Periodic Solutions of abstract neutral functional differential equations

Bahloul Rachid¹, Sidki Omar¹
¹ Faculty of sciences and Technology, Fes-Saiss Fes, Morocco

Abstract

We characterize the existence of periodic solutions for a class of abstract neutral functional differential equations described in the form:

\[\frac{d}{dt} x(t) = A[x(t) - Bx(t - r)] + L(x_t) + f(t), t \in \mathbb{R} \] (1)

Keywords: functional differential equations

1. Introduction:

Let \(X \) be a Banach space endowed with a norm \(||| \cdot ||| \) and \(r \) be non negative real number.

The main objective of this paper is to study the existence of periodic solutions for the class of linear abstract neutral differential equations (1):

\[C = C([-r,0]; X) \] be the Banach space of continuous functions mapping the interval \([-r,0]\) into \(X \). The function \(x_t \) given by \(x_t(\theta) = x(t+\theta) \) for \(\theta \) in appropriate domain, denotes the segment or the "history" of the function \(x(\cdot) \) at \(t \).

\(L \) is a bounded linear map defined on an appropriate space, and \(f : \mathbb{R} \rightarrow X \) is a locally \(p \)-integrable and \(2\pi \)-periodic function for \(1 \leq p < +\infty \).

We assume that \(A : D(A) \subseteq X \rightarrow X \) and \(B \subseteq X \rightarrow X \) are closed linear operators.

We denote

\[H^{1,p}(T; X) = \{ u \in L^p(T; X) : \exists v \in L^p(T; X), \hat{v}(k) = ik\hat{u}(k) \text{ for all } k \in \mathbb{Z} \} \]
2. Preliminaries:

We denote by T the group defined as the quotient $\mathbb{R}/2\pi\mathbb{Z}$. There is an obvious identification between functions on T and 2π-periodic functions on \mathbb{R}. We consider the interval $[0, 2\pi)$ as a model for T.

For a function $f \in L^1(T; X)$, we denote by $\hat{f}(k)$, $k \in \mathbb{Z}$ the k-th Fourier coefficient of f:

$$\hat{f}(k) = \frac{1}{2\pi} \int_0^{2\pi} e^{-ikt} f(t) \, dt \quad \text{for } k \in \mathbb{Z} \text{ and } t \in \mathbb{R}.$$

Denote $f_{\tau}(t) := f(t+\tau)$, $\tau \in \mathbb{Z}$; then it the follows from the definition that $\hat{f}_{\tau}(k) = e^{ik\tau} \hat{f}(k)$, $\tau \in T$.

Let $f \in L^p(T, X)$. Then by Fefer's theorem, one has

$$f = \lim_{n \to \infty} \sigma_n(f)$$

in $L^p(T, X)$ where

$$\sigma_n(f) := \frac{1}{n+1} \sum_{m=0}^{n} \sum_{k=-m}^{m} e_k \hat{f}(k)$$

with $e_k(t) := e^{ikt}$

A Banach space X is said to be UMD, if the Hilbert transform is bounded on $L^p(R, X)$ for all $p \in (1, \infty)$.

Definition 1: Let X and Y be a Banach spaces. A family of operators $T \subset B(X, Y)$ is called R-bounded, if there is a constant $C > 0$ and $p \in [1, \infty)$ such that for each $N \in \mathbb{N}, T_j \in T$, $x_j \in X$ and for all independent, symmetric, $\{-1, 1\}$-valued random variables r_j on a probability space (Ω, M, μ) the inequality

$$\left\| \sum_{j=1}^{N} r_j T_j x_j \right\|_{L^p(\Omega, Y)} \leq C \left\| \sum_{j=1}^{N} r_j x_j \right\|_{L^p(\Omega, Y)}$$

is valid. The smallest such C is called R-bounded of T, we denot it by $R_p(T)$.

www.iosrjournals.org 87 | Page
Definition 2: For $1 \leq p \leq \infty$ we say that a sequence $\{M_k\}_{k \in \mathbb{Z}} \subset B(X,Y)$ is an L^p-multiplier if, for each $f \in L^p(T,X)$, there exists $u \in L^p(T,Y)$ such that

$$\hat{u}(k) = M_k \hat{f}(k) \quad \text{for all } k \in \mathbb{Z}.$$

Theorem 1: Let X, Y be UMD space and let $\{M_k\}_{k \in \mathbb{Z}} \subset B(X,Y)$. If the sets $\{M_k\}_{k \in \mathbb{Z}}$ and $\{k(M_{k+1} - M_k)\}_{k \in \mathbb{Z}}$ are R-bounded, then $\{M_k\}_{k \in \mathbb{Z}}$ is an L^p-multiplier for $1 < p < \infty$.

