On I₂-Cauchy Double Sequences in p-Adic Linear 2-Normed Spaces

B. Surender Reddy¹, D. Shankaraiah²

¹ Department of Mathematics, University College of Science, Saifabad, Osmania University, Hyderabad –500 004, AP, INDIA ² Department of Mathematics, CVR College of Engineering, Ibrahimpatnam, Ranga Reddy District–501510, AP,

INDIA.

Abstract: In this paper, we introduce the concept of I_2^* – convergence which is closely related to I_2 – convergence and the concepts I_2 and I_2^* – Cauchy double sequences in p -adic linear 2-normed space. Also we investigate the relation between these concepts in p -adic linear 2-normed spaces.

Keywords: 2-normed space, p-adic linear 2-normed space, I_2^* – convergence, I_2 – Cauchy double sequence, I_2^* – Cauchy double sequence.

I. Introduction

The idea of I – convergence is based on the notion of the ideal I of subsets of N, the set of natural numbers. The notion of ideal convergence for single sequences was introduced first by P.Kostyrko et al [11, 12] as an interesting generalization of statistical convergence. F.Nuray and Ruckle [14] independently introduced the same concept as the name generalized statistical convergence.

The concept of a double sequence was initially introduced by Pringsheim [16] in the 1900s and this concept has been studied by many others. A double sequence of real (or complex) numbers is a function from $N \times N$ to F (where F= R or C) and we denote a double sequence as (x_{ij}) where the two subscripts run through the sequence of Natural numbers independent of each other. P.Das et al [4] introduced the concept of I – convergence of double sequences in a metric space and studied some properties. Also, Pratulananda Das and Prasanta Malik [15] defined the concept of I – limit points, I – cluster points, I – limit superior and I – limit inferior of double sequences. Balakrishna Tripathy, Binod Chandra Tripathy [3] introduced the notion of I – convergence and I – Cauchy double sequences and many others discussed the properties of I – convergence, I^* – convergence for double sequences and I – Cauchy double sequences (see ([5], [6], [25], for more details).

The concept of linear 2-normed spaces has been investigated by Gähler in 1965 [7] and has been developed extensively in different subjects by others [9, 10, 17]. A.Sahiner et al [20] introduced I – cluster points of convergent sequences in 2-normed linear spaces and Gurdal [8] investigated the relation between I – cluster points and ordinary limit points of sequences in 2-normed spaces. The concept of I – convergence for the double sequences in 2-normed spaces introduced by Saeed Sarabadan and Sorayya Talebi [19]. Saeed Sarabadan, Fatemeh Amoee Arani and Siamak Khalehoghli [18] obtained Condition for the equivalence of I and I*-convergence for double sequences in 2-normed spaces.

Mehmet Acikgoz [13] introduced a very understandable and readable connection between the concepts in *p*-adic numbers, *p*-adic analysis and linear 2-normed spaces. B.Surender Reddy [21] introduced some properties of *p*-adic linear 2-normed spaces and obtained necessary and sufficient conditions for *p*-adic 2-norms to be equivalent on *p*-adic linear 2-normed spaces. Recently B.Surender Reddy and D.Shankaraiah [22, 23, 24] introduced I – convergence, I^* – convergence of sequences, I – Cauchy, I^* – Cauchy sequences and their properties in *p*-adic linear 2-normed spaces and also introduced ideal convergence of double sequences in *p*-adic linear 2-normed spaces.

The main aim of this paper is we introduce the concept of I_2^* - convergence of double sequences which is closely related to I_2 - convergence of double sequences and the concepts I_2 - Cauchy double sequence and I_2^* - Cauchy double sequence in p -adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$. Also we investigate the relation between these concepts in p -adic linear 2-normed spaces.

II. Preliminaries

In this paper, we will use the notations; p for a prime number, Z - the ring of rational integers, Z^+ - the positive integers, Q - the field of rational numbers, R - the field of real numbers, R^+ - the positive real numbers, Z_p - the ring of p-adic rational integers, Q_p - the field of p-adic rational numbers, C - the field of complex numbers and C_p - the p-adic completion of the algebraic closure of Q_p .

Definition 2.1: A double sequence $x = (x_{ij})$ is said to be convergent to a number ξ in the Pringsheim's sense if for each $\varepsilon > 0$ there exists a positive integer m such that $|x_{ij} - \xi| < \varepsilon$ whenever $i, j \ge m$. Then the number ξ is called the Pringsheim limit of the sequence x and we write as $P - \lim_{i, i \to \infty} x_{ij} = \xi$.

Definition 2.2: A double sequence $x = (x_{ij})$ is said to be Cauchy sequence if for each $\varepsilon > 0$ there exists a positive integer n_0 such that $|x_{ij} - x_{mn}| < \varepsilon$ for every $i \ge m \ge n_0$ and $j \ge n \ge n_0$.

Definition 2.3: A double sequence $x = (x_{ij})$ is said to be bounded if there exists a real number M > 0 such that $|x_{ij}| < M$ for each i and j.

Definition 2.4: Let $K \subset N \times N$ and $K(m,n) = \{(i, j) : (i, j) \in K; i \le m, j \le n\}$. If the sequence $\left\{\frac{K(m,n)}{mn}\right\}$ has a limit in Pringsheim's sense then we say that K has a double natural density and it is denoted as $\lim_{m,n\to\infty} \frac{K(m,n)}{mn} = \delta_2(K)$.

