Acts Freely on Prime and semi prime Γ -near Rings

Afrah M Ibraheem , Ahlam J. Lazem

Dep. of Mathematics, College of Education, Al-Mustansiriya Univ., Baghdad, Iraq

Abstract: Let M be a Γ -near ring. An element $a \in M$ is called a dependent element on a mapping f if f(x)aa = aax for all $x \in M$, $a \in \Gamma$. In this paper we study and investigate concerning dependent elements of M by certain mappings on prime and semi prime Γ -near rings using certain assumption (A), and also we study the generalized Γ -derivation F of Γ -near ring M and Γ -derivations D which are free action. **KeyWords:** Γ -near ring, generalized Γ -derivation, reverse centralizer, dependent element, free action.

I. Introduction And Preminiries

Some researchers have studied the notion of free action. Laradji and Thaheem in [1] initiated the study of dependent elements of endemorphism of semiprime ring. F.J.Murray and J.Von Neuman in [2], introduced the notions of dependent elements and free action. In [8],Vukman and Ireana investigate some properties of dependent elements of derivations, generalized derivations and automorphisms of prime and semiprime rings. M.S.Samman and M. Anwar in [3] have studied some properties of dependent elements of left centralizers. Vukman and Kosi-UIbI in [7] and Vukman in [4] and [5] on dependant elements of mappings of semiprime rings, Vukman and Kusi-UIbI in [6] have studied centralizers in general from work of semiprime rings.

In this paper we investigate some mappings related to centralizer, reverse-centralizer, Γ -derivations and generalized Γ -derivations are free actions on prime and semi prime Γ -near rings.

Throughout M will represent an associative Γ -near ring with center Z(M) the commutator $[x,y]_{\alpha}$ will denoted by $x\alpha y - y\alpha x$ for all $x, y \in M$ and $\alpha \in \Gamma$, and we use the identities below

 $[x\beta y,z]_{\alpha} = x\beta [y,z]_{\alpha} + [x,z]_{\alpha}\beta y + x\beta z\alpha y - x\alpha z\beta y$ and

 $[x,y\beta z]_{\alpha} = y\beta[x,z]_{\alpha} + [x,y]_{\alpha}\beta z + y\beta x\alpha z - y\alpha x\beta z$, for all $x,y,z \in M$ and $\alpha,\beta \in \Gamma$.

We shall take an assumption (A)... $x\alpha y\beta z = x\beta y\alpha z$, for all $x,y,z \in M$ and $\alpha,\beta \in \Gamma$.

A Γ -near ring M is a triple (M, +, Γ) where

(i) (M, +) is a group (not necessarily abelian).

(ii) Γ is a non empty set of binary operations on M-such that for each $\alpha \in \Gamma$, (M,+, α) is a near ring.

(iii) $x\alpha(y\beta z) = (x\alpha y)\beta z$, for all x, y, $z \in M$ and $\alpha, \beta \in \Gamma$.

M is said to be prime Γ -near ring if $x\Gamma M\Gamma y = (0)$ for all x, $y \in M$ implies x = 0 or y = 0 and semi prime Γ -near ring if $x\Gamma M\Gamma x = (0)$ for all $x \in M$ implies x = 0. A Γ -near ring M is said to be 2-torsion free whenever 2x=0, for all $x \in M$, then $x=0.A \Gamma$ -derivation on M is defined to be an additive endomorphism D of M satisfying the product rule $D(x\alpha y)=D(x)\alpha y+x\alpha D(y)$ or equivalently $D(x\alpha y)=x\alpha D(y)+D(x)\alpha y$, for all $x,y \in M$ and $\alpha \in \Gamma$. An additive mapping F: $M \to M$ is called generalized Γ -derivation if there exists Γ -derivation D of M such that $F(x\alpha y) = F(x)\alpha y + x\alpha D(y)$. An additive mapping T: $M \to M$ is called left (resp.right) centralizer if $T(x\alpha y) = T(x)\alpha y$, ($T(x\alpha y) = x\alpha T(y)$), for all $x,y \in M$ and $\alpha \in \Gamma$. If T is a both left as well right centralizer then T is centralizer for all $x,y \in M$ and $\alpha \in \Gamma$, and T is called left (resp. right) reverse centralizer of M if $T(x\alpha y) = T(y)\alpha x$, ($T(x\alpha y) = y\alpha T(x)$) hold for all $x,y \in M$ and $\alpha \in \Gamma$. If T is both left as well right reverse-centralizer, then T is a reverse-centralizer. An element $a \in M$ is called a dependent element of mapping f: $M \to M$ if $f(x)\alpha a = a\alpha x$ holds for all $x \in M$ and $\alpha \in \Gamma$. A mapping f: $M \to M$ is said to be free action if the only depend element of f is zero. The symbol D*(f) is denoted to the collection of all dependent elements.