3. A Criterion for Periodic Solutions:

We consider $\Delta_k = ikI - ikB_k - A(I - B_k) - L_k$, for all $k \in \mathbb{Z}$.

Denote by $B_k := \exp^{-ikr}B$, $L_k(x) := L(e^{ikg}x)$ and $e_k(t) := e^{ikt}$ for all $k \in \mathbb{Z}$ and $\sigma_Z(\Delta) = \{k \in \mathbb{Z} : \Delta_k \text{ has no inverse}\}$

And we define $D_k = (ikI - A(I - B_k) - L_k)^{-1}$

3.1. Existence of Strong Solution:

Definition 3: Let A be a closed linear operator on X. A function $x(.)$ solution of the problem (1) if $x \in H^{1,p}(T;X) \cap L^p(T;X)$ and (1) holds for almost all $t \in [0, 2\pi]$.

Theorem 2: Let X be a Banach space and $1 < p < +\infty$. Suppose that for every $f \in L^p(T,X)$ there exists a unique strong solution of Eq (1). Then

1. for every $k \in \mathbb{Z}$ the operator $(ikI - A(I - B_k) - L_k)$ has bounded inverse

2. The set is R-bounded and $\{ikD_k\}_{k \in \mathbb{Z}}$ is R-bounded.

Lemma 1: [2, Lemma 4.2]

Let $u \in C(T,X)$. Then

$$L(X_u(k)) = L_k \hat{x}(k).$$

Proof of Theorem 2:

1) Let $k \in \mathbb{Z}, y \in X$

for $f(t) = e^{ikr}y$, $\exists x \in H^{1,p}(T,X)$ such that:

$$\frac{dx}{dt}(t) = A(x(t) - Bx(t-r)) + L(x_t) + f(t)$$

Taking Fourier transform, L is linear and bounded, we obtain

$$ik\hat{x}(k) = A(I - B_k)\hat{x}(k) + L_k\hat{x}(k) + \hat{f}(k)$$

$$(ikI - A(I - B_k) - L_k)\hat{x}(k) = \hat{f}(k) = y$$

$(ikI - A(I - B_k) - L_k)$ is surjective.

Let $x \in \text{Ker}((ik - A(I - B_k) - L_k))$, that is $A(I - B_k)x + L_kx = ikx$, then $u(t) = e^{ikx}$ defines a periodic solution of (1) corresponding to the function $\tilde{f}(t) = 0$. Consequently, $u(t) = 0$ and $x = 0$.

2) let $f \in L^p(T,X)$. By hypothesis, there exists a unique $x \in H^{1,p}(T,X)$ such that (1) equation is valid. Taking Fourier transforms, we deduce that $(ikI - A(I - B_k) - L_k)\hat{x}(k) = \hat{f}(k)$ for all $k \in \mathbb{Z}$. Hence

$$ik\hat{x}(k) = ik(ikI - A(I - B_k) - L_k)^{-1}\hat{f}(k)$$

for all $k \in \mathbb{Z}$.

On the other hand, since $x \in H^{1,p}(T,X)$, there exists $v \in L^p(T,X)$ such that

$$\hat{v}(k) = ik\hat{x}(k).$$

This proves claim.
3.2. Existence of weak solution:

Definition 4: Let \(A \) be a closed linear operator on \(X \). A function \(x(.) \) is called a weak solution of the problem (1) if:
\[
\int_0^1 (x(s) - Bx(s)) ds \in D(A) \quad \text{and} \quad x(t) - x(0) = A \int_0^t (x(s) - Bx(s)) ds + \int_0^t (Lx_s + f(s)) ds, \quad 0 \leq t \leq 2\pi.
\]

