
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN:2319-765X. Volume 10, Issue 3 Ver. I (May-Jun. 2014), PP 31-44 

www.iosrjournals.org 

www.iosrjournals.org                                                             31 | Page 

 

Unsteady Free Convection in a Walter’s-B Viscoelastic Flow past 

a Semi-Infinite Vertical Plate with Radiation and Chemical 

Reaction 
 

J. Anand Rao
1
, P. Ramesh Babu

2
, and Sivaiah Sheri

3 

1
Dept. of Mathematics, OsmaniaUniversity, Hyderabad, A.P., India. 

2
 Dept. of Mathematics, Sri Kottam Tulasi Reddy Memorial College of Engineering, Kondair(village), 

Itikyala(Mandal), Mahabubnagar(Dist), A.P., India. 
3
 Dept. of Mathematics, Gitam University, Hyd, A.P., India. 

 

Abstract: A numerical solution for the free convective, unsteady, laminar convective heat and mass transfer in 

a viscoelastic fluid along a semi-infinite vertical plate with radiation and chemical reaction is presented. The 

Walters-B liquid model is employed to simulate medical creams and other rheological liquids encountered in 

biotechnology and chemical engineering. This rheological model introduces supplementary terms into the 

momentum conservation equation. The dimensionless unsteady, coupled, and non-linear partial differential 

conservation equations for the boundary layer regime are solved by an efficient, accurate and unconditionally 

stable finite difference scheme of the Crank-Nicolson type. The velocity, temperature, and concentration fields 

have been studied for the effect of Prandtl number, viscoelasticity parameter, Schmidt number, radiation 

parameter, chemical reaction parameter and buoyancy parameters. The local skin-friction, Nusselt number and 

Sherwood number are also presented and analyzed graphically. It is observed that, when the viscoelasticity 

parameter increases, the velocity increases close to the plate surface. An increase in Schmidt number is 

observed to significantly decrease both velocity and concentration.  

Key words: unsteady viscoelastic flow, semi-infinite vertical plate, Walters-B short-memory mode, finite 

difference method, radiation and chemical reaction.  

 

I. Introduction 
Heat and mass transfer in non-Newtonian fluids is of great interest in many operations in the chemical 

and process engineering industries including coaxial mixers [1], blood oxygenators [2], milk processing [3], 

steady-state tubular reactors, and capillary column inverse gas chromatography devices [4], mixing mechanisms 

[5], bubble-drop formation processes [6], dissolution processes [7], and cloud transport phenomena [8]. Many 

liquids possess complex shear-stress relationships which deviate significantly from the Newtonian (Navier-

Stokes) model. External thermal convection flows in such fluids have been studied extensively using 

mathematical and numerical models and often employ boundary-layer theory. Many geometrical configurations 

have been addressed including flat plates, channels, cones, spheres, wedges, inclined planes, and wavy surfaces. 

Non-Newtonian heat transfer studies have included power-law fluid models [9-11] i. e. shear-thinning and shear 

thickening fluids, simple viscoelastic fluids [12, 13], Criminale-Ericksen-Fibley viscoelastic fluids [14], 

Johnson-Segalman rheological fluids [15], Bingham yield stress fluids [16], second grade (Reiner-Rivlin) 

viscoselastic fluids [17], third grade viscoelastic fluids [18], micropolar fluids [19], and bi-viscosity rheological 

fluids [20]. Viscoelastic properties can enhance or depress heat transfer rates, depending upon the kinematic 

characteristics of the flow field under consideration and the direction of heat transfer [21]. The Walters-B 

viscoelastic model [21] was developed to simulate viscous fluids possessing short memory elastic effects and 

can simulate accurately many complex polymeric, biotechnological, and tribological fluids. The Walters-B 

model has therefore been studied extensively in many flow problems. Soundalegkar and Puri [22] presented one 

of the first mathematical investigations for such a fluid considering the oscillatory two-dimensional viscoelastic 

flow along an infinite porous wall, showing that an increase in the Walters elasticity parameter and the 

frequency parameter reduces the phase of the skin-friction. Rath et al. [23] used a perturbation method to 

