The Transitivity, Primitivity and Faithfulness of Wreath Products of Permutation groups

Chun P.B, Choji N.M Adidi C.S, Ajai P.T

Abstract: Suppose C and D are permutation groups on Γ and Δ respectively. The wreath product of C by D denoted by C wr D is the semi – direct product of C by Δ so that $W = \{(f, d) | f \in P, d \in D\}$, with multiplication in W defined as: $(f_1 d_1) (f_2 d_2) = [(f_1 f_2 d_1^{-1}), (d_1 d_2)]$ for all $f_1 f_2 \in P$ and $d_1 d_2 \in D$.

These communication (paper) provides with clarity the conditions under which wreath products of such permutation groups are transitive, primitive and faithful and also provides a very good example to demonstrate such conditions.

Keywords: Group actions, Transitive Permutation groups, Primitivism and faithfulness of W on $\Gamma X \Delta$, wreath product, stabilizer and centre of wreath products.

I. Introduction

Wreath products of permutation groups has become an interesting area of study in recent times. These was first reported by Audu M.S in [1]. Ezenwanne I.U in [2] also discussed extensively on transitivity, primitivity and wreath products of permutation groups. Apine.E [3] considered permutation groups of primepower. Ahmad, Suleiman (2006) [4] provided interesting examples buttressing the transitivity, primitivism and faithfulness of wreath products of permutation group.

II. Notations

 C^{Δ} : The set of all maps of Δ into the permutation group C. $\Gamma x \Delta$: Direct products of two sets Γ and Δ W (α, δ) : Stabilizer of any point (α, δ) in $\Gamma X \Delta$ Z(W): Centre of W CwrD: The wreath product of C by D

III. **Preliminary**

We shall state and prove several theorems, define certain notions and make obvious remarks which shall lead to the statement and prove of our claims.

Definition1.1: The wreath product of C by D donated by W = CwrDis the semi-direct product of P by Δ so that W = {(f, d) | $f \in P, d \in D$ }, with multiplication in W defined as; $(f_1 d_1) (f_2 d_2) = [(f_1 f_2 d_1^{-1}), (d_1 d_2)]$ for all $f_1 f_2 \in P$ and $d_1d_2 \in D$. Hence forth, we would write (fd) instead of (f,d) for elements of W.

Theorem 1.2

Let C and D be permutation groups on Γ and D respectively. Let C^{Δ} be the set of all map \in of D into the permutation group C

that is $C^{\Delta} = \{f: \Delta \longrightarrow C\}$. For any f_1, f_2 in C, let $f_1 f_2$ in C^{Δ} , be defined for all δ in Δ by $(f_1f_2) \delta = f_1(\delta) f_2(\delta)$

Thus composition of functions is point wise and operation is placed on the right. With respect to this operation of multiplication, C^{Δ} acquires the structure of a group.

Proof:

 C^{Δ} is a non –empty and is closed with respect to multiplication. For suppose $f_1 f_2 \in C^{\Delta}$ then $f_1(\delta)$ i. $f_2(\delta) \in \mathbb{C}$. Hence $f_1(\delta) \cdot f_2(\delta) \in \mathbb{C}$. This implies that $(f_1 f_2) \delta \in \mathbb{C}$ and so $f_1 f_2 \in \mathbb{C}^{\Delta}$

Since multiplication in C is associative so also is the multiplication in C^{Δ} ii.

iii.

The identity element in C^{Δ} is the map $e:\Delta \longrightarrow C$ given by $e(\delta) = 1$ for all $\delta \in \Delta$ and 1eC. Every element $f \in C^{\Delta}$ is defined for $\delta \in \Delta$ by $f(\delta) = f(\delta)1$. Thus C^{Δ} is a group with respect to the iv. multiplication defined above. (we denote this group by P).