Theorem 3: Let \(f \in L^p(T, X) \), Assume that \(D(A) = X \); if \(x(.) \) is said to be a weak solution of Eq (1) then \((ikI - A(I-B_k) - L_k)\hat{x}(k) = \hat{f}(k)\) for all \(k \in \mathbb{Z} \).

proof: \(x(.) \) is a weak solution of Eq (1) then
\[
x(t) - x(0) = A \int_0^t x(s) ds + \int_0^t (Gx_s + f(s)) ds
\]
\[
t = 2\pi
\]
\[
x(2\pi) - x(0) = A \int_0^{2\pi} (x(s) - Bx(s)) ds + \int_0^{2\pi} (Lx_s + f(s)) ds; \quad \text{or} \quad x(2\pi) = x(0)
\]
then
\[
A \int_0^{2\pi} (x(s) - Bx(s)) ds + \int_0^{2\pi} (Lx_s + f(s)) ds = 0
\]
\[
(AI - B_0 + L_0)\hat{x}(0) + \hat{f}(0) = 0
\]
\[
(0AI - B_0 - L_0)\hat{x}(0) = \hat{f}(0) \quad \text{which shows that the assertion holds for} \quad k = 0.
\]
Define \(v(t) = \int_0^t (x(s) - Bx(s)) ds \)
And \(g(t) = x(t) - x(0) - \int_0^t (Lx_s + f(s)) ds \)
by lemma 3.1 [2]
We have \(\hat{v}(k) = \frac{i}{k} (\hat{x}(0) - B\hat{x}(0)) - \frac{i}{k} (\hat{x}(k) - B\hat{x}(k)) \) (remark 2.3 [2])
\[
\hat{g}(k) = \hat{x}(k) - \frac{i}{k} L_0 \hat{x}(0) - \frac{i}{k} L_k \hat{x}(k) - [\frac{i}{k} \hat{f}(0) - \frac{i}{k} \hat{f}(k)]
\]
\[
\hat{g}(k) = \hat{x}(k) - \frac{i}{k} L_0 \hat{x}(0) + \frac{i}{k} L_k \hat{x}(k) - \frac{i}{k} \hat{f}(0) + \frac{i}{k} \hat{f}(k)
\]
\[
A \hat{v}(k) = \frac{i}{k} A(I - B_0) \hat{x}(0) - \frac{i}{k} A(I - B_k) \hat{x}(k)
\]
Then
\[
\text{ik}_k\dot{x}(k) + L_0\dot{x}(0) - L_k\dot{x}(k) + f(0) - \dot{f}(k) = -A(I-B_0)\dot{x}(0) + A(I-B_k)\dot{x}(k)
\]
\[\Leftrightarrow [\text{ik}_k\dot{x}(k) - A(I-B_k)\dot{x}(k) - L_k\dot{x}(k) - \dot{f}(k)] - [A(I-B_0)\dot{x}(0) + L_0\dot{x}(0) + \dot{f}(0)] = 0
\]
\[\Leftrightarrow \text{ik}_k\dot{x}(k) - A(I-B_k)\dot{x}(k) - L_k\dot{x}(k) - \dot{f}(k) = 0
\]
\[\Leftrightarrow \text{ik}_k\dot{x}(k) - A(I-B_k)\dot{x}(k) - L_k\dot{x}(k) = \dot{f}(k).
\]

Theorem 4 Let \(f \in L^p(T,X) \), Assume that \(\overline{D(A)} = X \); if \(x(\cdot) \) is said to be a weak solution of Eq (2) and \((ikI - A(I - B_k) - L_k) \) has a bounded inverse. Then \((ikI - A(I - B_k) - L_k)^{-1} \) is an \(L^p \)-multiplier.

Proof: from theorem (1) we have \(\dot{x}(k) = (ikI - A(I - B_k) - L_k)^{-1}\dot{f}(k) \), for all \(f \in L^p(T,X) \)

Main result:

Our main result in this paper, establish that the converse of theorem (2) and the give the definition of Mild solution

Theorem 5:

Let \(X \) be a UMD space and let \(A : D(A) \subset X \rightarrow X \) be a closed linear operator. The following assertions are equivalent for \(1<p<\infty \).