analyze the steady flow and heat transfer of Walters-B model viscoelastic liquid between two parallel uniformly 

porous disks rotating about a common axis, showing that drag is enhanced with suction but reduced with 

injection and that heat transfer rate is accentuated with a rise in wall suction or injection. Roy et al. [24] 

investigated heat transfer in Walters-B viscoelastic flow along a plane wall with periodic suction using a 

perturbation method including viscous dissipation effects. Raptis et al. [25] studied flat plate thermal convection 

boundary layer flow of a Walters-B fluid using numerical shooting quadrature. Chang et al. [26] analyzed the 

unsteady buoyancy-driven flow and species diffusion in a Walters-B viscoelastic flow along a vertical plate with 

transpiration effects. They showed that the flow is accelerated with a rise in viscoelasticity parameter with both 
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time and distances close to the plate surface and that increasing Schmidt number suppresses both velocity and 

concentration in time whereas increasing species Grashof number (buoyancy parameter) accelerates flow 

through time. Chaudhary et al. [27] studied the Hall current and cross-flow effects on free and forced Walters-B 

viscoelastic convection flow with thermal radiative flux effects. Veena et al. [28] employed a perturbation and 

series expansion method and Kummer’s functions to study two cases – prescribed power law surface 

temperature and power law surface heat flux. They showed that an increase in viscoelasticity increases surface 

shear stresses. Rajagopal et al. [29] obtained exact solutions for the combined non-similar hydromagnetic flow, 

heat, and mass transfer phenomena in a conducting viscoelastic Walters-B fluid percolating a porous regime 

adjacent to a stretching sheet with heat generation, viscous dissipation and wall mass flux effects, using 

confluent hypergeometric functions for different thermal boundary conditions at the wall.  

Steady free convection heat and mass transfer flow of an incompressible viscous fluid past an infinite 

or semi-infinite vertical plate is studied since long because of its technological importance. Pohlhausen [30], 

Somers [31], and Mathers et al. [32] were the first to study it for a flow past a semi-infinite vertical plate by 

different methods. But the first systematic study of mass transfer effects on free convection flow past a semi-

infinite vertical plate was presented by Gebhart et al. [33] who presented a similarity solution to this problem 

and introduced a parameter N which is a measure of relative importance of chemical and thermal diffusion 

causing a density difference that drives the flow. Soundalgekar et al. [34] studied transient free convective flow 

past a semi-infinite vertical flat plate with mass transfer by using Crank-Nicolson finite difference method. In 

their analysis they observed that, an increase in N leads to an increase in the velocity but a decrease in the 

temperature and concentration.  

The study of heat and mass transfer with chemical reaction is of great practical importance to engineers 

and scientists because of its almost universal occurrence in many branches of science and engineering. Possible 

applications of this type of flow can be found in many industries like power industry and chemical process 

industries. Afify [35] studied the effects of radiation and chemical reaction on steady free convective flow and 

mass transfer of an optically dense viscous, incompressible and electrically conducting fluid past a vertical 

isothermal cone in the presence of a magnetic field. Recently, Rushi Kumar et.al. [36] have numerically 

analyzed the heat and mass transfer characteristics in the unsteady free convective flow of an incompressible 

viscoelastic fluid over a moving vertical cone and a flat plate in the presence of magnetic field and higher order 

chemical reaction. 

Thermal radiation in fluid dynamics has become a significant branch of the engineering sciences and is 

an essential aspect of various scenarios in mechanical, aerospace, chemical, environmental, solar power, and 

hazards engineering. The viscous dissipation heat in the natural convective flow is important, when the flow 

field is of extreme size or at low temperature or in high gravitational field. Such effects are also important in 

geophysical flows and also in certain industrial operations and are usually characterized by the Eckert number. 

Whenever the temperature of surrounding fluid is high, the radiation effects play an important role and this 

situation does exist in space technology. In such cases one has to take into account the effects of radiation and 

free convection. 

