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Abstract: The acceptability of an algorithm is a function of its implementability and convergence. In this paper, 

we examine some features of the extended conjugate gradient method (ECGM) algorithm, one of the 

optimization techniques for solving continuous/or discrete optimal control problems It is observed while using 

this algorithm, there is a consistent demand for some of the features of the algorithm. Among these are the step-

size, alpha, the gradient(the partial derivatives), the search directions e.t.c. One of these features closely 

examined is the computation of J , the gradient of J , the performance index , , ( , )TJ z Hz z x u  , 

which is foremost while implementing the algorithm. In the light of this, we develop an explicit expression for 

J .Furthermore, a generalization of the expression for J , for all positive integers n was attained, via 

mathematical induction. 

Keywords: Step-size, Operator,Conjugate Search Directions 

 

I. Introduction 

Most algorithms for solving discrete optimal control problems based on a class of descent methods, 

demand gradient evaluation of the performance functional. Efficient, within this class are Steepest descent 

method (SDM), Fletcher-Reeves method (FRM), Polak-Rebiere method (PRM), Newton methods and the 

Extended Conjugate gradient method (ECGM). However, none of these algorithms have been able to provide an 

explicit expression for J , the gradient of the performance functional. It is in the light of this, that we desire to 

present an explicit expression for computing the partial derivatives ofperformance functional J ,where  

, , ( , )TJ z Hz z x u  .Let us consider the class of optimal control problems 

Min

1

( , ) ( , ),
k

k i i

i

J x u f x u k


          (1.1) 

with dynamic constraint of type 1 1i i ix Ax Bu   ,(see Oliviera (2002), Polak (1971)). 

This class of problems which fits into a closed loop or feedback control system and maintains an output 

level to a desired value without interference or fluctuation are known as regulator problems.Such problems 

often emanate from systems like water storage and supply engineering. In such systems, the state of the system 

at any instant automatically sets the control. This implies that the state is “fed back” to the control mechanism 

which adjusts itself without external influence, Ibiejugba (1985). Thus in solving these problems, we shall be 

interested in finding a control  ̂     and a corresponding trajectory   ̂    , such that the cost functional  

 

1

( , ) ( , )
k

k i i

i

J x u f x u


         (1.2) 

is minimized over a class of all admissible control and state vectors, where            is continuously 

differentiable and k, denotes the duration of the control process. Let us consider a direct numerical solution to 

the linear quadratic optimal control problem formed as we let ( , ) T T

i i i i i if x u x Px u Qu  in equation (1.2) be 

subject to some discrete time linear dynamical constraint. Then, the resulting problem may be stated as  

Minimize 

1

( , ) [ ]
k

T T

k i i i i i i

i

J x u x Px u Qu


        (1.3) 

  

Subject to 1 1i i ix Ax Du           (1.4) 
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where     
       

 P and Q are nxn, mxm symmetric positive definite constant matrices respectively 

with A and D both constant matrices. The conventional penalty function method demands the transformation of 

the constrained problem in equations (1.3) and (1.4) into an unconstrained problem with the introduction of the 

penalty constant 0  ,(Macki and Straues(1980)). Hence we have, 

Min 
1 1 1 1

1

( , ) [ , ]
k

T T

k i i i i i i i i i i i i

i

J x u x Px u Qu x Ax Du x Ax Du    



            (1.5) 

where 0  , the penalty constant, the superscript T denotes the transpose of a designated vector and the 

symbol .,. , denotes the inner product in a suitable Hilbert space. 

Now associate with equation (1.5) the control operator H such that   

,
w

z Hz 
1 1 1 1

1

[ , ]
k

T T

i i i i i i i i i i

i

x Px u Qu x Ax Du x Ax Du    



          (1.6) 

where w is a real Hilbert space and 
0 1 2 3 0 1 2 3( , , , , , , , , , , , )T

k kz x x x x x u u u u u and H is 

control operator constructed by Otunta(2003). The right hand side of equation (1.6) is a quadratic form with the 

associated block matrix H , of order (2k+2) given as  

 
T

F N
H

N B

 
  
 

          (1.7) 

where F,N and B are matrices whose entries are defined as follows: 

F is a square matrix of order (k+1), with entries 
ijf given by   

11 , ,T

ijf A A f A    for all i, j such that  1i j  ,  

1
1

( )T

ij

j
i

f p I A A



    , 1 1 ,k kf p I          (1.8) 

where I is an identity matrix of appropriate dimension with respect to that of A. 

