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Abstract: In this paper, we studied the effect of thermal in Stokes’ second problem for unsteady second grade 

fluid flow through porous medium. The expressions for the velocity field and the temperature field are obtained 

analytically. The effects of various emerging parameters on the velocity field and temperature field are studied 

through graphs in detail. 
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I.    Introduction 
There has been an increase in interest in the effect of porous media, because of their extensive practical 

applications in geophysics, thermal insulation in buildings, petroleum resources, packed-bed reactors and 

sensible heat-storage beds. Many studies related to non-Newtonian fluids saturated in a porous medium have 

been carried out. Dharmadhikariand Kale [5] studied experimentally the effect of non-Newtonian fluids in a 

porous medium. Chen and Chen [4] investigated the free convection flow along a vertical plate embedded in a 

porous medium. Rees [17] analyzed the effect of inertia on free convection over a horizontal surface embedded 

in a porous medium. Nakayama [13] investigated the effect of buoyancy-induced flow over a non-isothermal 

body of arbitrary shape in a fluid-saturated porous medium. A ray-tracing method for evaluating the radiative 

heat transfer in a porous medium was examined by Argento[1]. 

Recently, the study of non-Newtonian fluids has attracted much attention because of their practical 

applications. With the growing importance of non-Newtonian fluids in modern technology and industries, 

investigations of such fluids are desirable. A number of industrially important fluids including molten plastics, 

polymers, pulps, foods and fossil fuels, which may saturate in underground beds areexhibits non-Newtonian 

behavior. Due to complexity of fluids, several non-Newtonian fluid models have been proposed. In the category 

of such fluids, second grade fluid is the simplest subclassfor which one can hope to gain an analytic solution. 

Exact analytic solutions for the flows of non-Newtonian fluids aremost welcome provided they correspond to 

physically realistic situations, as they serve a dual purpose. First, they providea solution to flow that has 

technical relevance. Second, such solutions can be used as checks against complicatednumerical codes that have 

been developed for much more complex flows. Various studies on the flows of non-Newtonianfluids have been 

made under different physical aspects. However some recent contributions in the field may bementioned in 

Refs. (Fetecau and Fetecau, [9]; Hayat et al., [11]; Chen et al., [3]; Fetecau and Fetecau, [10]; Tan and Masuoka, 

[19]). 

The motion of a viscous fluid caused by the sinusoidal oscillation of a flat plate is termed as Stokes’ 

second problem by Schliching[18]. Initially, both the plate and fluid are assumed to be at rest. At time t = 0+, 

the plate suddenly starts oscillating with the velocity
0

i tU e 
. The study of the flow of a viscous fluid over an 

oscillating plate is not only of fundamental theoretical interest but it also occurs in many applied problems such 

as acoustic streaming around an oscillating body, an unsteady boundary layer with  fluctuations 

etc(Tokuda,[20]). Penton [14] has presented a closed-form to the transient component of the solution for the 

flow of a viscous fluid due to an oscillating plate. Puri and Kythe[15] have discussed an unsteady flow problem 

which deals with non-classical heat conduction effects and the structure of waves in Stokes’ second problem. 

Erdogan[8] analyzed the unsteady flow of viscous fluid due to an oscillating plane wall by using Laplace 

transform technique. Vajravelu and Rivera [21] discussed the hydromagnetic flow at an oscillating plate. Much 

work has been published on the flow of fluid over an oscillating plate for different constitutive models 

(Erdogan, [7]; ZengandWeinbaum, [22]; Puri and Kythe,[15]; Asghar et al., [2]; Ibrahem et al., [12]. 

 

II.     Mathematical Formulation 
We consider the one-dimensional unsteady flow of a laminar, incompressible second grade fluid 

through a porous medium past a vertical flat plate in the yz -plane and occupy the space 0x  , with x -axis in 

the vertical direction.The plate initially at rest and at constant temperature   which is the free stream 



Thermal effects in Stokes’ Second Problem for Unsteady Second Grade Fluid Flow through Porous 

www.iosrjournals.org                                                       2 | Page 

temperature is moved with a velocity 0

i tU e 
 in its own plane along the z-axis, and its temperature is subjected 

to a periodic heating of the form ( w -  )
i te 

, where w   is some constant. 