LEMMA 1.3

Suppose that D acts on P as follows $f^{d}(\delta) = f(\delta d^{-1})$ for all $\delta \in \Delta$, $d \in D$. Then D acts on P as a group. **Proof:**

Take $f, f_1 f_2 \in P$ and $d, d_1, d_2 \in D$.

$$\begin{split} \text{i.} & (f^{d1})^{d}{}_{2}(\delta) = f^{d1}(\delta \ d_{2}{}^{-1}) \\ &= f(\delta \ d_{2}{}^{-1}d_{1}{}^{-1}) \\ &= f^{d1d2}(\ \delta \) \\ \text{ii.} & f^{1}(\delta) = f(\delta \ 1{}^{-1}) \\ &= f(\delta) \\ \text{iii.} & (f_{1}f_{2})^{\ d}(\delta) = f_{1}f_{2}(\delta d^{-1}) \\ &= f_{1}(\delta \ d^{-1})f_{2}(\delta \ d^{-1}) \\ &= f_{1}^{1}(\delta \ f_{2}{}^{d}(\delta) \end{split}$$

Thus D act on p as a group.

Theorem 1.4

Let D act on P as group. The set of all or all ordered pairs (f,d) with fcP, deD acquires the structure of a group when we define all f_1 , $f_2 \in P$ and d_1 , $d_2 \in D$. (f_1,d_1) $(f_2, d_2) = (f_1f_2 d^{-1}, d_1d_2)$

Proof.

i. Closure property follows from the definition of multiplication

ii. Take
$$f_1, f_2, f_3 \in P$$
 and $d_1, d_2, d_3 \in D$. Then

$$[(f_1d_1) (f_2, d_2)] (f_3, d_3) = (f_1f_2d^{-1}, d_1d_2) (f_3, d_3)$$

$$= (f_1f_2d_1^{-1}f_3 (d_1 d_2)^{-1}, d_1d_2 d_3)$$

$$= (f_1f_2d_1^{-1}f_3 (d_1 d_2)^{-1}, d_1d_2d_3)$$

$$= (f_1f_2d_1^{-1}f_3 (d_1 d_2) (f_3, d_3)$$

$$= (f_1f_2d_1^{-1}f_3 (d_1 d_2) (f_3, d_3)$$

$$= (f_1f_2d_1^{-1}f_3 (d_1 d_2) (f_3, d_3)$$

$$= (f_1f_2d_3^{-1}f_3 (d_1 d_2) (f_3, d_3)$$

$$= (f_1f_2f_3 (d_1 d_2) (f_3, d_3)$$

$$= (f_1f_2f_3 (d_1 d_2) (f_3, d_3)$$

$$= (f_1f_2d_3^{-1}f_3 (d_1 d_2) (f_3, d_3) = (f_1f_2f_3 (d_1 d_2) (f_3, d_3) = (f_1f_2d_3) = (f_1f_2d_3) = [(f_1d_1) (f_2, d_2)] (f_3, d_3)$$

Thus multiplication is associative.

iii. we know that every $f \in P$, $f^{l}=f$. now for every $d \in D$, the map $f \longrightarrow f^{l}$ is an antomorphism of P. Also if e is the identity element in P then $e^{d} = e$. also $(f^{l})^{d} = (f^{d})^{1}$ Now, $(f,d) (e,1) = (fe^{d-1}, d.1)$ $= (f(e^{-1})^{d}.d)$

$$= (f(e^{-1}))$$
$$= (f,d)$$

The identity element exists.

iv. $(\mathbf{f},\mathbf{d}) ((\mathbf{f}^{-1})^{\mathbf{d}}, \mathbf{d}^{-1}) = (\mathbf{f}((\mathbf{f}^{-1})^{\mathbf{d}})^{\mathbf{d}-1}, \mathbf{d}\mathbf{d}^{-1})$

$$= (f((f^{-1})^{dd-1}, dd^{-1}))$$

= (f(f^{-1})1, dd^{-1})
= (e 1)

Thus when D acts on P, the set of all ordered pairs (f,d) with fCP and dCP is a group if we define $(f_1d_1)(f_{21}d_2) = (f_1f_2^{d-1}, d_1d_2)$

Theorem 1.5

Let D acts on P as $f^1(\delta) = f(\delta d^{-1})$ where fCP, dCP and $\delta C\Delta$. Let W be the group of all of all juxtaposed symbols fd, with fCP, dCP and multiplication given by

 $(f_1d_1) (f_2d_2) = (f_1f_2^{d_1-1}) (d_1d_2)$

Then W is a group called the semi-direct product of P by D with the defined action. Proof (similar to the proof of Lemma 1.3.)

Remark 1.6.