Definition 2.5: A double sequence $x = (x_{ij})$ is said to be statistically convergent to a number ξ if for each $\varepsilon > 0$, the set $A(\varepsilon) = \{(i, j) \in N \times N : | x_{ij} - \xi | \ge \varepsilon\}$ has double natural density zero. If $x = (x_{ij})$ is statistically convergent to ξ then we write $St - \lim_{i, i \to \infty} x_{ij} = \xi$.

Definition 2.6: Let I_2 be an ideal in $N \times N$. A double sequence $x = (x_{ij})$ is said to be I_2 - convergent to L in Pringsheim's sense if for each $\varepsilon > 0$, the set $\{(i, j) \in N \times N : | x_{ij} - L | \ge \varepsilon\} \in I_2$ and L is called I_2 - limit of $x = (x_{ij})$ and we write $I_2 - \lim_{i, i \to \infty} x_{ij} = L$.

Definition 2.7: A double sequence $x = (x_{ij})$ is said to be I_2^* - convergent to ξ if there exists a set $M = \{(i, j) : i, j = 1, 2, 3, \dots\} \in F(I_2)$ (*i.e.*, $(N \times N) - M \in I_2$) such that $\lim_{i, j \to \infty} x_{ij} = \xi$ and ξ is called I_2^* - limit of $x = (x_{ij})$ and we write I_2^* - lim $x_{ij} = \xi$.

Definition 2.8: A double sequence $x = (x_{ij})$ is I_2 - convergent to zero in Pringsheim's sense is called I_2 - null double sequence in Pringsheim's sense.

Definition 2.9: Let X be a linear space of dimension greater than 1 over K, where K is the real or complex numbers field. Suppose $N(\bullet, \bullet)$ be a non-negative real valued function on $X \times X$ satisfying the following conditions:

 $(2 - N_1)$: N(x, y) > 0 and N(x, y) = 0 if and only if x and y are linearly dependent vectors,

 $\begin{aligned} (2-N_2) &: N(x, y) = N(y, x) \text{ for all } x, y \in X, \\ (2-N_3) &: N(\lambda x, y) = \left|\lambda\right| N(x, y) \text{ for all } \lambda \in K \text{ and } x, y \in X, \\ (2-N_4) &: N(x+y, z) \le N(x, z) + N(y, z) \text{ for all } x, y, z \in X. \end{aligned}$ Then $N(\bullet, \bullet)$ is called a 2-norm on X and the pair $(X, N(\bullet, \bullet))$ is called a linear 2-normed space.

Definition 2.10: Suppose a mapping $d_p: X \times X \times X \to R$ on a non-empty set X satisfying the following conditions, for all $x, y, z \in X$

 D_1) For any two different elements x and y in X there is an element z in X such that $d_n(x, y, z) \neq 0$.

 D_2) $d_p(x, y, z) = 0$ when two of three elements are equal.

 D_3) $d_p(x, y, z) = d_p(x, z, y) = d_p(y, z, x)$.

 D_4) $d_p(x, y, z) \le d_p(x, y, w) + d_p(x, w, z) + d_p(w, y, z)$ for any w in X. Then d_p is called p-adic 2-metric on X and the pair (X, d_p) is called p-adic 2-metric space. If p-adic 2-metric also satisfies the condition $d_p(x, y, z) \le \max\{d_p(x, y, w), d_p(x, w, z), d_p(y, w, z)\}$ for $x, y, z, w \in X$, then d_p is called a p-adic ultra 2-metric and the pair (X, d_p) is called a p-adic ultra 2-metric space.

Definition 2.11: Let X be a linear space of dimension greater than 1 over K, where K is the real or complex numbers field. Suppose $N(\bullet, \bullet)_p$ be a non-negative real valued function on $X \times X$ satisfying the following conditions:

 $(2 - pN_1)$: $N(x, z)_p = 0$ if and only if x and z are linearly dependent vectors.

- $(2 pN_2) : N(xy, z)_p = N(x, z)_p . N(y, z)_p$ for all $x, y, z \in X$,
- $(2 pN_3)$: $N(x + y, z)_p \le N(x, z)_p + N(y, z)_p$ for all $x, y, z \in X$,

 $(2 - pN_4)$: $N(\lambda x, z)_p = |\lambda| N(x, z)_p$ for all $\lambda \in K$ and $x, z \in X$.

Then $N(\bullet, \bullet)_p$ is called a *p*-adic 2-norm on *X* and the pair $(X, N(\bullet, \bullet)_p)$ is called *p*-adic linear 2-normed space.

For every *p*-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ the function defined on $X \times X \times X$ by $d_p(x, y, z) = N(x - z, y - z)_p$ is a *p*-adic 2-metric. Thus every *p*-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ will be considered to be a *p*-adic 2-metric space with this 2-metric. A double sequence (x_{ij}) of *p*-adic 2-metric space (X, d_p) converges to $x \in X$ in *p*-adic 2-metric if for every $\varepsilon > 0$, there is an $l \ge 1$ such that $d_p(x_{ij}, x, z) = N(x_{ij} - z, x - z)_p < \varepsilon$ for every $i, j \ge l$. For the given two double sequences of *p*-adic 2-metric space (X, d_p) which are (x_{ij}) and (y_{ij}) converges to $x, y \in X$ in the *p*-adic 2-metric space respectively, then the double sequence of sums $x_{ij} + y_{ij}$ and the product $x_{ij}y_{ij}$ converges to the sum x + y and to the product xy of the limits of initial double sequences.