The interaction of radiation with laminar free convection heat transfer from a vertical plate was 

investigated by Cess [37] for an absorbing, emitting fluid in the optically thick region, using the singular 

perturbation technique. Arpaci [38] considered a similar problem in both the optically thin and optically thick 

regions and used approximate integral technique and first order profiles to solve the energy equation. Cheng et 

al [39] studied a related problem for an absorbing, emitting and isotropically scattering fluid, and treated the 

radiation part of the problem exactly with the normal mode expansion technique. Raptis [40] analyzed both the 

thermal radiation and free convection flow through a porous medium by using a perturbation technique. Hossain 

and Takhar [41] studied the radiation effects on mixed convection along a vertical plate with the uniform surface 

temperature using the Keller Box finite difference method. In all these papers, the flow taken steady, Mansour 

[42] studied the radiative and free convection effects on the oscillatory flow past a vertical plate. Raptis and 

Perdikis [43] considered the problem of thermal radiation and free convection flow past moving plate. Recently, 

Rajeswara Rao et. al. [44] studied the effect of radiation on unsteady free convection heat and mass transfer in a 

Walters-B viscoelastic flow past an impulsively started vertical plate.  

 

Constitutive equations for the Walters-B viscoelastic fluid  
Walters [21] has developed a physically accurate and mathematically amenable model for the 

rheological equation of state of a viscoelastic fluid of short memory. This model has been shown to capture the 

characteristics of actual viscoelastic polymer solutions, hydrocarbons, paints and other chemical engineering 

fluids. The Walters-B model generates highly non-linear flow equations which are an order higher than the 

classical Navier-Stokes (Newtonian) equations. It also incorporates elastic properties of the fluid which are 

important in extensional behavior of polymers. The constitute equations for a Walters-B liquid in tonsorial form 

may be presented as follows: 
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where 
ikP is the stress tensor, p – the arbitrary isotropic pressure, 

tkg – the metric tensor of a fixed co-ordinate 

system 
ix  , 

(1)

ike – the rate of strain tensor, and N(t) – the distribution function of relaxation times,  . The 

following generalized form of eq. (1.2) has been shown by Walters [21] to be valid for all classes of motion and 

stress:  
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in which 
* *( , , *)i ix x x t t denotes the position at time t* of the element which is instantaneously at the 

position, 
ix , at time, t. Liquids obeying the relations (1.1) and (1.4) are of the Walters-B’ type. For such fluids 

with short memory i. e. low relaxation times, eq. (1.4) may be simplified to:  
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in which
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   defines the limiting Walters-B’ viscosity at low shear rates, 
0

0

( )k N d  


  is the 

Walters-B’ viscoelasticity parameter and 
t




is the convected time derivative. This rheological model is very 

versatile and robust and provides a relatively simple mathematical formulation which is easily incorporated into 

boundary layer theory for engineering applications [24, 25].  

The aim of the present paper is to analyze the radiation effects on an unsteady two-dimensional laminar 

simultaneous free convection heat and mass transfer in a Walters -B viscoelastic flow past an impulsively 

started vertical plate in the presence of chemical reaction. The equations of continuity, linear momentum, energy 

and diffusion, which govern the flow field, are solved by using an implicit finite difference method of The 

Crank–Nicolson type. The behavior of the velocity, temperature, concentration, skin-friction and Sherwood 

number has been discussed for variations in the governing parameters. Here the results analyzed graphically.  

 

II. Mathematical Analysis 
 An unsteady 2-D laminar free convective flow of a viscoelastic fluid past a semi-infinite vertical plate 

is considered. The x-axis is taken along the plate in the upward direction and the y-axis is taken normal to it. 

Initially, it is assumed that the plate and the fluid are at the same temperature 
'T
and concentration 

'C
level 

everywhere in the fluid. At time 0t  , Also, the temperature of the plate and the concentration level near the 

plate are raised to 
'

wT and 
'

wC , respectively, and are maintained constantly thereafter. It is assumed that the 

concentration 
'C of the diffusing species in the binary mixture is very less in comparison to the other chemical 

species, which are present, and hence the Soret and Dufour effects are negligible. It is also assumed that there is 

no chemical reaction between the diffusing species and the fluid. Then, under the above assumptions, the 

governing boundary layer equations with Boussinesq’s approximation are: 
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Energy equation 



Unsteady Free Convection in a Walter’s-B Viscoelastic Flow past a Semi-Infinite Vertical Plate with  

www.iosrjournals.org                                                             34 | Page 

