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I. Introduction 
 A generalized Sasakian space form was defined by Carriazo et al. in [1], as an almost contact metric 

manifold ),,,,( gM   whose curvature tensor R  is given by  

 ,= 332211 RfRfRfR   (2) 

 where 321 ,, fff  are some differentiable functions on M  and  
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 for any vector fields ZYX ,,  on M . In [2] , the authors defined a generalized ),( k  space form as an 

almost contact metric manifold ),,,,( gM   whose curvature tensor can be written as  

 ,= 665544332211 RfRfRfRfRfRfR   (4) 

 where 654321 ,,,,, ffffff  are differentiable functions on M  and 321 ,, RRR  are tensors defined above and  
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 for any vector fields ,,, ZYX  where Lh =2  and L  is the usual Lie derivative.This manifold was denoted 

by ),,,,,( 654321 ffffffM . 

Natural examples of generalized ),( k  space forms are ),( k  space forms and generalized 

Sasakian space forms. The authors in[1] proved that contact metric generalized ),( k  space forms are 

generalized ),( k  spaces and if dimension is greater than or equal to 5, then they are ),( k  spaces with 

constant  sectional curvature 1.2 6 f  They gave a method of constructing examples of generalized 

),( k  space forms and proved that generalized ),( k  space forms with trans-Sasakian structure reduces to 

generalized Sasakian space forms. Further in [3], it is proved that under aD homothetic deformation 

generalized ),( k  space form structure is preserved for dimension 3, but not in general. Another interesting 

and important class of manifolds is a class of manifolds of constant curvature. As the generalization of this class 

of manifolds the notion of symmetric Riemannian manifolds was introduced. The notion of symmetric 

manifolds has been weakened by many authors in several ways such as pseudo-symmetric manifolds introduced 
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by Chaki [4] and their generalization of weakly symmetric manifolds and weakly projectively symmetric 

Riemannian manifolds introduced by Tamassy and Binh [5]. In analogy the authors Jaiswal and Ojha [6] 

introduced weakly pseudo-projectively symmetric manifolds.The notion of the Quasi-conformal curvature 

tensor was given by Yano and Sawaki[7] and also studied by Amur and Maralabhavi[8]. Motivated by the above 

studies, in this paper we study symmetries and weak symmetries of generalized ),( k  space forms with 

respect to Quasi-conformal curvature tensor.  

 

II. Preliminaries 

 A (2n+1)-dimensional Riemannian manifold ),( gM  is said to be an almost contact metric manifold 

if it admits a tensor field   of type (1,1), a vector field  , and a 1-form   satisfying  

 0,=0,=1,=)(,=2  I  (5) 

  

 ),()(),(=),( YXYXgYXg    (6) 

  

 ).(=),(0,=),(),,(=),( XXgXXgYXgYXg    (7) 

 Such a manifold is said to be a contact metric manifold if =d , 

where ),(=),( YXgYX   is the fundamental 2-form of M . 

It is well known that on a contact metric manifold ),,,,( gM  , the tensor h  is defined by 

Lh =2  which is symmetric and satisfies the following relations.  

 0,=0,=,=0,= htrhhhh    (8) 

  

 ).,(=)(,= YhXXgYhXX XX    (9) 

 In a 1)(2 n -dimensional ),( k -contact metric manifold, we have [9]  

 1,,1)(= 22  kkh   (10) 

 ),)((),(=))(( hXXYYhXXgYX    (11) 
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 Definition 1: A contact metric manifold M  is said to be  

      (i) Einstein if ),(=),( YXgYXS  , where   is a constant and S  is the Ricci tensor, 

      (ii)  -Einstein if )()(),(=),( YXYXgYXS   , where   and   are smooth functions on  M .  

 In a 1)(2 n -dimensional generalized ),( k  space-form, the following relations hold.  
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 for any vector fields ZYX ,,  where Q  is the Ricci operator, S  is the Ricci tensor and r  is the scalar 
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curvature of ),...,( 61 ffM . 

The relation between the associated functions 1,...,6=,ifi  of ),...,( 61 ffM  was recently discussed 

by Carriazo et al. [2].  

 

III. Quasi-conformal curvature tensor in Generalized ),( k -space forms 

For a (2n+1) dimensional Riemannian manifold , the Quasi-conformal curvature tensor field C
~

  is 

given by  
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 (18) 

 where a  and b  are constants such that 0, ba  and r  is the scalar curvature. 

 

Taking =Z  in (18), then making use of (7), (13) and(16) we have  
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 Contracting the above with respect to   and by using (7), we deduce that  

 0.=)),(
~

(  YXC  (20) 

 Let 11,2,3,...2=, niei  be an orthonormal basis of the tangent space at any point of the manifold. 

Then from (18), we have the following  
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 where  
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 From (21), it follows that  
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 where CQ  and Q , respectively are called Quasi-conformal Ricci and Ricci operators.  

 

3.1  Weakly Quasi-conformally-symmetric Generalized ),( k -space forms 

 A space M  is said to be weakly Quasi-conformally-symmetric if the Quasi-conformal curvature tensor C
~

 of 

type (0,4) is not identically zero and satisfies the condition  
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 (23) 

 for all vector fields VUZYX ,,,,  on M . Such a manifold will be denoted by nWQCS)( . 

It is shown that in a nWQCS)(  the associated 1-forms B=C and D=E, and hence the defining 

condition of nWQCS)(  reduces to the following form,  
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 where A,B and D are one forms. 

.ie ,  
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 where   is the vector field such that )(=),( XDXg  . 

