast \mathfrak{cl}(f(A)) \) is the smallest \(\alpha \ast \) closed set containing \(f(A) \), then \(\mathfrak{cl}(A) \subseteq \alpha \ast \mathfrak{cl}(f(A)) \subseteq \mathfrak{cl}(f(A)) = f(A) \). Thus, \(f(A) = \alpha \ast \mathfrak{cl}(f(A)) \). Hence, \(f(A) \) is a \(\alpha \ast \) closed set in \(Y \). Therefore, \(f \) is a \(\alpha \ast \) closed map.

Theorem 5.15: If \(f: (X, \tau) \to (Y, \sigma) \) is \(\alpha \ast \) closed map and \(g: (Y, \sigma) \to (Z, \eta) \) is \(\alpha \ast \) closed, then the composition \(g \circ f: X \to Z \) is \(\alpha \ast \) closed map.
Proof: Let O be any closed set in X. Since f is closed map, f(O) is closed set in Y. Since, g is α * closed map, g(f(O)) is α * closed in Z which implies that g f(O) = g(f(O)) is α * closed and hence, g f is α * closed.

Remark 5.16: If f: (X, τ) → (Y, σ) is α * closed map and g: (Y, σ) → (Z, η) is closed, then the composition g f: X → Z is not α * closed map as shown in the following example.

Example 5.17: Consider X = Y = Z = {a, b, c, d} , τ = {φ, {a}, {a,b}, X} and σ = {φ, {a}, {a,b}, {a,c}, {a,d}, {b}, {c}, {d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}. Let f: (X, τ) → (Y, σ) be defined by f(a) = b, f(b) = c, f(c) = b, f(d) = a. Clearly, f is α * closed. Consider the map g: Y → Z defined g(a) = a, g(b) = b, g(c) = c, g(d) = d. Clearly g is closed. But g f: X → Z is not a α * closed, g f({d}) = g(f({d})) = g(a) = a which is not a α * closed in Z.

Theorem 5.18: Let (X, τ), (Z, η) be topological spaces and (Y, σ) be topological spaces where every α * closed subset is closed. Then the composition g f: (X, τ) → (Z, η) of the α * closed f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, η) is α * closed.

Proof: Let O be a closed set in X. Since f is α * closed, f(O) is α * closed in Y. By hypothesis, f(O) is closed. Since g is α * closed map, g(f(O)) is α * closed in Z and g f(O) = g f(O) = g f(O). Therefore, g f is α * closed.

Theorem 5.19: If f: (X, τ) → (Y, σ) is g -closed map and g: (Y, σ) → (Z, η) is α * closed and (Y, σ) is a T₁ spaces. Then the composition g f: (X, τ) → (Z, η) is α * closed map.

Proof: Let O be a closed set in X. Since f is g - closed, f(O) is g - closed in (Y, σ) and g is α * closed which implies g f(O) is α * closed in Z and g f(O) = g f(O). Therefore, g f is α * closed.

Theorem 5.20: Let f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, η) be two mappings such that their composition g f: (X, τ) → (Z, η) be α * closed mapping. Then the following statements are true.

1. If f is continuous and surjective, then g is α * closed.
2. If g is α * - irresolute and injective, then f is α * closed.
3. If f is g - continuous, surjective and f is a T₁ spaces, then g is α * closed.
4. If g is strongly continuous and injective, then f is α * closed.

Proof: 1. Let O be a closed set in (Y, σ). Since f is continuous, f⁻¹(O) is closed in (X, τ). Since g f is α * closed which implies that g f f⁻¹(O) is α * closed in (Z, η). That is g f(O) is α * closed in (Z, η), since f is surjective. Therefore, g is α * closed.

2. Let O be a closed set in (X, τ). Since g f is α * closed, g f(O) is α * closed in (Z, η), since g is α * - irresolute, g⁻¹(g f(O)) is α * closed in (Y, σ). That is f(O) is α * closed in (Y, σ). Since f is injective, Therefore, f is α * closed.

3. Let O be a closed set of (Y, σ). Since, f is g - continuous, f⁻¹(O) is g - closed in (X, τ) and (X, τ) is a T₁ spaces, f⁻¹(O) is closed in (X, τ). Since, g f is α * closed which implies, g f f⁻¹(O) is α * closed in (Z, η). That is g f(O) is α * closed in (Z, η), since f is surjective. Therefore, g is α * closed.

4. Let O be a closed set of (X, τ). Since, g f is α * closed which implies, g f(O) is α * closed in (Z, η). Since, g is strongly α * continuous, g⁻¹(g f(O)) is closed in (Y, σ). That is f(O) is closed in (Y, σ). Since g is injective, f is α * closed.

Theorem 5.21: A map f: (X, τ) → (Y, σ) is α * open if and only if f(int(A)) ⊆ α * int (f(A)) for each set A in X.