' ' ' 2 '

' 2

1 r

p

T T T T q
u v

t x y y c y




    
   

    
                                      (2.3)  

Species equation 
' ' ' 2 '

' '

1' 2
( )

C C C C
u v D k C C

t x y y


   
    

   
     (2.4) 

The initial and boundary conditions are  
' ' ' ' '0 : 0 , 0, ,t u v T T C C         

' ' ' ' '0 : 0 , 0, ,w wt u v T T C C                       at  0y  

            
' ' ' '0, 0, ,u v T T C C                            at     x 0  

            
' ' ' '0 , ,u T T C C                                  as   y    

where u and v are velocity components in x- and y-directions, respectively, 
't is the time, g – the acceleration 

due to gravity,   – the volumetric coefficient of thermal expansion, * – the volumetric coefficient of 

expansion with concentration, 
'T – the temperature of the fluid in the boundary layer, 

'C – the species 

concentration in the boundary layer, 
'

wT - the wall temperature, 
'T
– the free stream temperature far away from 

the plate, 
'

wC – the concentration at the plate, 
'C

– the free stream concentration in fluid far away from the 

plate,   – the kinematic viscosity,   – the thermal diffusivity,   – the density of the fluid, 
1k - chemical 

reaction rate constant, and D – the species diffusion coefficient.  

By using the Rosseland approximation the radiative heat flux rq is given by 
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Where s is the Stefan -Boltzmann constant and
ek  the mean absorption coefficient? It should be noted that by 

using the Rosseland approximation, the present analysis is limited to optically thick fluids. If temperature 

differences within the flow are significantly small, then equation [2.6] can be linearised by expanding 
'4T into 

the Taylor series about
'T
, which after neglect higher order terms takes the form: 
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In order to write the governing equations and the boundary conditions in dimensionless form, the 

following non-dimensional quantities are introduced. 
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where L is the characteristic length of the plate and k-the thermal conductivity.  

Equations (2.1), (2.2), (2.8) and (2.4) are reduced to the following non-dimensional form  

0
U V

X Y

 
 

 
          (2.10)  

(2.5) 

(2.9) 
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The corresponding boundary conditions are  

0 : 0, 0, 0, 0t U V T C        

0 : 0, 0, 1, 1t U V T C                       at  0Y   
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            0, 0, 0U T C                                 as   Y   

where Gr is the thermal Grashof number, Pr - the fluid Prandtl number, Sc - the Schmidt number, N – the 

buoyancy ratio parameter, R - radiation parameter and Kr - chemical reaction parameter.  

To obtain an estimate of flow dynamics at the barrier boundary, we also define several important rate 

functions at Y = 0. These are the dimensionless wall shear stress function, i. e. local skin friction function, the 

local Nusselt number (dimensionless temperature gradient) and the local Sherwood number (dimensionless 

species, i. e. contaminant transfer gradient) are computed with the following mathematical expressions [45] 
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We note that the dimensionless model defined by eqs. (2.10) to (2.13) under conditions (2.14) reduces to 

Newtonian flow in the case of vanishing viscoelasticity i. e. when Γ→0.  

 

III. Method Of Solution 
In order to solve these unsteady, non-linear coupled equations (2.10) to (2.13) under the conditions 

(2.14), an implicit finite difference scheme of Crank-Nicolson type has been employed. This method was 

originally developed for heat conduction problems [46]. The region of integration is considered as a rectangle 

with Xmax. = 1 and Ymax. = 14 where Ymax. corresponds to Y = ∞ which lies well outside the momentum, thermal, 

and concentration boundary layers. After some preliminary numerical experiments the mesh sizes have been 

fixed as DX = 0.05, DY = 0.25 with time step Dt = 0.01. The computations are executed initially by reducing the 

spatial mesh sizes by 50% in one direction, and later in both directions by 50% and the results are compared. It 

is observed that, in all the cases, the results differ only in the fifth decimal place. Hence these mesh sizes are 

considered to be appropriate mesh sizes for present calculations. The local truncation error in the finite 

difference approximation is O(Dt
2
 + DX + DY

2
) and it tends to zero as Dt, DX, and DY tend to zero. Hence the 

scheme is compatible.  