II. Results

We consider M in all our results satisfying the assumption (A).

Theorem (2.1):

Let M be a prime Γ -near ring with a non zero Γ -derivation D, then D is a free action.

Theorem (2.2):

Let M be a semi prime Γ -near ring ,and F be a non zero generalized Γ -derivation associated with a Γ -derivation D, then F is a free action.

Proof:

For all $x \in M$, $a \in M$ and $\alpha \in \Gamma$, we have the relation $F(x)\alpha a = a\alpha x$...(1) Putting $x\beta y$ for x ,and using (1), we get $F(x)\beta y\alpha a + (x\alpha a - a\alpha x)\beta y = 0$, for all $x, y \in M$ and $\alpha, \beta \in \Gamma$...(2) Putting $y\delta z$ for y in (2), and other hand right multiplication of (2) by z, and subtraction two equations, we obtain $F(x)\beta y\delta(z\alpha a - a\alpha z) = 0$, for all $x, y, z \in M$ and $\alpha, \beta, \delta \in \Gamma$...(3) Replacing y by $a\lambda y$ in (3), and using (1), we obtain $a\beta x\lambda y\delta(z\alpha a - a\alpha z) = 0$...(4) Replacing x by $z\alpha x$ in (4), and other hand left multiplication of (4) by z , and subtracting two equations, we obtain: $(z\alpha a - a\alpha z)\beta x\lambda y\delta(z\alpha a - a\alpha z)=0$, for all $x, y, z \in M$ and $\alpha, \beta, \delta, \lambda \in \Gamma$...(5) Replacing $x\lambda y$ by r in (5), we obtain $(z\alpha a - a\alpha z)\beta r\delta(z\alpha a - a\alpha z) = 0$, for all $z, r \in M$ and $\alpha, \beta, \delta \in \Gamma$...(6) Since M is semi prime, we get $(z\alpha a - a\alpha z) = 0$... (7) Substitution (7) in (2) for all $z \in M$, and replacing y by addy using (1), we get $a\beta x\delta y\alpha a = 0$... (8) Putting z for $x\delta y$ in (8), we get: $a\beta z\alpha a = 0$, for all $z \in M$, and $\alpha, \beta \in \Gamma$. Since M is semi prime, we get a = 0. This completes the proof. **Theorem (2.3):** Let M be a prime Γ -near ring and F be a generalized Γ -derivation on M associated with a non zero Г-

derivation D. If $a \in M$, a is dependent element of F, then $a \in Z(M)$.

Proof:

Since a an element dependent on F, therefore	
$F(x)\alpha a = a\alpha x$, for all $x \in M$ and $\alpha \in \Gamma$	(1)
Replacing x by $x\beta y$ in (1) and using (1), we get	
$(F(x)\alpha a - x\alpha a)\beta y = D(x)\beta y\alpha a$, for all $x, y \in M$ and $\alpha, \beta \in \Gamma$	(2)
Right multiplication (2) by z, other hand replacing y by $y\delta z$ in (2), and subtracting two equat	ions, we get
$D(x)\beta y\delta[a,z]_{\alpha} = 0$, for all $x,y,z \in M$ and $\alpha,\beta,\delta \in \Gamma$	(3)
Since M is a prime and $D \neq 0$, we obtain	

 $[a,z]_{\alpha} = 0$ that means $a \in Z(M)$, for all $z \in M$, $\alpha \in \Gamma$. This completes the proof.

Corollary (2.4):

Let M be a prime Γ -near ring, and let a,b \in M be a fixed elements. Suppose that $c \in M$ is dependent element of $F(x) = a\alpha x + x\alpha b$. Then $c \in Z(M)$.

Proof:

For all $x \in M$ and $\alpha \in \Gamma$, we obtain: $F(x) = a\alpha x$...(1) Replacing x by $x\beta y$ in (1), we get: $F(x\beta y) = (a\alpha x + x\alpha b)\beta y + x\beta[y,b]_{\alpha}$, for all $x,y \in M$ and $\alpha,\beta \in \Gamma$...(2) Replacing $[y,b]_{\alpha}$ by D(y) in (2) and using (1), we get: $F(x\beta y) = F(x)\beta y + x\beta D(y)$, for all $x,y \in M$ and $\beta \in \Gamma$...(3) This mean F is a generalized Γ -derivation where it follows according the theorem (2.3), $c \in Z(M)$.