1. for every \(f \in L^p(T,X) \) there exists a unique strong solution of Eq (1)

2. for every \(k \in Z \) the operator \((ikI - A(I-B_k) - L_k) \) has bounded inverse and the set is \(R \)-bounded and \(\{ikD_k\}_{k \in Z} \) is \(R \)-bounded.
proof:

\(1\Rightarrow 2\) Let \(f \in L^p(T, X)\). Define \(D_k = (ikI - A(I - B_k) - L_k)^{-1}\), the family \(\{ikD_k\}_{k \in \mathbb{Z}}\) is an \(L^p\)-multiplier it is equivalent to the family \(\{D_k\}_{k \in \mathbb{Z}}\) is an \(L^p\)-multiplier that maps \(L^p(T, X)\) into \(H^{1,p}(T, X)\), i.e. there exists \(x \in H^{1,p}(T, x)\) such that

\[
\hat{x}(k) = D_k \hat{f}(k) = (ikI - A(I - B_k) - L_k)^{-1} \hat{f}(k)
\]

(1.1)

In particular, \(x \in L^p(T, X)\) and there exists \(v \in L^p(T, X)\) such that

\[
\hat{v}(k) := \hat{v}(k) = ik \hat{x}(k)
\]

By Fejer’s theorem one has in \(L^p([-\tau_2, 0], X)\)

\[
x_t(\theta) = x(t+\theta) = \lim_{n \to +\infty} \frac{1}{n+1} \sum_{m=0}^{n} \sum_{k=-m}^{m} e^{ikt} e^{ik\theta} \hat{x}(k)
\]

Hence in \(L^p(T, X)\) we obtain

\[
x_t = \lim_{n \to +\infty} \frac{1}{n+1} \sum_{m=0}^{n} \sum_{k=-m}^{m} e^{ikt} e_k \hat{x}(k)
\]

Then, since \(L\) is linear and bounded

\[
Lx_t = \lim_{n \to +\infty} \frac{1}{n+1} \sum_{m=0}^{n} \sum_{k=-m}^{m} e^{ikt} L(e_k \hat{x}(k))
\]

\[
= \lim_{n \to +\infty} \frac{1}{n+1} \sum_{m=0}^{n} \sum_{k=-m}^{m} e^{ikt} L_k \hat{x}(k)
\]

By (1.1) and (1.2) we have

\[
\hat{x'}(k) = ik \hat{x}(k) = A(I-B_k) \hat{x}(k) + L_k \hat{x}(k) + \hat{f}(k). \quad \text{for all } k \in \mathbb{Z}.
\]

Then using that \(A\) and \(B\) are closed we conclude that \((x(t)-Bx(t-r))\in D(A)\), and from the uniqueness theorem of Fourier coefficients, that equation (2) is valid for \(t \in T\). [3. lemma 3.1]
Definition 5 : of Mild solution about convert of weak solution

Introduction :

Assume that \(A \) generates a \(C_0 \)-semigroup \(T(.) \) on \(X \); and \(x(.) \) is a weak solution, then we have

\[
x(t) - x(0) = A \int_0^t (x(s) - Bx(s-r)) \, ds + \int_0^t (Gx_s + f(s)) \, ds
\]

\[
\int_0^t T(t-s) (x(s) - x(0)) \, ds = \int_0^t T(t-s) A \int_0^s (x(\xi) - Bx(\xi-r)) \, d\xi \, ds + \int_0^t T(t-s) \int_0^s (L(x_\xi) + f(\xi)) \, d\xi \, ds
\]

\[
= \int_0^t (T(t-s)-I)(x(s) - Bx(s-r)) \, ds + \int_0^t T(t-s) \int_0^s (L(x_\xi) + f(\xi)) \, d\xi \, ds
\]