                The finite difference equations corresponding to equations (2.7) - (2.10) are as follows 
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Here, the subscript i-designates the grid point along the X-direction, j-along the  Y-direction and the 

superscript n along the t-direction. An appropriate mesh size considered for the calculation is X = 0.05,  Y = 

0.25,and the time step t 0.01.During any one time step, the coefficients 
n

jiU .  and 
n

jiV . appearing in the 

difference equations are treated as constants. The values of C, T, U and V at time level (n+1) using the known 

values at previous time level (n) are calculated as follows.  

The finite difference Equation (3.4) at every internal nodal point on a particular i-level constitute a 

tridiagonal system of equations. Such a system of equations is solved by using Thomas algorithm as discussed 

in Carnahan et al. [47]. Thus, the values of C are known at every internal nodal point on a particular i at (n+1)
th

 

time level. Similarly, the values of T are calculated from Equation (3.3). Using the values of C and T at (n+1)
th
 

time level in Equation (3.2), the values of U at (n+1)
th

 time level are found in similar manner. Thus the values of 

C, T and U are known on a particular i-level. Then the values of V are calculated explicitly using the Equation 

(3.1) at every nodal point at particular i-level at (n+1)
th

 time level. This process is repeated for various i-levels. 

Thus the values of UTC ,, and V  are known, at all grid points in the rectangular region at (n+1)
th

 time level.      

Computations are carried out until the steady state is reached. The steady-state solution is assumed to 

have been reached, when the absolute difference between the values of U as well as temperature T and 

concentration C at two consecutive time steps are less than 10
-5

 at all grid points. 

The truncation error in the finite difference approximation is O(t
2
+Y

2
+X) and it tends to zero as t, 

Y and X tend to zero. Hence the scheme is compatible. The stability and compatibility ensure convergence. 

The derivatives involved in equation (2.15) are evaluated using five-point approximation formula and then the 

integrals are evaluated using Newton-Cotes closed integration formula. 

 

IV. Results And Discussion 
A representative set of numerical results is shown graphically in Figures, to illustrate the influence of 

physical parameters, viz., viscoelasticity parameter (Γ) = 0.005, buoyancy ratio parameter (N) = 1.0, Schmidt 

number (Sc) = 0.24 (low weight diffusing gas species), radiation parameter(R) = 0.5 and Prandtl number (Pr) = 

0.71 (water-based solvents). All graphs therefore correspond to these values unless specifically otherwise 

indicated.  

We have presented the variation of velocity (U), temperature function (T) and concentration (C) versus 

(Y) with on viscoelasticity (Γ) at X = 1.0. An increase in from 0 to 0.003, 0.005 and the maximum value of 

0.007, as depicted in fig. 1(a), clearly enhances the velocity, U which ascends sharply and peaks in close vicinity 

to the plate surface (Y = 0). With increasing distance from the plate wall however the velocity U is adversely 

affected by increasing viscoelasticity i.e. the flow is decelerated. The switchover in behavior corresponds to 

approximately Y = 1. With increasing (Y) velocity profiles decay smoothly to zero in the free stream at the edge 

of the boundary layer. The opposite effect is caused by an increase in time. A rise in t from 3.36 through 3.38, 

3.39 to 3.42 causes a decrease in flow velocity, U nearer the wall in this case the maximum velocity arises for 

the least time progressed. fig. 1(b) increasing viscoelasticity is seen to decrease temperature throughout the 

boundary layer. The graphs show therefore that increasing viscoelasticity cools the flow. With progression of 

time, however the temperature, T is consistently enhanced i.e. the fluid is heated as time progresses. A similar 

response is observed for the concentration field, C, in fig. 1(c), Increasing viscoelasticity again reduces 

concentration, showing that species diffuses more effectively in Newtonian fluids (Γ= 0) than in strongly 

viscoelastic fluids. Once again with greater elapse in time the concentration values are reduced throughout the 

boundary layer regime (0 < Y< 14). 