Viscoelastic fluids can be modeled by Rivlin – Ericksen constitutive equation   
2

1 1 2 2 1S p                  (1) 

whereS  is the Cauchy stress tensor, p  is the scalar pressure, 1,   and 2  are the material constants, 

customarily known as the coefficients of viscosity, elasticity and cross - viscosity, respectively. These material 

constants can be determined from viscometric flows for any real fluid. 1 and 2  are Rivlin-Ericksen tensors  

and they denote, respectively, the rate of strain and acceleration. 1 and 2  are defined by  

 1 V V
T

            (2) 

and    1
2 1 1V V

Td

dt


             (3) 

where /d dt  is the material time derivative and  gradient operator and  
T

 transpose operator. The 

viscoelastic fluids when modeled by Rivlin-Ericksen constitutive equation are termed as second-grade fluids. A 

detailed account of the characteristics of second - grade   fluids is well documented by Dunn and Rajagopal[6]. 

Rajagopal and Gupta [16] have studied the thermodynamics in the form of dissipative inequality (Clausius –

Duhem) and commonly accepted the idea that the specific Helmholtz free energy should be a minimum in 

equilibrium. From the thermodynamics consideration they assumed 

 0  ,  1 0,   1 2 0        (4) 

We seek the velocity field of the form  

  , ,0,0u x t          (5) 

For this type of flow,equation of continuity is identically satisfied and the balance of linear momentum reduces 

to the following differential equation (Fetecauand Fetecau [10]) 

 
2 3

1 02 2

u u u
u g

t x x t k


      
  

    
   

    (6) 

The energy equation (MCF model) is given by (Ibrahem et al.,[12]) 

tt t xx

pc


  


          (7) 

Introducing the following non dimensional variables 
2

0 0 0

0 0

,   ,   ,   
w

u uu
x x u t t

u

 


   


   


   

into the Eqs. (6) and (7), we get  
2 3

2 2

1u u u
G u

t x x t Da
 

  
   

   
      (8) 

2 2

2 2
p p

t t x

  

  

 
  

       (9) 

where
 2 2

01 0 0

2 3

0

,  , ,
wgu ku

Da G
U

   


 


  

2

0,   .
pc U

p
 


 

 

 
 

The corresponding dimensions are boundary conditions are 

 0, ,i tu t e    0, i tt e  
 

 

 , 0,u t     , 0t         (10) 
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III.    Solution 
To solve the non-linear system (3) and (4) using the boundary conditions (10),we assume that 

   , i tu x t U x e  ,    , i tx t x e          (11) 

Substituting Eq. (11)  intoEqs.(3)and(4) and the boundary conditions (10),  we get 
2

2

2

kxd U
m U Gne

dx

          (12) 

 
2

2

2
0

d
p i p

dx
  


           (13) 

here

2

2

2 2

1
1

1

i
Da Da

m


  

 

 
   

 


and 
2 2

1
.

1

i
n



 





 

The boundary conditions are 

   0 1, 0 1U     

   0, 0U             (14) 

Solving the equations (12) - (13) using the boundary conditions Eq. (14), we obtain 
kxe           (15) 

2 2

mx mx kxGn
U e e e

k m

      
      (16)  

where

2 2 2 2
2 1 1

 
2 2

k p i p P i P
     

    
      

       
   
   

. 

 

IV.     Results and Discussion 

Figs. 1 - 8 show the effects of various values of the emerging parameters , G , p  and Da  on the 

velocity ( Reu and u ) profiles.  

Fig. 1shows the effects of material parameter   on Re u for 0.1Da  , 1p  , 

10  , 0.1t  , 0.005  and 5G  . It is found that, the Re u decreases with increasing . The 

same trend is observed from Fig. 2 for u .Fig. 3 depicts the effects of G  on Re u for 0.1Da  , 1p  , 

10,  0.1t  ,  0.005  and 0.01  . It is observed that, the Re u  initially increases and then 

decreases with increasing G . Effects of G  on u for 0.1Da  , 1p  , 10  , 0.1t  , 

0.005  and 0.01   is shown in Fig. 4. It is noted that, the u  increases with an increase in G . 