Contracting with respect V and setting ieVY ==  in (24) and taking summation over i , 

121  ni , we get  
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 Taking === UZX  in (26) and then using (5),(16) and (18),we obtain  
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So we state the following  

 

Theorem 1: In a weakly Quasi-conformally-symmetric Generalized ),( k -space form is of constant 

curvature ,the associated 1-forms are related by the relation(28) provided 
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3.2  Weakly Quasi-conformally  -symmetric Generalized ),( k -space forms 

A space M  is said to be weakly Quasi-conformally  -symmetric if the Quasi-conformal curvature 

tensor C
~

 satisfies  
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 where   is the vector field associated to the 1-forms D such that ),(=)( ZgZD  and A,B,D are 1-

forms(not simultaneously zero). If in particular A=B=D=0, then the manifold is said to be Quasi-conformally 

 -symmetric. 

 

Let M  be a weakly Quasi-conformally  -symmetric Generalized ),( k -space form. 
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By virtue of (5),it follows from (29) that  
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 Replacing Z  by   in (30), we get  
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 Contracting (31) with respect to  , we have  
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 From (19) and (32) , we obtain  
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 Thus we have  

Theorem 2: In a weakly Quasi-conformally  -symmetric Generalized ),( k -space form, the Quasi-

conformal curvature tensor is in the form (33).  

 

 Contracting (33) with respect to U  and setting ieUX ==  and summing up with respect to i  , by using (5) 

and (21) in (33), we have  
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 Changing Y  by Y  and W  by W  and using (5) in (34), we have  
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 The above equation yields  
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Again changing Y  by Y  and W  by W  in (36) and using (5) and (7), we obtain  

 .
12

1)(2
1])([2),(

12

1)(2
=),( 31 


























n

bna
rffnWYg

n

bna
rWYS  (37) 

 Setting ieWY ==  in (37) and taking summation over 11,2,...,2= ni , we get  
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 In view of (37) and (38), we have  
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 We state the following  

Theorem 3: A weakly Quasi-conformally  -symmetric Generalized ),( k -space form is an  -Einstein 

manifold provided 0]1)(2)[(  bnaD  .  

 

3.3  Weakly Quasi-conformally  - Ricci symmetric Generalized ),( k -space forms 

A Generalized ),( k -space form M  is said to be weakly Quasi-conformally  - Ricci symmetric if the 

Quasi-conformal- Ricci operator CQ  satisfies  
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 Taking =Y  in (42) and using (5),(9),(14),(21) and (22) we have  
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Replace X  by X  in (43) and using (5), (10) and (15) we have  

 

),,(),(),()()(),(=),( 54321 hZXgMZXgMZhXgMZXMZXgMZXS    (44) 

 where  

 

].1)(2)[(=

)3(2
12

)(=,1)(23=

]1)1)[(2(=,)(2=

465

3214323

6422311

fnfBM

ffnf
n

r
BMfnfM

ffnkMMffnM




















  



Weakly quasi-conformally symmetries of generalized ),( k  space forms 

www.iosrjournals.org                                                     76 | Page 

 Replace X  by X  and Z  by hZ  in (44) and use (15) to obtain  
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 Again replace X  by hX  in (45) and use (15) to get  
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 Now replace X  by X  in (46) and use (15) to get  
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 Thus we can state that  

Theorem 4: A weakly Quasi-conformally  - Ricci symmetric Generalized ),( k -space form is an  -

Einstein manifold.  

 

 3.4   -Quasi-conformally flat Generalized ),( k -space form 

An Generalized ),( k -space form M  is said to be  -Quasi-conformally flat if  

 0=)),(
~

(2 ZYXC   (48) 

 holds for all vector fields ZYX ,,  on M . We now prove the following theorem.  

 

Theorem 5 : A  -Quasi-conformally flat Generalized ),( k -space form M  is an  -Einstein manifold.  
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 Let ,,...., 21 nee  be an orthonormal basis of the vector field on M . Then  ,,...., 21 nee  is also local 

orthonormal basis. We have the following  
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 Replace Y  by Y  and Z  by Z  in (55) and use (5), (17) to get  
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 Taking hYY =  in (56) and using (15), we obtain  
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 Hence the proof.  

 

References  
[1]. P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian space-forms, Israel J. Math. 141(2004), 157-183.  

[2]. A. Carriazo, V. Martin-Molina and M. M. Tripathi, Generalized ),( k -space forms, Mediterr. J. Math. DOI 10.1007/s00009-

012-0196-2, April(2012).  

[3]. Alfonso Carriazo and Veronica Martin-Molina, Generalized ),( k -space forms and aD -homothetic deformations. Balkan 

Journal of Geometry and its Applications, Vol.16, No.1, 2011, 37-47.  

[4]. Chaki M.C., On pseudo-symmetric manifolds , An. Stiint. Univ., "A1. I.Cuza" Iasi, (1987),33, 53-58.  

[5]. Tamassy L., Binh T.Q., On weak symmetrics of Einstein and Sasakian manifolds , Tensors, N.S. 53(1993),140-148 
[6]. Jaiswal J.P. and Ojha R.H., On weakly pseudo-projectively symmetric manifolds, Differential Geometry-Dynamical systems, 

Vol.12,(2010),83-94.  

[7]. K.Yano and S.Sawaki , Riemannian manifolds admitting a conformal transformation group, J.Differential Geometry 2(1968),161-
184.  

[8]. Amur.K and Maralabhavi Y.B., On Quasi conformally flat spaces, Tensor, N.S.31,(1977),No.2,194-198.  

[9]. D.E.Blair, T.Koufogiorgos and B.J.Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel Journal of 
Mathematics, Vol.91, No.1-3,1995, 189-214. 

  