Fig.2 presents the effects of buoyancy ratio parameter N on velocity profiles. The maximum time 

elapse to the steady-state scenario accompanies the only negative value of N i. e. N = –1.0. For N = 0 and then 

increasingly positive values of N up to 10.0, the time taken, t, is steadily reduced. As such the presence of aiding 
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buoyancy forces (both thermal and species buoyancy force acting in unison) serves to stabilize the transient flow 

regime. The parameter 
' ' ' '*( ) / ( )w wN C C T T      and expresses the ratio of the species (mass 

diffusion) buoyancy force to the thermal (heat diffusion) buoyancy force. When N = 0 the species buoyancy 

term, N vanishes and the momentum boundary layer eq. (13) is de-coupled from the species diffusion 

(concentration) boundary layer eq. (15). Thermal buoyancy does not vanish in the momentum eq. (13) since the 

term T is not affected by the buoyancy ratio. When N < 0 we have the case of opposing buoyancy. An increase 

in N from –1.0, through 0, 1, 5 to 10 clearly accelerates the flow i. e. induces a strong escalation in stream wise 

velocity U, close to the wall; thereafter velocities decay to zero in the free stream. At some distance from the 

plate surface, approximately Y = 2.0, there is a cross-over in profiles. Prior to this location the above trends are 

apparent. However after this point, increasingly positive N values in fact decelerate the flow. Therefore further 

from the plate surface, negative N i. e. opposing buoyancy is beneficial to the flow regime whereas closer to the 

plate surface it has a retarding effect. 

To illustrate the effect of Prandtl number, Pr and time, t on velocity U, temperature T, and 

concentration C. Increasing Pr clearly reduces strongly velocity, U [figure 3(a)] both in the near-wall regime and 

the far-field regime of the boundary layer. Velocity is therefore maximized when Pr = 0.71 (minimum) and 

minimized for the largest value of Pr (7.1). Pr defines the ratio of momentum diffusivity (ν) to thermal 

diffusivity. Pr < 1 physically corresponds to cases where heat diffuses faster than momentum. Pr = 0.71 is 

representative of water-based solvents and Pr >>1. An increase in time, t, also serves to strongly retard the flow. 

With increasing Pr from 0.71 through 3.0, 5.0 to 7.1, temperature, T as shown in fig. 3(b), is markedly reduced 

throughout the boundary layer. Our computations show that a rise in Pr depresses the temperature function. 

Conversely the concentration values [figure 3(c)] are slightly increased with a rise in Pr from 0.71 through 

intermediate values to 7.1. However with progression of time the concentration is found to be decreased in the 

boundary layer regime.  

It is of great interest to show how the radiation-conduction interaction effects on velocity, temperature 

and concentration. It is observed that, initially for lower values of the radiation parameter (R), the heat transfer 

is dominated by conduction, as the values of R increases the radiation absorption in boundary layer decreases. 

i.e., an increase in the radiation parameter from 0.1 through 0.5, 1.0, 3.0 and 5.0 results in a increase in the 

temperature and decrease in concentration shown in figs. 4(b) and 4(c). Here the velocity profiles increases 

initially and then slowly decreases to zero due to viscoelasticity shown in fig. 4(a).  

The distributions of concentration (C) versus coordinate (Y) for various Schmidt numbers (Sc) and time 

(t), close to the leading edge at X = 1.0, is shown in Fig.5. These figures again correspond to a viscoelasticity 

parameter Γ=0.005 i.e weak elasticity and strongly viscous effects. An increase in Sc from 0.24 (low weight 

diffusing gas species) through 0.62 (oxygen diffusing) to 0.72 (denser hydrocarbon derivatives as the diffusing 

species), and 2.62, clearly strongly decelerates the flow. Figure 5 shows that increase in Schmidt number 

effectively depresses concentration values in the boundary layer regime since higher Sc values will physically 

manifest in a decrease of molecular diffusivity (D) of the viscoelastic fluid. The effect of chemical reaction 

parameter (Kr) is shown in Fig.6, and is seen to decrease with a rise in chemical reaction parameter. 