1. We notice that if C and D are finite groups, then a wreath product W determined by an action of D on a finite set is a finite group of order $./W/ = |C|^{|\Delta|} |D|$

2. P is a normal subgroup of W and D and it is a subgroup of W.

3. The action of W on $\Gamma x \Delta$ is given by (α, β) fd = $(\alpha f(\beta), \beta d)$ where $\alpha \in P$ and $\beta \in \Delta$.

TRANSITIVITY OF W ON ΓΧΔ 1.7

Suppose that we take two arbitrary point $(\alpha_1\delta_1)$ and $(\alpha_2\delta_2)$ in $\Gamma X \Delta$. Then W will be transitive on $\Gamma X\Delta$ if and only if $(\alpha f (\delta_1), \delta_1 d) = (\alpha_2, \delta_2)$. That is if and only $\alpha_1 f (\delta_1) = \alpha_2, \delta_1 d = \delta_2$. Thus such f, d exists if and only C and D are transitive on Γ and Δ respectively which is necessary the condition for W to be transitive on $\Gamma X\Delta$

THE STABILIZER W(α,δ) OF A POINT ($\alpha_{1,}\delta$) IN FXA 1.8

Furthermore, under the action of W on $\Gamma X\Delta$, the stabilizer of any point (α, δ) in $\Gamma X\Delta$ denoted by W (α, δ) is given by

 $W(\alpha,\delta) = \{ fdCW | (\alpha,\delta) fd = (\alpha,\delta) \} \\ = \{ fdCW(\alpha,f(\delta), \delta d) = (\alpha,\delta) \}$

={fCW |(α , f(δ)= α , δ d= δ } $= F(\delta) \alpha D\delta$

Where $F(\delta) \alpha$ is the set of all $f(\delta)$ that stabilizes α and $D\delta$ is the stabilizer of δ under the action of D on Δ

FAITHFULNES OF W ON FXA 1.9.

We recall that W is faithful on $\Gamma X\Delta$ if and only if the identity of W is its only element that fixes every point of $\Gamma X\Delta$. Now the identity element of W is 1 and thus if W is to be faithful on $\Gamma X\Delta$ then for any (α, δ) in $\Gamma X\Delta$; the stabilizer of W on $\Gamma X\Delta$, W(α , δ) must be f(δ) $\alpha D \delta = 1$ Hence f(δ) $\alpha = 1$ and $D\delta = 1$ for all $\alpha \in \Gamma$, $\delta \in \Delta$ and $\alpha f(\delta) = \alpha, \delta d = \delta$ imply that $f(\delta)$

=1 and d =1. Thus we deduce that W would be faithful on $\Gamma X\Delta$, if the stabilizer of any $\alpha \in \Gamma$ and $\delta \in \Delta$ are the identity elements in P and D respectively. Therefore we conclude that W is faithful on $\Gamma X\Delta$, if P or C and D are faithful on Γ or Δ respectively.

THE PRIMITIVITY OF W ON FXA 2.0

We recall that w would be primitive on $\Gamma X\Delta$, if and only if given any (α, δ) in $\Gamma X\Delta$, W (α, δ) the stabilizer of (α, δ) is a maximal subgroup of W. Now, $W(\alpha, \delta) = F(\delta) \alpha D\delta$ where where $F(\delta)\alpha$ is the set of those f in P such that $f(\delta) \alpha$ fixes α and $D\delta$ is the stabilizer of δ under the action D on Δ . As $f(\delta)\alpha$ does not include those f in P which do not stabilize α . We have that $F(\delta) \alpha D\delta < PD = W$ and also, in general $W(\alpha, \delta)$ is not a maximal subgroup of W. Thus W would be inprimitive on $\Gamma X\Delta$ in a natural way.

However, if $|\Gamma| = 1$ that is $\Gamma = \{ \alpha \}$, then $C_{\Gamma} = C\alpha$ = C. in Particular $\alpha f(\delta) = \alpha$ for all f in P. Thus $F(\delta) \alpha = P$ hence $F(\delta) \alpha \Delta \delta$. And if in addition, D were primitive on Δ then $\Delta \delta$ would be maximal in D and hence $PD\delta = F(\delta) \alpha D\delta = W(\alpha, \delta)$ would be maximal in W that is W would be primitive on $\Gamma X\Delta$. Again if $|\Delta|$ =1, say $\Delta = \{\delta\}$, then $D\delta = D$ and $W(\alpha, \delta) = F(\delta) \alpha D\delta = F(\delta) \alpha \Delta$. And if in addition, C were primitive on Γ , then Ca, would be maximal in C={F(δ) | for all fCP} and correspondingly F(δ) a would be maximal in P and hence $W(\alpha, \delta)$ would be maximal in W, that is W would be primitive on $\Gamma X \Delta$

In conclusion, we have shown that W is in primitive on $\Gamma X \Delta$ in a natural way, unless $|\Gamma| = 1$ and D is primitive on Δ or $|\Delta| = 1$ and C is primitive on Γ .