A double sequence (x_{ij}) of *p*-adic 2-metric space (X, d_p) is a Cauchy double sequence with respect to the *p*-adic 2-metric if for each $\varepsilon > 0$, there is an $l \ge 1$ such that $d_p(x_{ij}, x_{mn}, z) = N(x_{ij} - z, x_{mn} - z)_p < \varepsilon$, for every $i \ge m \ge l$, $j \ge n \ge l$.

Definition 2.12: A double sequence $x = (x_{ij})$ in a p-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ is said to be convergent to $l \in X$ if for each $\varepsilon > 0$ there exists $m \in N$ such that $N(x_{ij} - l, z)_p < \varepsilon$ for each

 $i, j \ge m$ and for each $z \in X$. If $x = (x_{ij})$ is convergent to l then we write $\lim_{i,j\to\infty} x_{ij} = l$ or $x_{ij} \xrightarrow{[N(\bullet,\bullet)_p]_X} l$.

Definition 2.13: A double sequence $x = (x_{ij})$ in a p-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ is said to be bounded if for each non zero $z \in X$ and for all $i, j \in N$ there exists M > 0 such that $N(x_{ij}, z)_p < M$. Note that a convergent double sequence need not be bounded.

Definition 2.14: A double sequence $x = (x_{ij})$ in a p-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ is said to be Cauchy double sequence if for each $\varepsilon > 0$ there exists a positive integer n_0 such that $N(x_{ii} - x_{mn}, z)_p < \varepsilon$ for every $i \ge m \ge n_0$ and $j \ge n \ge n_0$.

A *p*-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ is called complete if every Cauchy sequence is convergent in *p*-adic linear 2-normed space. A p-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ is called *p*-adic 2-Banach space if *p*-adic linear 2-normed space is complete.

Proposition 2.15: If a double sequence $\{x_{ij}\}$ in a *p*-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ is convergent to $x \in X$, then $\lim_{i,j\to\infty} N(x_{ij}, z)_p = N(x, z)_p$ for each $z \in X$.

Proposition 2.16: If $\lim_{i,j\to\infty} N(x_{ij},z)_p$ exists then we say that (x_{ij}) is a Cauchy sequence with respect to $N(\bullet,\bullet)_p$.

Proof: Let us suppose that $\lim_{i,j\to\infty} N(x_{ij},z)_p = x$. Then we can obtain a constant M_1 such that $i, j > M_1$ $\Rightarrow N(x-x_{ij},z)_p < \frac{\varepsilon}{2}$. If $i, j, m, n > M_1$ then $N(x-x_{ij},z)_p < \frac{\varepsilon}{2}$ and $N(x-x_{mn},z)_p < \frac{\varepsilon}{2}$, hence by using the triangle inequality, we have $N(x_{ij} - x_{mn}, z)_p = N(x_{ij} - x + x - x_{mn}, z)_p$ $\leq N(x_{ij} - x, z)_p + N(x-x_{mn}, z)_p < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. $\Rightarrow (x_{ij})$ is a Cauchy sequence with respect to $N(\bullet, \bullet)_p$.

III. Main Results

In this section, we introduce the concept of I_2^* – convergence of double sequences which is closely related to I_2 – convergence of double sequences in p-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ and we introduce the concepts I_2 – Cauchy double sequence and I_2^* – Cauchy double sequence in p-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$. Also we investigate the relation between these concepts in p-adic linear 2-normed spaces.

A family of sets $I \subseteq 2^Y$ (power sets of Y) is said to be an ideal if $\Phi \in I$, I is additive i.e., $A, B \in I \Rightarrow A \cup B \in I$ and hereditary i.e., $A \in I, B \subseteq A \Rightarrow B \in I$.

A non empty family of sets $F \subset 2^Y$ is a filter on Y if and only if $\Phi \notin F$, $A \cap B \in F$ for each $A, B \in F$, and any subset of an element of F is in F. An ideal I is called non-trivial if $I \neq \Phi$ and $Y \notin I$. Clearly I is a non-trivial ideal if and only if $F = F(I) = \{Y - A : A \in I\}$ is a filter in

Y, called the filter associated with the ideal I. A non-trivial ideal I is called admissible if and only if $\{\{n\}: n \in Y\} \subset I$.

An admissible ideal $I \subset 2^Y$ is said to have the property (AP) if for any sequence $\{A_1, A_2, A_3, ...\}$ of mutually disjoint sets of I there is a sequence $\{B_1, B_2, B_3, ...\}$ of sets such that each symmetric difference $A_i \Delta B_i$, i = 1, 2, 3, ..., is finite and $B = \bigcup_{i=1}^{\infty} B_i \in I$.

In order to distinguish between the ideals of N and $N \times N$ we shall denote the ideals of N by I and ideals of $N \times N$ by I_2 . In general, there is no connection between I and I_2 .