Proof: Suppose that f is a α * open map. Since int (A) ⊆ A, then f(int (A)) ⊆ f(A). By hypothesis, f(int (A)) is a α * open and α * int (f(A)) is the largest α * open set contained in f(A). Hence, f(int (A)) ⊆ α * int (f(A)).

Conversely, suppose A is an open set in X. Then f(int(A)) ⊆ α * int (f(A)). Since int (A) = A, then f(A) ⊆ α * int (f(A)). Therefore, f(A) is a α * open set in (Y, σ) and f is α * open map.

Theorem 5.22: Let (X, τ), (Y, σ) and (Z, η) be three topologies spaces f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, η) be two maps. Then

1. If (g * f) is α * open and f is continuous, then g is α * open.
2. If (g * f) is open and g is α * continuous, then f is α * open map.

Proof: 1. Let A be an open set in Y. Then, f⁻¹(A) is an open set in X. Since (g * f) is α * open map, then (g * f) (f⁻¹(A)) = g f(A) = A is α * open set in Z. Therefore, g is a α * open map.
Let A be an open set in X. Then, g(f(A)) is an open set in Z. Therefore, \(g^{-1}(g(f(A))) = f(A) \) is a \(\alpha^* \) open set in Y. Hence, f is a \(\alpha^* \) open map.

Theorem 5.23: Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a bijective map. Then the following are equivalent:

1. f is a \(\alpha^* \) open map.
2. f is a \(\alpha^* \) closed map.
3. \(f^{-1} \) is a \(\alpha^* \) continuous map.

Proof:

(1) \(\Rightarrow \) (2) Suppose \(O \) is a closed set in X. Then \(X \setminus O \) is an open set in X and by (1) \(f(X \setminus O) \) is a \(\alpha^* \) open in Y. Since, f is bijective, then \(f(X \setminus O) = Y \setminus f(O) \). Hence, \(f(O) \) is a \(\alpha^* \) closed in Y. Therefore, f is a \(\alpha^* \) closed map.

(2) \(\Rightarrow \) (3) Let f is a \(\alpha^* \) closed map and \(O \) be closed set in X. Since, f is bijective then \(f^{-1}(f(O)) = f(O) \) which is a \(\alpha^* \) closed set in Y. Therefore, \(f^{-1} \) is a \(\alpha^* \) continuous map.

(3) \(\Rightarrow \) (1) Let O be an open set in X. Since, \(f^{-1} \) is a \(\alpha^* \) continuous map then \(f^{-1}(f(O)) = f(O) \) is a \(\alpha^* \) open set in Y. Hence, f is a \(\alpha^* \) open map.

Theorem 5.24: A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\alpha^* \) open if and only if for any subset \(O \) of \((Y, \sigma) \) and any closed set of \((X, \tau) \) containing \(f^{-1}(O) \), there exists a \(\alpha^* \) closed set \(A \) of \((Y, \sigma) \) containing \(O \) such that \(f^{-1}(A) \subseteq F \).

Proof: Suppose \(f \) is \(\alpha^* \) open. Let \(O \subseteq Y \) and \(F \) be a closed set of \((X, \tau) \) such that \(f^{-1}(O) \subseteq F \). Now \(X \setminus F \) is an open set in \((X, \tau) \). Since \(f \) is \(\alpha^* \) open, \(f(X \setminus F) \) is \(\alpha^* \) open in \((Y, \sigma) \). Then, \(A = Y \setminus f(X \setminus F) \) is a \(\alpha^* \) closed set in \((Y, \sigma) \). Note that \(f^{-1}(O) \subseteq F \) implies \(O \subseteq A \) and \(f^{-1}(A) = X \setminus f^{-1}(X \setminus F) \subseteq X \setminus (X \setminus F) = F \). That is, \(f^{-1}(A) \subseteq F \).

Conversely, let \(B \) be an open set in \((X, \tau) \). Then, \(f^{-1}((f(B))^c) \subseteq B^c \) and \(B^c \) is a closed set in \((X, \tau) \). By hypothesis, there exists a \(\alpha^* \) closed set \(A \) of \((Y, \sigma) \) such that \((f(B))^c \subseteq A \) and \(f^{-1}(A) \subseteq B^c \) and so \(B \subseteq (f^{-1}(A))^c \). Hence, \(A^c \subseteq f(B) \subseteq f((f^{-1}(A))^c) \) which implies \(f(B) = A^c \). Since, \(A^c \) is a \(\alpha^* \) open, \(f(B) \) is \(\alpha^* \) open in \((Y, \sigma) \) and therefore \(f \) is \(\alpha^* \) open map.

References

[9]. Pious Misissier S and P.Anbarasi Rodrigo, On \(\alpha^* \)-Continuous, Outreach (Accepted)