THE CENTRE OF W 2.1

We denote the centre of W as Z(W) and define $Z(W) = \{fd | (fd)(f_1d_1)(f_1d_1)(fd), for all f, \in P, d_1 \in D\}$. Hence fdEZ(W) if and only if $\{ff_1^{d-1} dd_1 = f_1 f^{d-1} d_1 d$ for all f_1EP , d_1ED(1.a) solve for f and d. put $d_{1=}$ 1 then (1.a.) becomes $ff_1^{d-1}d = f_1d$ for all $f_1 \in P$ ------(1.b.)

put $f_1 = 1$ then (1.a) becomes

 $fdd_1 = f^{d-1}d_1d$ for all dCD-----(1.c)

from (1.a) it follows that for fd to be in Z(W) it is necessary that d $\in Z(W)$.

CLAIM 2.2

If $C \neq 1$, fd $\in Z$ (W) and d $\in Z$ (D), then $\delta d = \delta$ for all $\delta \in \Delta$ ------(1.d) To show this, let $\delta \in \Delta$ and choose $f_1 \in P$ such that $f_1(\delta) = C \neq 1$, $c \in C$ and $f_1(\delta^1) = 1$ for all $\delta^1 \neq \delta$ ------1e. Then from (1.b), we have that $f_1 f = f_1^{d-1}$ and so $f_1(\delta) = f(\delta)f_1(\delta) = f(\delta)$, if $\delta d \neq \delta$. Hence $f_1(\delta) = 1$. But this is false by (1,e) and hence we must have $\delta d = \delta$ for all $\delta \in \Delta$. Accordingly, our Claim is correct. Furthermore, (1.b) implies that for all $\delta \in \Delta$, $f_{1}(\delta) f(\delta) = f(\delta)f_{1}(\delta d)$ $= f(\delta)f_1(\delta)$

Hence $f(\delta) \in Z(C)$ for all $\delta \in \Delta$ ------(1.f) Also (1.c) implies that $f(\delta d) = f(\delta)$ For all $\delta \in \Delta$, $d_1 \in \Delta$ (since $d \in Z(D)$ -----(1.g) Now (1.g) shows that f is constant over orbits of D in Δ .

IV. Conlusion

Thus from (1.4.), (1.f) and (1.g) we conclude that provided $C \neq (1)$, f d $\in Z(W)$ if and only if

 $d\in Z(D)$ nK, where K = { $d\in D | \delta d = d$ for all $\delta \in \Delta$ }.

ii. $f \in \{\Delta_i Z(C)\}$ where Δ_i are orbits in Δ however, if C={1}, then clearly Z(W) = Z(D), with the above notion we conclude that

Z(W) = $rac{C}{C}$ Z(D), if C = 1

i.

 (IIZ_1) (Z(D) nk); other wise

References

- [1]. Audu, M.S. "On Transitive Permutation Groups". African Matimatika, Journal of African Mathematical Union, series 2, Vol.5 (155-160)Ali, B. (1992): "On Transitive and Permutation Groups" University of Jos.
- [2].
- [3].
- Rose, J.S. (1992). On Transitive and remutation Groups' Oniversity of Jos.
 Rose, J.S. (1978). "A Course on Group Theory" Cambridge University Press.
 [4] Apine, E. (1991). "On Permutation Groups of Prime-Power Order" University of Jos.
 Ezenwanne, I.U. "Transitive, Primitivism and Wreath Product of Permutation Group" University of Jos.
 Kurosh, A.G. (1955) "Theory of Groups". Chelsea, New York [3]. [4]. [5].
- [6].
- [7]. Passman, D.S. (1964), "Permutation Groups" Benjamin, New York.