A non trivial ideal I_2 in $N \times N$ is called strongly admissible if $\{i\} \times N$ and $N \times \{i\}$ belong to I_2 for each $i \in N$. It is clear that a strongly admissible ideal is admissible also.

Let $I_0 = \{A \subset N \times N : (\exists m(A) \in N)(i, j \ge m(A) \Rightarrow (i, j) \in (N \times N) - A\}$. Then I_0 is a non trivial strongly admissible ideal and I_2 is strongly admissible if and only if $I_0 \subseteq I_2$. $I_2 \subset 2^{N \times N}$ is a non trivial ideal if and only if the class $F = F(I) = \{(N \times N) - A : A \in I_2\}$ is a filter in $N \times N$.

An admissible ideal $I_2 \subset 2^{N \times N}$ satisfies the condition (AP_2) if for each countable family of disjoint sets $\{A_1, A_2, A_3, ...\}$ belongs to I_2 , there exists a countable family of sets $\{B_1, B_2, B_3, ...\}$ such that $A_j \Delta B_j$ is included in the finite union of rows and columns in $N \times N$ for each $j \in N$ and $B = \bigcup_{j=1}^{\infty} B_j \in I_2$ (hence $B_j \in I_2$ for each $j \in N$).

Definition 3.1: A double sequence $x = (x_{ij})$ in a p-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ is said to be I_2 -convergent to $l \in X$ if for each $\varepsilon > 0$ and non zero $z \in X$, the set $A(\varepsilon) = \{(i, j) \in N \times N : N(x_{ij} - l, z)_p \ge \varepsilon\} \in I_2$ and l is called the I_2 -limit of the sequence $x = (x_{ij})$.

If $x = (x_{ij})$ is I_2 - convergent to l, then we write $I_2 - \lim_{i,j \to \infty} x_{ij} = l$ or $I_2 - \lim_{i,j \to \infty} N(x_{ij} - l, z)_p = 0$ or $I_2 - \lim_{i,j \to \infty} N(x_{ij}, z)_p = N(l, z)_p$ for each non zero $z \in X$.

Now introducing the definition of I_2^* – convergence for double sequence $x = (x_{ij})$ which is closely related to I_2 – convergence of double sequence $x = (x_{ij})$ in a p – adic linear 2-normed space as follows.

Definition 3.2: A double sequence $x = (x_{ij})$ in a p - adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ is said to be I_2^* - convergent to $l \in X$ if there exists a set $M \in F(I_2)$ (*i.e.*, $(N \times N) - M \in I_2$) such that $\lim_{i,j\to\infty} x_{ij} = l$ for $(i, j) \in M$ and l is called the I_2^* - limit of the sequence $x = (x_{ij})$.

If $x = (x_{ij})$ is I_2^* - convergent to l, then we write $I_2^* - \lim_{i,j\to\infty} x_{ij} = l$ or $I_2^* - \lim_{i,j\to\infty} N(x_{ij} - l, z)_p = 0$ or $I_2^* - \lim_{i,j\to\infty} N(x_{ij}, z)_p = N(l, z)_p$ for each non zero $z \in X$.

Lemma 3.3: Let $\{P_i\}_{i=1}^{\infty}$ be a countable collection of subsets of $N \times N$ such that $\{P_i\}_{i=1}^{\infty} \in F(I_2)$ for each i, where $F(I_2)$ is a filter associated with a strongly admissible ideal I_2 with property (AP₂). Then there is a set $P \subset N \times N$ such that $P \in F(I_2)$ and the set $P - P_i$ is finite for all i.

Lemma 3.4: Let $I_2 \subset 2^{N \times N}$ be a strongly admissible ideal and $(X, N(\bullet, \bullet)_p)$ be a p-adic linear 2-normed space. If $I_2^* - \lim_{i, j \to \infty} x_{ij} = l$, then $I_2 - \lim_{i, j \to \infty} x_{ij} = l$ for each non zero $z \in X$.

Proof: Suppose $I_2^* - \lim_{i,j\to\infty} x_{ij} = l$. Then there exists $H \in I_2$ such that for $M = (N \times N) - H \in F(I_2)$ we have

$$\lim_{i,j\to\infty} x_{ij} = l, \ (i,j) \in M, \quad \text{for each non zero } z \in X$$
(3.5)

Let $\varepsilon > 0$. By virtue of equation (3.5) there exists a positive integer n_1 such that $N(x_{ij} - l, z)_p < \varepsilon$ for every $(i, j) \in M$ with $i, j \ge n_1$.

Let $A = \{1, 2, 3, \dots, n_1 - 1\}, B = \{(i, j) \in M : N(x_{ij} - l, z)_p \ge \varepsilon\}$. Then it is clear that $B \subset (A \times N) \bigcup (N \times A)$ and therefore $B \in I_2$. Obviously the set $\{(i, j) \in N \times N : N(x_{ij} - l, z)_p \ge \varepsilon\} \subset B \bigcup H$ and therefore the set

 $\{(i, j) \in N \times N : N(x_{ij} - l, z)_p \ge \varepsilon\} \in I_2 \text{ for each non zero } z \in X \text{ . This implies that } I_2 - \lim_{i, j \to \infty} x_{ij} = l \text{ ,}$ for each non zero $z \in X$.

