Analytical Solution of Non-Isothermal Couette Flow between two Plates.

A.W. Ogunsola, B. A. Peter
Department of Pure and Applied Mathematics, LAUTECH, Ogbomoso, Nigeria.

Abstract: We present a paper on the non-isothermal couette flow between two plates. We investigate fluid flow between two fixed parallel horizontal plates. The fluid is assumed to depend on temperature. We model a viscous fluid, it is assumed that the viscosity of the fluid is linear and the thermal conductivity is a linear function of the temperature. We investigate the properties of the velocity and we show that the temperature and velocity fields have two solutions for some viscosity and the results were discussed.

Keywords: Non-Isothermal; Couette flow; Parallel Horizontal Plates and Non–Newtonian.

I. Introduction:

In this paper, we consider the case when the fluids viscosities depend much on the temperature and the effects of variable viscosity and thermal conductivity on the flow behavior.

II. Mathematical Formulation
The governing equations are momentum and energy equations as proposed by [5].

\[v_0 \frac{du}{dy} = \frac{d}{dy} \left[\mu_0 \left(\frac{T}{1+T} \right) \frac{du}{dy} \right] \] (2.1)

\[u(0) = 0, u(h) = U \] (2.2)

\[\rho \cdot c_p \cdot v_0 \frac{dT}{dy} = \frac{d}{dy} \left[k_0 T (1+T) \frac{dT}{dy} \right] \] (2.3)

\[T(0) = T_0, T(h) = T_1 \] (2.4)

where
\[c_p = \text{specific heat}, U = \text{velocity component in the x-direction} \]
\[k = \text{the thermal conductivity}, \rho = \text{the density}, \mu = \text{the dynamic viscosity}, \]
\[h = \text{distance between two parallel plates}, \]
\[v_0 = \text{constant vertical velocity and } T = \text{Temperature}, T_0 = \text{Temperature at the origin}. \]

III. Method Of Solution
In order to solve the problem and keep it tractable, the set of non-linear ordinary differential equations (2.1) & (2.3) with boundary conditions in (2.2) & (2.4) have been solved analytically and numerically.

From Eq.(2.3) we integrate to get

\[\rho \cdot c_p \cdot v_0 \cdot T + c = k_0 T (1+T) \frac{dT}{dy} \] (3.1)

From Eq.(3.1) we collect like terms to get
Analytical Solution of Non-Isothermal Couette Flow between two Plates.

\[dy = k_0 T (1 + T) / \rho c \nu_0 T + c] dT \]
(3.2)

From Eq.(3.2) \[\text{Let } \rho c \nu_0 = a, c = a, k_0 = 1 \]

\[dy = \frac{T}{a} dT \]
(3.3)

From Eq.(3.3) we integrate to get \[T^2 = 2ay + c_2 \]
(3.4)

Where \[c_2 = 2ac_1 \]

From Eq.(3.4) together with the boundary condition to get

\[T = \left[2 \left(\frac{T_1^2 - T_0^2}{2h} \right) y + T_0^2 \right]^{1/2} \]
(3.6)

From Eq.(3.6) \[\text{Let } T_1 = 1, h = 1, T_0 = 0 \]

\[T = y^{1/2} \]
(3.7)

From Eq.(2.1) we integrate to get

\[\left(\frac{1 + T}{T} \right) dy = \frac{\mu_0}{v_0 u + c} \]
(3.8)

we substitute for T in Eq.(3.8) to get

\[\left(1 + y^{-\frac{1}{2}} \right) dy = \frac{\mu_0}{v_0 u + c} du \]
(3.9)

from Eq.(3.9) we integrate to get

\[u = Ae^{\frac{\sqrt{y}}{2}} - B \]
(3.10)

where \[A = \frac{k \nu_0}{v_0}, B = \frac{c}{v_0} \]
(3.11)

from Eq.(3.10) together with the boundary conditions we get

\[c \left(e^{\frac{2 + \sqrt{T(v_0)}}{2(\mu_0)}} - 1 \right) = v_0 U \]
(3.12)

Let \[\mu_0 = 0.35, v_0 = -1.0 \]
(3.13)

From Eqs.(3.12)-(3.13) together with the boundary conditions to get
Analytical Solution of Non-Isothermal Couette Flow between two Plates.

\[u = -0.158 \left[e^{-2.86 \left(\frac{\sqrt{3} + 2y}{2} \right)} - 1 \right] \]

(3.14)

IV. Results

Analytical solutions of Eqs.(3.7) and (3.14) together with the boundary conditions (2.2) – (2.4) were provided for various parameters in the flow equations.

Fig4.1: Graph of the velocity function \(u \) against the similarity variable \(h \).

Fig4.2: Graph of the velocity function \(T \) against the similarity variable \(h \).

We now proceed to solve equations (2.1) and (2.3) subject to (2.2) and (2.4) numerically using Galerkin-Weighted Residual Method as follows:

\[\text{let } u = \sum_{i=0}^{2} A_i e^y, \quad \theta = \sum_{i=0}^{2} B_i e^y \]

(3.15)

A maple14 pseudo code was used to perform the iterative computation and results are presented in Figures 2 and 3 as follows:
Analytical Solution of Non-Isothermal Couette Flow between two Plates.

V. Conclusion

We obtained a suitable expression for non-isothermal steady-state flow of a Newtonian fluid between two parallel plates. It is assumed that the upper plate moves with a constant velocity U and set the fluid particles moving in the direction parallel to plates while the lower plate remains stationary. The flow is considered steady, one-dimensional and compressible. To examine the flow behavior the velocity of moving plate is set at $U = 1$, the temperatures at moving and stationary plate are $T_1 = 1, h = 1, T_0 = 0$.

The velocity and temperature distributions along the y-direction of the parallel plates are obtained. It is seen from Figures 1 & 3 that variable thermal conductivity and viscosity increases the velocity of flow. It is seen from Figure 2 that variable thermal conductivity increases the temperature of the flow system. It is noticed from figure 4 that the temperature profile decreases as Pr number decreases.

It is also observed that minimum point exist in figure 4.
References