Then

\[
\int_0^t T(t-s) (Bx(s-r) - x(0)) \, ds = - \int_0^t (x(s) - Bx(s-r)) \, ds + \int_0^t T(t-s) \int_0^s (L(x_\xi) + f(\xi)) \, d\xi \, ds
\]

\[
\int_0^t (x(s) - Bx(s-r)) \, ds + \int_0^t T(t-s) (Bx(s-r) - x(0)) \, ds = \int_0^t T(t-s) \int_0^s (L(x_\xi) + f(\xi)) \, d\xi \, ds
\]

\[
A \int_0^t (x(s) - Bx(s-r)) \, ds + A \int_0^t T(t-s) (Bx(s-r) - x(0)) \, ds = A \int_0^t T(t-s) \int_0^s (L(x_\xi) + f(\xi)) \, d\xi \, ds
\]

\[
A \int_0^t (x(s) - Bx(s-r)) \, ds + A \int_0^t T(t-s) (Bx(s-r) - x(0)) \, ds = \int_0^t (T(t-s)-I) \int_0^s (L(x_\xi) + f(\xi)) \, d\xi \, ds
\]

or \(x(.) \) is a weak solution then

\[
x(t) - x(0) = A \int_0^t T(t-s) (x(0) - Bx(s-r)) \, ds + \int_0^t T(t-s) (L(x_s) + f(s)) \, ds
\]

Our object, establish the converse of this result

Definition 6 : Assume that \(A \) generates a \(C_0 \)-semigroup \(T(.) \) on \(X \). A function \(x(.) \) is called a mild solution of the problem (1) if :

\[
\int_0^t T(t-s) (x(0) - Bx(s-r)) \, ds \in D(A) \quad \text{and}
\]

\[
x(t) - x(0) = A \int_0^t T(t-s) (x(0) - Bx(s-r)) \, ds + \int_0^t T(t-s) (L(x_s) + f(s)) \, ds \quad 0 \leq t \leq 2\pi.
\]
Corollary 1 Assume that A generates a C_0-semigroup $T(\cdot)$ on X; let $f \in L^p(T,X)$

$x(\cdot)$ is a weak solution \iff $x(\cdot)$ is a mild solution

Proof:

\Rightarrow by introduction

\Leftarrow suppose that $x(\cdot)$ is a mild solution of Eq (2) then

$$x(t) - x(0) = A \int_0^t T(t-s) (x(0) - Bx(s-r)) ds + \int_0^t T(t-s) (L(x_s) + f(s)) ds$$

$$\int_0^t (x(s) - x(0)) ds = \int_0^t A \int_0^s T(t-\xi) (x(0) - Bx(\xi-r)) d\xi ds + \int_0^t \int_0^s T(t-\xi) (L(x_\xi) + f(\xi)) d\xi ds$$

$$\int_0^t (x(s) - x(0)) ds = \int_0^t (T(t-s)-I) (x(0) - Bx(s-r)) ds + \int_0^t \int_0^s T(t-\xi) (L(x_\xi) + f(\xi)) d\xi ds$$

$$A \int_0^t (x(s) - x(0)) ds = A \int_0^t (T(t-s)-I) (x(0) - Bx(s-r)) ds + \int_0^t (T(t-s)-I) (L(x_s) + f(s)) ds$$

$$A \int_0^t (x(s) - x(0)) ds + \int_0^t (L(x_s) + f(s)) ds + A \int_0^t (x(0) - Bx(s-r)) ds = A \int_0^t T(t-s) (x(0) - Bx(s-r)) ds + \int_0^t (T(t-s)-I) (L(x_s) + f(s)) ds$$

$$A \int_0^t (T(t-s) (x(0) - Bx(s-r)) ds + \int_0^t (T(t-s)-I) (L(x_s) + f(s)) ds = A \int_0^t (x(s) - x(0)) ds + \int_0^t (L(x_s) + f(s)) ds$$

$$x(t) - x(0) = A \int_0^t (x(s) - Bx(s-r)) ds + \int_0^t (L(x_s) + f(s)) ds$$

Then $x(\cdot)$ is a weak solution.