N is a square matrix of order (k+1) with entries defined as  

1

T

ij

j k

n A D
 

 , for all i, j such that 1 , 0,iji j n otherwise       (1.9) 

TN is the usual transpose of the matrix N. 

B is a square diagonal matrix of order (k+1) with entries, 

11 1 1

1
1

, , .T T

ij k k

j
j k

b q D D b D D b q   


 

          (1.10) 

With this control operator H , we can conveniently solve our problem in equation (1.6). 

 

The rest parts of the paper is outlined as follows: section two discusses the development of the explicit 

expression for J ,section three examinesthe generalization of our expression for J as required by the 

Extended Conjugate Gradient Method algorithm on Discrete Optimal Control Problems and we proceeds 

concluding comments in section four. 

 

II. Development of An Explicit Expression for the gradient Computation 

In solving equation (1.6), we will at various times, demand the evaluation of the derivative of 

,J z Hz . Thus it becomes pertinent to develop an explicit expression for its evaluation.. Knowing that 

every polynomial function f is differentiable and that every polynomial function f of degree greater than one is 

at least twice differentiable, (Taha(1996)), we proceed withour development by considering the one dimensional 

problem as below. 

 Minimize 
2 2

1

[ ]
k

i i

i

rx qu


        (2.1a) 

 Subject to 1 1i i ix vx su          (2.1b) 
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0x specified, where r,q,v and s are constants. 

By the conventional penalty function method(Polak(1971)), the constrained problem in equation (2.1) 

is converted to the unconstrained problem 

 Minimize 
2 2 2

1 1

1

[ ( ) ]
k

i i i i i

i

rx qu x vx su  



         (2.2) 

where 0  is the penalty constant. 

By associating equation (2.2) with the quadratic functional ,J z Hz ,defined on the real Hilbert space w, 

we have, 

 ( , , ) ,
w

J x u z Hz   2 2 2

1 1

1

[ ( ) ]
k

i i i i i

i

rx qu x vx su  



       (2.3) 

On expanding equation (2.3), we have, 

2 2 2 2 2 2 2

1 1 1 1 1 1

1

( , , ) , [ ( 2 2 2 )]
k

k i i i i i i i i i i iw
i

J x u z Hz rx qu x v x s u vx x sx u vsx u       



        

 (2.4) and to avoid any form of ambiguity, loss of purpose and contradiction in using kJ ,we shall 

henceforth use J , in its place. Thus, 

When 1k  , equation (2.4) becomes, 

( , , )J x u   =  
2 2 2 2 2 2 2

1 1 1 0 0 1 0 1 0 0 0( 2 2 2 )rx qu x v x s u vx x sx u vsx u         (2.5) 

From equation (2.5), Let 1 2J J J  ,        (2.6) 

where 
2 2

1 1 1( , , )J x u rx qu   ,        (2.7) 

2 2 2 2 2

2 1 0 0 1 0 1 0 0 0( , , ) 2 2 2J x u x v x s u vx x sx u vsx u      
    (2.8)

 

Then 
1 2 1 2( , , ) , 0,1
j j j j

J J J J
J x u j

x z x z
 

      
                 

    (2.9) 

So that  

 
1 2 , 0,1.

jx

j j

J J
J j

x x


  
       

      

 (2.10)  

 
1 2 , 0,1.

ju

j j

J J
J j

u u


  
       

      (2.11) 

Thus using equations (2.7),(2.8), (2.10) and (2.11),we have,  

 
0

2

0 1 0

0

(2 2 2 )x

J
J x v vx vsu

x



    


   

1 1 1 0 02 (2 2 2 )x J rx x vx su    
      (2.12) 

 
0

2

0 1 0(2 2 2 )u J u s sx vsx       

1 12u J qu   

When 2k  , equation (2.4) become, 
2

2 2 2 2 2 2 2

1 1 1 1 1 1

1

, [ ( 2 2 2 )]i i i i i i i i i i iw
i

J z Hz rx qu x v x s u vx x sx u vsx u      



          

2
2 2 2 2 2 2 2

1 1 1 1 1 1

1

( , , ) [ ( 2 2 2 )]i i i i i i i i i i i

i

J x u rx qu x v x s u vx x sx u vsx u       



       
 (2.13)
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      =

2 2 2 2 2 2 2 2

2 2 2 2 1 2 0 1 0 1

1 2 1 2

1 0 2 1 0 2 1 0 0 1 1

( ) ( ) ( )
( ) ( )