Theorem (2.5):

Let M be a prime Γ -near ring, and let a, b \in M be fixed elements. Suppose that $c \in$ M is dependent element on the mapping $\psi(x)=a\alpha x\beta b$, then $a\alpha c \in Z(M)$ or $b\alpha c \in Z(M)$.

Proof:

For all $x \in M$ and $\delta \in \Gamma$, we have	
$\psi(\mathbf{x})\delta\mathbf{c} = \mathbf{c}\delta\mathbf{x},$	(1)
Then, $(a\alpha x\beta b)\delta c = c\delta x$	(2)
Replacing x by $x\lambda y$ in (2), and using (2), we get	
$a\alpha x\beta[b\delta c,y]_{\lambda} = 0$, for all $x,y \in M$ and $\alpha,\beta,\delta \in \Gamma$	(3)

Replacing x by $c\delta x\lambda y$ in (3),other hand replacing x by $c\delta x$ in (3) with left multiplying by y,and subtracting two equations, we obtain $[a\delta c,y]_{\lambda}\alpha x\beta[b\delta c,y]_{\lambda} = 0$, for all $x,y \in M$ and $\alpha,\beta,\delta,\lambda \in \Gamma$...(4)

 $[a\delta c, y]_{\lambda} \alpha x \beta [b\delta c, y]_{\lambda} = 0$, for all $x, y \in M$ and $\alpha, \beta, \delta, \lambda \in \Gamma$ Since M is a prime, for all $x \in M$, we get $[a\delta c, y]_{\lambda} = 0$ or $[b\delta c, y]_{\lambda} = 0$. That means either $a\alpha \in Z(M)$ or $b\alpha \in Z(M)$.

Theorem (2.6):

Let M be a 2-torsion free prime Γ -near ring ,and F_1 and F_2 are two generalized Γ - derivations on M associated with Γ -derivations D_1 and D_2 respectively, then the mapping $\psi(x)$ is free action, for all $x \in M$, when: 1) $\psi(x) = D_1(x) + D_2(x)$

1)
$$\psi(x) = D_1(x) + D_2(x)$$

2) $\psi(x) = D_1^2(x) + D_2(x)$
3) $\psi(x) = D_1(x) + D_2^2(x)$
4) $\psi(x) = F_1(x) + D_1^2(x)$, for all i= 1,2.
5) $\psi(x) = F_1^2(x) + F_2(x)$
6) $\psi(x) = F_1(x) + F_2^2(x)$.
Proof:
We will prove (4). The proof of other results is by the same way.
Let i = 2, for all x $\in M$, we have
 $\psi(x) = F_2(x) + D_2^2(x)$.
Let $a \in D^*(\psi)$, then $\psi(x)\alpha = a\alpha x$, for all $x \in M$ and $\alpha \in \Gamma$.
That is
 $a\alpha x = F_2(x)\alpha a + D_2^2(x)\alpha a$, for all $x \in M$ and $\alpha \in \Gamma$...(1)
Putting x βa for x in (1), and using (1), we get
 $a\alpha x \beta a = 2D_2(x)\beta D_2(a)\alpha a + x\beta D_2(a)\alpha a + x\beta D_2^2(a)\alpha a$...(2)
Replacing x by y δx in (2), and using (2), we get:
 $2(D(y)\delta x\beta D_2(a)\alpha a = 0$, for all $x, y \in M$ and $\alpha, \beta, \delta \in \Gamma$ (3)
Putting z for $D_2(a)$ in (3), we get
 $D_2(y)\delta x\beta D_2(a)\alpha a = 0$, for all $x, y \in M$ and $\alpha, \beta, \delta \in \Gamma$ (4)
Replacying x βz by r, we get
 $D_2(y)\delta x\beta z = 0$, for all $y, r \in M$ and $\alpha, \delta \in \Gamma$
Since M is prime and $D \neq 0$, we get $a = 0$, that's mean our mapping is a free action.