Theorem 3.6: Let $I_2 \subset 2^{N \times N}$ be a strongly admissible ideal with property (AP_2) and $(X, N(\bullet, \bullet)_p)$ be a p-adic linear 2-normed space. Then for an arbitrary double sequence $x = (x_{ij})$ of elements of X, if $I_2 - \lim_{i,j \to \infty} x_{ij} = l$ then $I_2^* - \lim_{i,j \to \infty} x_{ij} = l$.

Proof: Suppose that $I_2 - \lim_{i,j\to\infty} x_{ij} = l$. Then for any $\varepsilon > 0$ and non zero $z \in X$, $A(\varepsilon) = \{(i, j) \in N \times N : N(x_{ij} - l, z)_p \ge \varepsilon\} \in I_2$.

Now put $A_1 = \{(i, j) \in N \times N : N(x_{ij} - l, z)_p \ge 1\}$ and

$$A_{k} = \left\{ (i, j) \in N \times N : \frac{1}{k} \le N(x_{ij} - l, z)_{p} < \frac{1}{k - 1} \right\} \text{ for } k \ge 2 \text{ and for each non zero } z \in X. \text{ It is clear}$$

that $A_m \cap A_n = \phi$ for $m \neq n$ and $A_m \in I_2$ for each $m \in N$. By virtue of (AP_2) there exists a countable family of sets $\{B_1, B_2, B_3, ...\}$ such that $A_m \Delta B_m$ is a included in finite union of rows and columns in $N \times N$ for each $m \in N$ and $B = \bigcup_{m=1}^{\infty} B_m \in I_2$. Put $M = (N \times N) - B$ and to prove the theorem it is sufficient to prove that $\lim_{i,j \to \infty} x_{ij} = l$ for $(i, j) \in M$.

Let
$$\delta > 0$$
. Choose $k \in N$ such that $\frac{1}{k} < \delta$. Then we have
 $\{(i, j) \in N \times N : N(x_{ij} - l, z)_p \ge \delta\} \subseteq \bigcup_{m=1}^k A_m$
(3.7)

Since $A_m \Delta B_m$, $m = 1, 2, 3, \dots, k$ is a finite set, there exists $n_0 \in N$ such that $\left(\bigcup_{m=1}^k B_m\right) \cap \{(i, j) : i, j \ge n_0\} = \left(\bigcup_{m=1}^k A_m\right) \cap \{(i, j) : i, j \ge n_0\}$. If $i, j > n_0$ and $(i, j) \in M$,

then $(i, j) \notin B$. This implies that $(i, j) \notin \bigcup_{m=1}^{k} B_m$ and therefore $(i, j) \notin \bigcup_{m=1}^{k} A_m$. Hence for every $i, j > n_0$ and $(i, j) \in M$, we have by equation (3.7), $N(x_{ij} - l, z)_p < \delta$, for each $z \in X$. $\Rightarrow \lim_{i, j \to \infty} x_{ij} = l$, for $(i, j) \in M$. Thus $I_2^* - \lim_{i, j \to \infty} x_{ij} = l$.

From the Lemma (3.4) and Theorem (3.6) we obtain the following Lemma which gives the equivalence between I_2 -convergence and I_2^* – convergence in p – adic linear 2-normed spaces.

Lemma 3.8: Let $I_2 \subset 2^{N \times N}$ be a strongly admissible ideal with the property (AP_2) and $(X, N(\bullet, \bullet)_p)$ be a p-adic linear 2-normed space. Then a double sequence in X is I_2 -convergent to l in X if and only if it is I_2^* -convergent to l in X.

Definition 3.9: Let $(X, N(\bullet, \bullet)_p)$ be a p-adic linear 2-normed space and $x \in X$. Then x is called accumulation point of X if there exists a sequence (x_k) of distinct elements of X such that $x_k \neq x$ for any k and $x_n \xrightarrow{N(\bullet, \bullet)_p} x$.

Theorem 3.10: Let $I_2 \subset 2^{N \times N}$ be a strongly admissible ideal and $(X, N(\bullet, \bullet)_p)$ be a p-adic linear 2normed space. If X has at least one accumulation point for any arbitrary double sequence $x = (x_{ij})$ in Xand for each $a \in X$, $I_2 - \lim_{i,j \to \infty} x_{ij} = a$ implies $I_2^* - \lim_{i,j \to \infty} x_{ij} = a$, then I_2 has the property (AP_2) . **Proof:** Suppose that $a \in X$ is accumulation point of X. Then there is a sequence (b_k) of distinct elements of X such that $b_k \neq a$ for any k, and $b_k \xrightarrow{N(\bullet, \bullet)_p} a$. Put $\mathcal{E}_k^{(z)} = N(b_k - a, z)_p$ for $k \in N$. Let $(A_j)_{j \in N}$ be a disjoint family of non empty sets from I_2 . Define a sequence (x_{nn}) for all $z \in X$ such that

- (i) $x_{mn} = b_i$ if $(m, n) \in A_i$ and
- (ii) $x_{mn} = a$ if $(m, n) \notin A_i$ for any j.