Proposition 1: Assume that A generates a C_0-semigroup $T(\cdot)$ on X; if

$(ikI - A(I - B_k) - L_k)^{-1}$ is an L^p-multiplier Then there exists a unique weak (mild) solution of Eq (1).
proof: let \(f \in L^p(T,X) \), then
\[
 f(t) = \lim_{n \to +\infty} \frac{1}{n+1} \sum_{m=0}^{n} \sum_{k=-m}^{m} e^{ikt} \hat{f}(k)
\]
or
\[
 (ikI - A(I - B_k) - L_k)^{-1}
\]
is an \(L^p \)-multiplier then there exists \(x \in L^p(T,X) \) such that
\[
 \hat{x}(k) = (ikI - A(I - B_k) - L_k)^{-1} \hat{f}(k)
\]
put
\[
 x_n(t) = \lim_{n \to +\infty} \frac{1}{n+1} \sum_{m=0}^{n} \sum_{k=-m}^{m} e^{ikt} (ikI - A(I - B_k) - L_k)^{-1} \hat{f}(k)
\]
then
\[
 x_n(t) \to x(t) \text{ and } x_n \text{ is strong } L^p \text{-solution of Eq (1) and } x_n \text{ verified}
\]

\[
x_n(t) - x_n(0) = A \int_{0}^{t} ((x_n(t-s)) - Bx_n(t-s))ds + \int_{0}^{t} (G((x_n)_s) + f_n(s))ds
\]

we put
\[
y_n = x_n(0)
\]

\[
x_n(t) = y_n + A \int_{0}^{t} ((x_n(t-s)) - Bx_n(t-s))ds + \int_{0}^{t} (L((x_n)_s) + f(s))ds
\]

\[
t = 2\pi
\]

\[
x_n(2\pi) = y_n + A \int_{0}^{2\pi} ((x_n(t-s)) - Bx_n(t-s))ds + \int_{0}^{2\pi} (L((x_n)_s) + f(s))ds
\]

\[
(n \to \infty)
\]

\[
 y = y + A \int_{0}^{2\pi} ((x(s)) - Bx(2\pi-r))ds + \int_{0}^{2\pi} (L(x_s) + f(s))ds
\]

\[
x(t) = y + A \int_{0}^{t} (x(s)) - Bx(t-s))ds + \int_{0}^{t} (L(x_s) + f(s))ds =: g(t)
\]

\[
x(2\pi) = g(2\pi) = y + A \int_{0}^{2\pi} ((x(s)) - Bx(2\pi-r))ds + \int_{0}^{2\pi} (L(x_s) + f(s))ds
\]

\[
y = g(0)
\]

\[
 \Rightarrow x(2\pi) = x(0)
\]
we conclude that \(x(\cdot) \) is a \(2\pi \)-periodic weak (mild) solution of Eq (1).

4 Exemple:

\[
\frac{d}{dt} x(t) = A(x(t) - Bx(t-r)) + Lx_t + f(t)
\]

let \(A \) be a closed linear operator and \(X \) be a UMD space, and

\[
\sup_k \| (ikI - A(I - B_k))^{-1} \| = : M < \infty \text{ and } \| L \| < \frac{1}{r_2^{1/2}} r_2^{1/2} \text{ then Eq (1) has a unique weak solution.}
\]

we have
\[
 ikI - A(I - B_k) - L_k = [ikI - A(I - B_k)][I - L_k(ikI - A(I - B_k))^{-1}]
\]
it follows that \(ikI - A(I - B_k) - L_k \) is invertible whenever
\[
 \| L_k(ikI - A(I - B_k))^{-1} \| < 1 \text{ [7. Theorem 1.17]}
\]
observe that
\[
 \| L_k \| \leq r_2^{1/2} \| L \|
\]
Hence
\[
 \| L_k(ikI - A(I - B_k))^{-1} \| \leq r_2^{1/2} \| L \| M = : \alpha
\]
Therefore, under the condition
\[
 \| L \| < \frac{1}{r_2^{1/2} M}
\]

\[
 (ikI - A(I - B_k) - L_k)^{-1} = [ikI - A(B_k)]^{-1} [I - L_k(ikI - A(I - B_k))^{-1}]
\]

\[
 = [ikI - A(B_k)]^{-1} \sum_{n=0}^{\infty} [L_k (ikI - A(I - B_k))^{-1}]^n
\]
it follows that
\[
 \| ik(ikI - A(I - B_k))^{-1} \| \leq \| ik(ikI - A(I - B_k))^{-1} \| \sum_{n=0}^{\infty} \alpha^n
\]

\[
 \leq \frac{M+1}{1-\alpha} \text{ then } ikD_k \text{ is } R\text{-bounded.}
Bibliographie