2 ( ) 2 ( ) 2 ( )

x x v x x s u u
r x x q u u

vx x x s x u x u vs x u x u
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2 2 2 2

1 1 2 1 2( , , ) ( ) ( )J x u r x x q u u            (2.14) 

2 2 2 2 2 2 2 2

1 2 0 1 0 1

2

1 0 2 1 0 2 1 0 0 1 1

( ) ( ) ( )
( , , )

2 ( ) 2 ( ) 2 ( )

x x v x x s u u
J x u

vx x x s x u x u vs x u x u


     
  

      
   (2.15) 

From equations (2.14) and (2.15), we have, 

2
1 2 1 2

0

( , , ) , 0,1,2.
j j j j j

J J J J
J x u j

x z x z
 



       
                    

     (2.16) 

So that  

 
1 2 , 0,1,2.

jx

j j

J J
J j

x x


  
       

      

 (2.17) 

 
1 2 , 0,1,2.

ju

j j

J J
J j

u u


  
       

      (2.18)  

Thus for 0,1,2j    

0

2

0 1 0

0

(2 2 2 )x

J
J x v vx vsu

x



    


 

1

2

1 1 0 2 0 12 (2 (1 ) 2 ( ) 2 2 )x J rx x v v x x su vsu         

2 2 2 1 1

2

2 (2 2 2 )x

J
J rx x vx su

x



     

 0

2

0 1 0

0

(2 2 2 )u

J
J u s sx vsx

u



    


 

1

2

1 1 2 1

1

2 (2 2 2 )u

J
J qu u s sx vsx

u



     

 2 2

2

2u

J
J qu

u


  


 

When K k , equation (2.4) becomes, 

2 2 2 2 2 2 2

1 1 1 1 1 1

1

, [ ( 2 2 2 )]
k

i i i i i i i i i i iw
i

J z Hz rx qu x v x s u vx x sx u vsx u      



           (2.19) 

    

2 2 2 2 2 2

1 2 1 2

2 2 2 2 2 2 2 2 2 2 2 2

1 2 0 1 1 0 1 2 1

1 0 1 1 0 1 0 0 1 1

( ) ( )

( ) ( ) ( )

2 ( ) 2 ( ) 2 ( )

k k

k k k

k k k k k k

r x x x q u u u

x x x v x x x s u u u u

v x x x x s x u x u vs x u x u
  

   

        

             
 

          

  

1 2J J 

 
where

2 2 2 2 2 2

1 1 2 1 2( ) ( )k kJ r x x x q u u u             (2.20) 

2 2 2 2 2 2 2 2 2 2 2 2

1 2 0 1 1 0 1 2 1

2

1 0 1 1 0 1 0 0 1 1

( ) ( ) ( )

2 ( ) 2 ( ) 2 ( )

k k k

k k k k k k

x x x v x x x s u u u u
J

v x x x x s x u x u vs x u x u
  

   

             
  

        
 (2.21) 

From equations (2.20) and (2.21), we have  

1 2 1 2

0

( , , ) , 0,1,2, , .
k

j j j j j

J J J J
J x u j k

x z x z
 



       
                    

    (2.22) 

So  

       

1 2 , 0,1,2, , .
jx

j j

J J
J j k

x x


  
       

      (2.23)

1 2 , 0,1,2, , .
ju

j j

J J
J j k

u u


  
          

          (2.24) 

Using equations (2.23) and (2.24), for 0,1,2, , .j k , we have, 



On The Extended Conjugate Gradient Method(ECGM) Algorithm For Discrete Optimal …. 

www.iosrjournals.org                                                             21 | Page 

0

2

0 1 0

0

(2 2 2 )x

J
J x v vx vsu

x



    


,

1

2

1 1 0 2 0 12 (2 (1 ) 2 ( ) 2 2 )x J rx x v v x x su vsu         

2

2

2 2 1 1 2

2

2 (2(1 ) 2 2 2 )x

J
J rx v x vx su vsu

x



       


, . . .

    

 

2

1 1 12 (2(1 ) 2 2 2 )
kx k k k k k

k

J
J rx v x vx su vsu

x
   


       


 

0

2

0 1 0

0

(2 2 2 )u

J
J u s sx vsx

u



    


,

1

2

1 2 1(2 2 2 )u J u s sx vsx    , 2
ku k

k

J
J qu

u


  


 

Therefore the expression below 

1 2 1 2

0

( , , ) , 0,1,2, , .
k

j j j j j

J J J J
J x u j k

x z x z
 



       
                    

    (2.25) 

is the explicit expression for generating the gradient of the cost  functional (2.4). 