Let $\delta > 0$ be given and $z_0 \in X$. Choose $k \in N$ such that $\varepsilon_k^{(z_0)} < \delta$. Then we have

 $A^{z_0}(\delta) = \{(m,n): N(x_{mn} - a, z_0)_p \ge \delta\} \subseteq A_1 \bigcup A_2 \bigcup \dots \bigcup A_k. \text{ Hence } A^{z_0}(\delta) \in I_2 \text{ and so}$ $I_2 - \lim_{m,n \to \infty} x_{mn} = a.$

By virtue of our assumption, we have $I_2^* - \lim_{m,n\to\infty} x_{mn} = a$. Hence there exists a set $B \in I_2$ such that $M = (N \times N) - B \in F(I_2)$ and $\lim_{m,n\to\infty} x_{mn} = a, (m,n) \in M$ (3.11)

Let $B_j = A_j \cap B$ for $j \in N$. Then $B_j \in I_2$ for each $j \in N$ and $\bigcup_{j=1}^{\infty} B_j = B \cap \left(\bigcup_{j=1}^{\infty} A_j\right) \subseteq B$ and so $\bigcup_{j=1}^{\infty} B_j \in I_2$, fix $j \in N$.

If $A_j \cap M$ is not included in the finite union of rows and columns in $N \times N$, then M must contain an infinite sequence of elements (m_k, n_k) and $\lim_{m_k, n_k \to \infty} x_{m_k n_k} = b_j \neq a$ for all $k \in N$, which contradicts equation (3.11). Hence $A_j \cap M$ must be contained in the finite union of rows and columns in $N \times N$. Thus $A_j \Delta B_j = (A_j - B_j) \bigcup (B_j - A_j)$ $= A_j - B_j$ since $B_j - A_j = \phi$ $= A_j - (A_j \cap B)$ $= A_j - B = A_j \cap M$ is also included in the finite union of rows and columns. Thus the ideal I_2 has

the property (AP_2) .

Definition 3.12: Let $I_2 \subset 2^{N \times N}$ be a strongly admissible ideal and $(X, N(\bullet, \bullet)_p)$ be a p-adic linear 2-normed space. A double sequence $x = (x_{ij})$ in X is said to be I_2 -Cauchy double sequence in X, if for each $\varepsilon > 0$ and non zero $z \in X$, there exists $m = m(\varepsilon, z), n = n(\varepsilon, z) \in N$ such that $\{(i, j) \in N \times N : N(x_{ij} - x_{mn}, z)_p \ge \varepsilon\} \in I_2$.

Definition 3.13: Let $I_2 \subset 2^{N \times N}$ be a strongly admissible ideal and $(X, N(\bullet, \bullet)_p)$ be a p-adic linear 2-normed space. A double sequence $x = (x_{ij})$ in X is said to be I_2^* -Cauchy double sequence in X, if for each $\varepsilon > 0$ and non zero $z \in X$, there exists a set $M \in F(I_2)$ (*i.e.*, $\mathbf{H} = (N \times N) - M \in I_2$) such that the double sequence $(x_{mn})_{(m,n)\in M}$ is a Cauchy sequence in X. i.e., $\lim_{i,j,m,n\to\infty} N(x_{ij} - x_{mn}, z)_p = 0$ for each non zero $z \in X$ and $(i, j), (m, n) \in M$.

Theorem 3.14: Let $I_2 \subset 2^{N \times N}$ be a strongly admissible ideal and $(X, N(\bullet, \bullet)_p)$ be a p-adic linear 2-normed space. If a double sequence $x = (x_{ij})$ is I_2^* -Cauchy double sequence in X, then it is I_2 -Cauchy double sequence in X.

Proof: Suppose $x = (x_{ij})$ is I_2^* - Cauchy double sequence a in p - adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$. Then there exists a set $M \in F(I_2)$ (*i.e.*, $\mathbf{H} = (N \times N) - M \in I_2$) such that $N(x_{ij} - x_{mn}, z)_p < \varepsilon$ for every $\varepsilon > 0$ and for all $(i, j), (m, n) \in M; i, j, m, n \ge l$ and $l = l(\varepsilon) \in \mathbf{N}$.

Now $A(\varepsilon) = \{(i, j) \in N \times N : N(x_{ij} - x_{mn}, z)_p \ge \varepsilon\}$ $\subset H \bigcup \left[M \cap \left((\{1, 2, 3, \dots, l-1\} \times N) \bigcup (N \times \{1, 2, 3, \dots, l-1\})\right)\right]$ (3.15) Since I_2 is a strongly admissible ideal, therefore

 $H \cup \left[M \cap \left((\{1,2,3,\ldots,l-1\} \times N) \cup (N \times \{1,2,3,\ldots,l-1\})\right)\right] \in I_2.$ From equation (3.15) and by the definition of ideal, $A(\varepsilon) \in I_2$. This shows that the double sequence $x = (x_{ij})$ is I_2 – Cauchy double sequence in X.

Now we will prove in the following theorem that I_2^* – convergence implies I_2 – Cauchy condition in p – adic linear 2-normed space.

Theorem 3.16: Let $I_2 \subset 2^{N \times N}$ be a strongly admissible ideal and $(X, N(\bullet, \bullet)_p)$ be a p-adic linear 2-normed space. If a double sequence (x_{ij}) in X is I_2^* -convergent to $x \in X$, then (x_{ij}) is I_2 -Cauchy double sequence in X.