Let M be a semi prime Γ -near ring, and let T be a centralizer, F be a generalized Γ -derivation with associated Γ -derivation D. If a is dependent element of D, $a \in M$, then $\psi = (F \circ T)$ is a free action. **Proof:**

Let $\psi = (F \circ T)$, and $a \in D^*(\psi)$, then $\psi(x)\alpha a = a\alpha x$, for all $x \in M$ and $\alpha \in \Gamma$, That is $(F \circ T)(x)\alpha a = a\alpha x$, ...(1) Replacing x by $x\beta y$ in (1), and using (1), we get $(F \circ T)(x)[a,y]_{\alpha} = T(x)\beta D(y)\alpha a$, for all $x, y \in M$ and $\alpha, \beta \in \Gamma$...(2)

Replacing y by add in (2), and using (1), we get $a\beta x\delta[a,y]_{\alpha} = T(x)\beta D(a)\delta y\alpha a + T(x)\beta a\delta D(y)\alpha a$, for all $x,y \in M$ and $\alpha,\beta,\delta \in \Gamma$...(3) Multiplying (3) on the left by z, other hand replacing x by z αx in (3) and Subtracting two equations, we get $[a,z]_{\alpha}\beta x\delta[a,z]_{\alpha}=0$, for all $x,z \in M$ and $\alpha,\beta,\delta \in \Gamma$...(4) Replacing z by y in (4), we get: $[a,y]_{\alpha}\beta x\delta[a,y]_{\alpha} = 0$, which by semiprimeness of M, implies

$[a v]_{a} = 0$ for all $v \in \mathbf{M}$ $\alpha \in \Gamma$	(5)
Substitute (5) in (2), and by the hypothesis , we get	(0)
$T(x)\beta a\alpha y = 0$, for all $x, y \in M$ and $\alpha, \beta \in \Gamma$	(6)
Replacying y by $y\delta T(x)\beta a$ in (6), and using semiprimeness of M, we get	
$T(x)\beta a = 0$, for all $x \in M$, $\beta \in \Gamma$	(7)
Taking F of (7), and using (3) and (1), we get	
$a\alpha x\beta a = 0$, for all $x \in M$ and $\alpha, \beta \in \Gamma$	

Since M is semi prime, we get a = 0, which implies that (F \circ T) is a free action.

Theorem (2.8):

Let T be a reverse centralizer of Γ -near ring M. Then $\psi: M \to M$ which defined by $\psi(x) = [T(x),x]_{\alpha}$, for all $x \in M$ and $\alpha \in \Gamma$ is a free action.

Proof:

Let $a \in D^*(\psi)$, then $\psi(x)\beta a = a\beta x$, for all $x \in M$ and $\alpha, \beta \in \Gamma$ That is $[T(x),x]_{\alpha}\beta a = a\beta x$, for all $x \in M$ and $\alpha, \beta \in \Gamma$...(1) Linearizing (1) , and using (1) , we get: $[T(x),y]_{\alpha}\beta a + [T(y),x]_{\alpha}\beta a = 0$, for all $x,y \in M$ and $\alpha, \beta \in \Gamma$...(2) Replacing y by $a\delta y$ in (2), and using (2),we get $-a\delta[T(y),x]_{\alpha}\beta a + [T(x),a]_{\alpha}\delta y\beta a + T(y)\delta[a,x]_{\alpha}\beta a + [T(y),x]_{\alpha}\delta a\beta a = 0$, for all $x,y \in M$ and $\alpha, \beta, \delta \in \Gamma$...(3)

Replacing y and x by a in (3), and other hand replacing x by a in (3), and using them, we get $-a\delta a\beta a + a\delta a\beta a + a\delta a\beta a = 0$

That is, $a\delta a\beta a = 0$, we get a = 0. Hence ψ is free action.

References

- [1]. A.Laradji and A.B.Thaheem, On Dependent Elements in Semiprime Ring, Math.Japonica, 47 (1998), No.1, 576-584. F. J. Murray and von Neumann J., On Rings of Operators, 37, 116-229, Ann. Math.,(1936).
- [2]. M. S. Samman and Anwar M., Dependent Element of Left Centralizer of Semiprime Rings, 33, 313-319, The Arabian Journal for Science and Engineering (2008).
- [3]. J.Vakman, On Dependent Elements and Related Problems In Ring, International Math. Journal, 8 (2005), No.2, 93-112.
- [4]. J.Vakman, Free Actions of Semiprime Rings with Involution Induced by Aderivation, Demenstratio Mathematica, 38 (2006), No.4, 811-817.
- [5]. J.Vakman and I.Kosi-UIbI, On Dependent Elements in Rings, International Mathematical Journal, 6 (2005), No.2, 93-112.
- [6]. J.Vakman, I.Kosi-UIbI, Centralizer on Ring and Algebras, Bull, Austral.Math.Soc, 71, (2005), 234-255.
- [7]. J.Vukman and Ireana, On Dependent Elements in Rings, 54, 2895-2906, IJMMS,(2004).