 

III. Generalization Of The Explicit Expression For J . 
We present inthis section, the generalization of the expression in equation(2.11) using the idea of 

mathematical induction (Griffel(1993)). This is presented in the following theorem. 

Theorem 3.1 

If 
jx and 

ju are the state and control variables of a system; x J and u J are the respective partial 

derivatives of J with respect to
jx and 

ju . Then, for   0,1,2, , 1.j k  , k is the duration of the control 

process, we have 

1 2 1 2

0

( , , ) , 0,1,2, , .
k

j j j j j

J J J J
J x u j k

x z x z
 



       
                    

    (2.26) 

is true. 

Proof: We present the proof of this theorem using mathematical induction. Thus given,

( , , ) ,J x u z Hz   as in equation (2.4) and using mathematical induction we establish the proof of the 

theorem as follows: 

2 2 2 2 2 2 2

1 1 1 1 1 1

1

, [ ( 2 2 2 )]
k

i i i i i i i i i i iw
i

J z Hz rx qu x v x s u vx x sx u vsx u      



         ,(2.27) 

Step 1: When  1n K  , we have, 

 

1
1 2 1 2

0

( , , ) , 0,1.
j j j j j

J J J J
J x u j

x z x z
 



       
                    

  

and with 1 2J J J  , where from equation (2.27), 
2 2

1 1 1( , , )J x u rx qu      

  
2 2 2 2 2

2 1 0 0 1 0 1 0 0 0( , , ) 2 2 2J x u x v x s u vx x sx u vsx u       , we can obtain the gradient of J  with respect 

to x  and u as 
1 2

jx

j j

J J
J

x x


  
      

 and 
1 2 , 0,1.

ju

j j

J J
J j

u u


  
       

  (2.28) 

Step 2. Since it is true for 1n K  , we assume next that it is true for n K k  , i.e. 

 1 2 1 2

0

( , , ) , 0,1,2, , .
k

j j j j j

J J J J
J x u j k

x z x z
 



       
                    

  

Also 1 2J J J  , where 
2 2 2 2 2 2

1 1 2 1 2( ) ( )k kJ r x x x q u u u           
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2 2 2 2 2 2 2 2 2 2 2 2

1 2 0 1 1 0 1 2 1

2

1 0 1 1 0 1 0 0 1 1

( ) ( ) ( )

2 ( ) 2 ( ) 2 ( )

k k k

k k k k k k

x x x v x x x s u u u u
J

v x x x x s x u x u vs x u x u
  

   

             
  

          

From these we can obtain 
1 2

jx

j j

J J
J

x x


  
      

and 
1 2

ju

j j

J J
J

u u


  
      

, for  0,1, ,j k . 

Step 3. Next we show that it is true for 1n K k   . 

1 2
1 2 1 2 1 2 1 2

0 0

( , , )
j jj j j j j j j j

J J J J J J J J
J x u

x z x z x z x z
  

 

                 
                                             

  + 

  

1
1 2 1 2 1 2 1 2

0 0

k k

j jj j j j j j j j

J J J J J J J J

x z x z x z x z
 



 

                 
                                            
   

       

1
1 2 1 2

0

k

j j j j j

J J J J

x z x z






       
                  
 , 0,1, , 1j k     (2.30) 

andwith 
2 2 2 2 2 2

1 1 2 1 1 2 1( ) ( )k kJ r x x x q u u u              

2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 0 1 0 1 2

2

1 0 1 1 0 1 0 0

( ) ( ) ( )

2 ( ) 2 ( ) 2 ( )

k k k

k k k k k k

x x x v x x x s u u u u
J

v x x x x s x u x u vs x u x u
 

 

             
  

        
 

We can generate 
1 2

jx

j j

J J
J

x x


  
      

and
1 2

ju

j j

J J
J

u u


  
      

, for  0,1, , 1.j k  (2.31) 

Since the above expression is true for 1n K k   , we conclude that it is true for all integers n. 

This completes the proof of the theorem above.  

 

IV. Conclusion 

An efficient explicit expression is proposed to enable us obtain the partial derivatives of 

( , , ) ,J x u z Hz  , necessary for the application of the ECGM algorithm on DOCP. The main contributions 

of this paper are the development of the explicit expression and its generalization using mathematical induction.  
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