Proof: Suppose a double sequence (x_{ij}) in a p-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ is I_2^* - convergent to $x \in X$. Then there exists a set $M \in F(I_2)$ (*i.e.*, $H = (N \times N) - M \in I_2$) such that $\lim_{m,n\to\infty} x_{mn} = x, (m,n) \in M$. It shows that there exists $k_0 = k_0(\varepsilon)$ such that $N(x_{mn} - x, z)_p < \frac{\varepsilon}{2}$, for every $\varepsilon > 0$, non zero $z \in X$ and $m, n > k_0$ (3.17) For $(i, j), (m, n) \in M$ and $i, j, m, n > k_0$, $N(x_{ij} - x_{mn}, z)_p = N(x_{ij} - x + x - x_{mn}, z)_p$ $= N((x_{ij} - x) - (x_{mn} - x, z)_p)$ $\leq N(x_{ij} - x, z)_p + N(x_{mn} - x, z)_p$ $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$, by equation (3.17) $= \varepsilon$, for each $\varepsilon > 0$, non zero $z \in X$ and $i, j, m, n > k_0$. Therefore $\lim_{z \to 0} N(x - x, z) = 0$ which implies (x_i) is a Cauchy double sequence in X and

Therefore $\lim_{i,j,m,n\to\infty} N(x_{ij} - x_{mn}, z)_p = 0$ which implies $(x_{ij})_{(i,j)\in M}$ is a Cauchy double sequence in X and hence $(x_{mn})_{(m,n)\in N\times N}$ is a I_2^* -Cauchy double sequence in X. By Theorem (3.14), $(x_{mn})_{(m,n)\in N\times N}$ is a I_2 -Cauchy double sequence in X.

From Theorem (3.16) and Lemma (3.8) we have the following corollary which gives the relation between I_2 – convergence and I_2 – Cauchy double sequence in a p – adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$.

Corollary 3.18: Let $I_2 \subset 2^{N \times N}$ be a strongly admissible ideal with the property (AP_2) and $(X, N(\bullet, \bullet)_p)$ be a p-adic linear 2-normed space. If a double sequence (x_{ij}) is I_2 -convergent to x in X, then (x_{ij}) is I_2 -Cauchy double sequence in X.

Finally, we will give the following Theorem which states the equivalence of I_2 – Cauchy double sequence and I_2^* – Cauchy double sequence in a p – adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ in the case I_2 has the property (AP_2) .

Theorem 3.19: Let $I_2 \subset 2^{N \times N}$ be a strongly admissible ideal with the property (AP_2) and $(X, N(\bullet, \bullet)_p)$ be a p-adic linear 2-normed space. Then a double sequence $x = (x_{ij})$ is I_2 -Cauchy double sequence in X if and only if $x = (x_{ij})$ is I_2^* -Cauchy double sequence in X.

Proof: Suppose a double sequence $x = (x_{ij})$ is I_2^* – Cauchy double sequence in a p – adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$. Then by Theorem (3.14), $x = (x_{ij})$ is I_2 – Cauchy double sequence in X.

Now it is sufficient to prove that, if a double sequence $x = (x_{ij})$ is I_2 -Cauchy double sequence in X, then it is I_2^* -Cauchy double sequence in X. Suppose $x = (x_{ij})$ is I_2 -Cauchy double sequence in X. Then there exists $m = m(\varepsilon), n = n(\varepsilon) \in N$ such that

 $A(\varepsilon) = \{ (m,n) : N(x_{ij} - x_{mn}, z)_p \ge \varepsilon \} \in I_2 \text{ for each } \varepsilon > 0 \text{ and non zero } z \in X.$

Let
$$P_k = \{(i, j) \in N \times N : N(x_{ij} - x_{m_k n_k}, z)_p < \frac{1}{k}\}, k \in N$$
 where $m_k = m(\frac{1}{k}), n_k = n(\frac{1}{k})$.

Since $H_k = (N \times N) - P_k = \{(i, j) \in N \times N : N(x_{ij} - x_{m_k n_k}, z)_p \ge \frac{1}{k}\} \in I_2$ for each $k \in N$ and non zero $z \in X$, therefore $P_k \in F(I_2)$, for each $k \in N$.

Since I_2 has the property (AP_2) , then by Lemma (3.3) there exists a set $P \subset N \times N$ such that $P \in F(I_2)$ and $P - P_k$ is finite for all $k \in N$. Now we have to show that $\lim_{i,j,m,n\to\infty} N(x_{ij} - x_{mn}, z)_p = 0$, for

 $(i, j), (m, n) \in P$ and for each non zero $z \in X$. For this, let $\varepsilon > 0$ and $l \in N$ be such that $l > \frac{2}{\varepsilon}$. If $(i, j), (m, n) \in P$, then $P - P_l$ is finite, so there exists $\alpha = \alpha(l)$ such that $(i, j), (m, n) \in P_l$ for all

 $i, j, m, n > \alpha(l)$. Therefore $N(x_{ii} - x_{m,n}, z)_n < \frac{1}{2}$ and $N(x_{mn} - x_{m,n}, z)_n < \frac{1}{2}$ for all $i, j, m, n > \alpha(l)$ and non zero $z \in X$.