In figs. 7(a) to (c) the variation of dimensionless local skin friction (surface shear stress) τx, Nusselt 

number (surface heat transfer gradient) Nux, and the Sherwood number (surface concentration gradient) (Shx), 

vs. axial co-ordinate (X) for various viscoelasticity parameters (Γ) and time (t) are illustrated Shear stress is 

clearly enhanced with increasing radiation and viscoelasticity (i. e. stronger elastic effects) i. e. the flow is 

accelerated, a trend consistent with our earlier computations in fig. 1(a). The ascent in shear stress is very rapid 

from the leading edge (X = 0) but more gradual as we progress along the plate surface away from the plate. With 

an increase in time, t, shear stress τx is however increased. Increasing viscoelasticity (Γ) is observed in fig. 7(b) 

to enhance local Nusselt number Nux, values whereas they are again increased with greater time. Similarly in 

fig. 7(c) the local Sherwood number Shx values are elevated with an increase in viscoelastic effects i. e. a rise in 

from Γ→0 (Newtonian flow) through 0.003, 0.005 to 0.007 but depressed slightly with time.  

The influence of Radiation parameter (R) and time (t) on τx, Nux and Shx, versus axial coordinate (X) 

are depicted in figs.8 (a)-(c). An increase in R from 0.1 through 0.5, 1, 3 to 5, strongly decreases both τx and Shx 

along the entire plate surface i.e. for all X. However with an increase in time (t) both shear stress and local 

Sherwood number are reduced (from 8(a) & 8(b)). With increasing R values, local Sherwood number, Nux, as 

shown in figure 8(c), is boosted considerably along the plate surface; gradients of the profiles are also found to 

diverge with increasing X values. However an increase in time t, and serves to enhance local Nusselt number. 
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Fig.1(a). Steady state velocity profiles for different values of Γ 
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Fig.1(b). Steady state temperature profiles for different values of Γ 
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Fig.1(c). Steady state concentration profiles for different values of Γ    
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Fig.2. Steady state velocity profiles for different values of N 
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Fig.3(a). Steady state velocity profiles for different values of Pr 
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Fig.3(b). Steady state temperature profiles for different values of Pr 
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Fig.3(c). Steady state concentration profiles for different values of Pr 
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Fig.4(a). Steady state velocity profiles for different values of R 
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Fig.4(b). Steady state temperature profiles for different values of R 
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Fig.4(c). Steady state concentration profiles for different values of R 
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Fig.5. Steady state concentration profiles for different values of Sc 

0 2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

           Kr       t

  0.5    3.39

  1.0    3.29

  2.0    3.29

  3.0    3.29 C

=0.005, N=1, Sc=0.24, Pr=0.71, R=0.5

 
Fig.6. Steady state concentration profiles for different values of Kr 
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Fig.7(a). Local skin friction for different Γ  
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Fig.7(b). Local Nusselt number for different Γ  
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Fig.7(c). Local Sherwood number for different Γ 
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Fig.8(a). Local skin friction for different R 
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Fig.8(b). Local Nusselt number for different R 
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Fig.8(c). Local Sherwood number for different R  
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Fig.9. Local Sherwood number for different Kr 

 

V. Conclusions 
A two-dimensional, unsteady laminar incompressible boundary layer model has been presented for the 

external flow, heat and mass transfer in a Walters-B viscoelastic buoyancy-driven radiative and chemically 

reactive flow from an impulsively started vertical plate. The Walters-B viscoelastic model has been employed 

which is valid for short memory polymeric fluids. The dimensionless conservation equations have been solved 

with the well-tested, robust, highly efficient, implicit Crank Nicolson finite difference numerical method. The 

present computations have shown that increasing viscoelasticity enhances shear stress (local skin friction), local 

Nusselt number and local Sherwood number, but reduces temperature and concentration in the boundary layer. 

Here the radiation effects on flow, initially for lower values of the radiation parameter, the heat transfer is 

dominated by conduction, as the values of R increases the radiation absorption in boundary layer increases. i.e., 

an increase in the radiation parameter results, decrease in the temperature and increase in concentration. This 

phenomenon is of interest in very high temperature (e.g. glass) flows in the mechanical and chemical process 

industries and is currently under investigation. Finally, the present computations have shown that increasing 

chemical reaction parameter enhances local Sherwood number, but reduces concentration in the boundary layer. 
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