Fig.5 shows the effects of Da  on Reu for 5G  , 1p  , 10  , 0.1t  , 0.005  and 

0.01  .  It is found that, the Reu  first increases and then decreases with increasing Da . Fig. 6 represents 

the effects of Da  on u for 5G  , 1p  , 10  , 0.1t  ,  0.005  and 0.01  . It is observed 

that, the u  increases with an increase in Da .Effects of p  on Reu for 5G  , 0.1Da  , 10  , 

0.1t  , 0.005   and 0.01   is shown in Fig. 7. It is found that, the Reu  first decreases and then 

increasing with increasing p .Effects of p  on u for 5G  , 0.1Da  , 10  , 

0.1t  , 0.005  and 0.01   is depicted in Fig. 8. It is noted that, the u  decreases on increasing 

p .Fig. 9 shows the effects of   on Re for 5G  , 1p  , 10  , 0.1t  , 0.1Da  and 

0.01  . It is observed that, the Re  first increases and then decreases with increasing . Fig. 
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10depictstheeffects of  on  for 5G  , 1p  , 10  , 0.1t  , 0.1Da  and 0.01  . It is 

noted that, the   increases with an increase in  . 

Effects of p  on Re for 5G  , 0.005  , 10  , 0.1t  , 0.1Da  and 0.01   is 

depicted in Fig. 11. It is found that, the Re  first decreases and then increases with an increase in p .Fig. 12 

illustrates the effects of p  on  for 5G  , 0.005  , 10  , 0.1t  , 0.1Da  and 0.01  . It 

is observed that, the   decreases with increasing p .  

 

V.   Conclusions 
We studied the effect of thermal in Stokes second problem for unsteady second grade fluid flow 

through porous medium. The expressions for the velocity field and the temperature field are obtained 

analytically. It is found that, the Reu  first decreases and then increases with increasing  or p , while it first 

decreases and then decreases with increasing G  or Da . Further it is observed that, the u decreases with 

increasing  or p , while it increases with increasing G  or Da . Also, it is observed that, Re  first 

increases and then decreases with increasing , while Re  first decreases and then increases with increasing 

p . Further, it is found that, the   increases with increasing  , whereas it decreases with increasing p . 

 

  

Fig. 1. Effects of  on Re u for 0.1Da  , 

1p  , 10  , 0.1t  , 0.005  and 

5G  . 

Fig. 2 Effects of     on u for 0.1Da  , 1p  , 

10  , 0.1t  , 0.005  and 5G  . 
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Fig. 3. Effects of G  on Re u for 0.1Da  , 

1p  , 10  , 0.1t  , 0.005  and 

0.01  . 

Fig. 4. Effects of G  on u for 0.1Da  , 1p  , 

10  , 0.1t  , 0.005  and 0.01  . 

  

Fig. 5. Effects of Da  on Reu for 5G  , 1p  , 

10  , 0.1t  , 0.005  and 0.01  . 

Fig. 6. Effects of Da  on u  for 5G  , 1p  , 

10  , 0.1t  , 0.005  and 0.01   

  

Fig. 7. Effects of p  on Reu for 5G  , 

0.1Da  , 10  , 0.1t  , 0.005  and 

0.01  . 

Fig. 8. Effects of p  on u for 5G  , 0.1Da  , 

10  , 0.1t  , 0.005  and 0.01  .  
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Fig.9. Effects of   on Re for 5G  , 1p  , 

10  , 0.1t  , 0.1Da  and 0.01  . 

Fig. 10. Effects of   on  for 5G  , 1p  , 

10  , 0.1t  , 0.1Da  and 0.01  . 

 
 

Fig.11. Effects of p  on Re for 5G  , 

0.005  , 10  , 0.1t  , 0.1Da  and 

0.01  . 

Fig. 12. Effects of p  on  for 5G  , 

0.005  , 10  , 0.1t  , 0.1Da  and 

0.01  . 
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