$$V(x_{ij} - x_{mn}, z)_{p} = N(x_{ij} - x_{m_{l}n_{l}} + x_{m_{l}n_{l}} - x_{mn}, z)_{p}$$

$$= N((x_{ij} - x_{m_{l}n_{l}}) - (x_{mn} - x_{m_{l}n_{l}}), z)_{p}$$

$$\leq N(x_{ij} - x_{m_{l}n_{l}}, z)_{p} + N(x_{mn} - x_{m_{l}n_{l}}, z)_{p}$$

$$< \frac{1}{l} + \frac{1}{l} = \frac{2}{l} < \varepsilon \text{, for all } i, j, m, n > \alpha(l) \text{ and non zero } z \in X.$$

Hence for each $\varepsilon > 0$ there exists $\alpha = \alpha(\varepsilon)$ such that for $i, j, m, n > \alpha(\varepsilon)$ and $(i, j), (m, n) \in P \in F(I_2)$, we have $N(x_{ij} - x_{mn}, z)_p < \varepsilon$ for each non zero $z \in X$. This shows that the sequence $x = (x_{ij})$ is I_2^* - Cauchy double sequence in X. Thus a double sequence $x = (x_{ij})$ is I_2 .

References

- [1] G.Bachman, Introduction to p-Adic Numbers and Valuation Theory (Academic Press, 1964).
- [2] G. Bachman and L. Narici, Functional Analysis (New York and London, Academic Press, 1966).
- [3] Balakrishna Tripathy and Binod Chandra Tripathy, On I-convergent double sequences ,*Soochow Journal of Mathematics* , 31, 2005 549-560,.
- [4] P.Das , P.Kostyrko, W.Wikzynski and P.Malik, I and I* -convergence of double sequences , Math. Slovaca, 58(5), 2008, 605-620.
- [5] Erdinç Dündar and Bilal Altay, On Some Properties of I_2 Convergence and I_2 Cauchy of Double Sequences, Gen. Math. Notes, Vol. 7, No.1, November 2011, pp.1-12.
- [6] Erdinç Dündar and Özer Talo, I_2 Cauchy Double Sequences of Fuzzy Numbers, Gen. Math. Notes, 16(2), 2013, 103-114.
- [7] S. Gähler, Linear 2-normerte raume, Math. Nachr, 28, 1965, 1-45.
- [8] M. Gurdal, On ideal convergent sequences in 2-normed spaces, Thai Journal of Mathematics, 4(1), 2006, 85-91.
- M. Gurdal and Isil Acik, On I-Cauchy sequences in2-normedspaces, Mathematical Inequalities & Applications, 11(2), 2008, 349-354.
- [10] M. Gurdal, Ahmet Sahiner, Extremal I-Limit points of Double Sequences, Applied Mathematical E-Notes, 8,2008, 131-137.
- [11] P. Kostyrko, M. Macaj and T. Salat, I-convergence, Real Anal. Exchange, 26(2), 2000, 669-686.
- [12] P. Kostyrko, M. Macaj, T. Salat and M. Sleziak, I-convergence and extremal I-limit points, *Math. Slovaca*, 55, 2005, 443-464.
- [13] Mehmet Acikgoz, N. Aslan, N. Koskeroglu and S. Araci, p-adic approach to linear 2-normed spaces, *Mathematica Moravica*, 13(2) 2009, 7-22.
- [14] F.Nuray and W.H.Ruckle, Generalized statistical convergence and convergence free spaces, J.Math.Anal.Appl., 245,2000, 513-527.
- [15] Pratulananda Das and Prasanta Malik, On Extrimal I-limit points of double sequences, Tatra Mt. Math. Publ. 40, 2008, 91-102.
- [16] A.Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, *Math. Ann.*, 53, 1900, 289-321.
- [17] W. Raymond, R. Freese and J. Cho, Geometry of Linear 2-Normed Spaces (Nova Science Publishers, 2001).
- [18] Saeed Sarabadan,Fatemeh Amoee Arani and Siamak Khalehoghli, A Condition for the Equivalence of I and I*-convergence in 2normed spaces, *Int.J.Contemp. Math. Sciences*, 6(43), 2011, 2147-2159.
- [19] Saeed Sarabadan and Sorayya Talebi, On I-convergence of Double sequences in 2- normed spaces, Int.J.Contemp.Math.Sciences, 7(14), 2012, 673-684.
- [20] A.Sahiner, M. Gurdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, *Taiwanese Journal of Mathematics*, 11(5) 2007, 1477-1484.

- [21] B.Surender Reddy, Equivalence of p-adic 2-norms in p-adic linear 2-normed spaces, International Journal of Open Problems in Computer Science and Mathematics, 3(5),(2010, 25-38.
- [22] B.Surender Reddy and D.Shankaraiah, On Ideal convergent sequences in p-adic linear 2- normed spaces, *General Mathematics* Notes17(1), 2013, 88-104.
- [23] B.Surender Reddy and D.Shankaraiah, On I-Cauchy sequences in p-adic linear 2-normed spaces, *International Journal of Pure and Applied Mathematics*, 89(4), 2013, 483-496.
- [24] B.Surender Reddy and D.Shankaraiah, On Ideal Convergent of Double Sequences in p-adic linear 2-normed spaces, *Global Journal of Pure and Applied Mathematics*, 10(1), 2014, 7-20.
- [25] Vijay Kumar, On I and I* -Convergence of double sequences, Mathematical Communications 12, 2007, 171-181.