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Abstract: A deterministic model for the transmission dynamics of Tuberculosis (TB) under Direct Observation 

Therapy Strategy (DOTS) and Isolation in Nigeria is developed and rigorously analysed. The model, consisting 

of mutually-exclusive epidemiological compartments representing the number of undetected, detected and 

isolated individuals who are treated under DOTS programme and those who developed Multi-drug resistance. 

The model has a disease free equilibrium (DFE), which is locally asymptotically stable, whenever the maximum 

of the associated reproduction numbers of the model (denoted by Rc) is less than unity. Furthermore, the model 

undergoes a backward bifurcation, where the disease-free equilibrium co-exists with a stable endemic 

equilibrium. Numerical simulations, using epidemiological and demographic data relevant to Nigeria obtained 

from WHO and USAID [35,36,38], shows that provided the rate at which the undetected individuals with active 

TB recovered exceeded a critical values, then DOTS, the STOP TB initiative programme of WHO can lead to 

effective elimination of TB in Nigeria. This suggest that the detection rate plays significant role in the 

elimination of TB. Furthermore, it is shown that if the progress or rate of individuals who are susceptible to TB 

is low, it can also lead to elimination of the disease in Nigeria. The results also shows that if the effective 

contact rate (  ) for TB infection remains below certain critical value (0.187), the disease can be eliminated. 

Keywords: Bifurcation, Case Detection Rate (CDR), DOTS, Dynamical system, Reproduction number, 

Tuberculosis. 

 

I. Introduction 
Tuberculosis (TB), an airborne-transmitted disease caused by the bacterium Mycobacterium 

tuberculosis, remains one of the most important public health challenges for decades. In addition to affecting at 

least one-third of the human population (2 billion people), TB is the second greatest contributor of adult 

mortality amongst infectious disease (causing at least 2 million death a year globally) [1, 15, 35, 36, 37]. Owing 

to the rising deaths and infection rates (especially in developing countries), the World Health Organization 

(WHO) declared TB as a global public health emergence in 1993 [14, 21]. Over 80% of all TB patients live in 

22 countries, mostly in sub-saharan Africa and Asia. 

Over the years, a number of global initiatives, spearheaded by WHO, were embarked upon with the 

hope of minimizing the burden of TB worldwide (in particular, to achieve the Millennium Development Goal of 

halting ang beginning to reverse the incidence of TB by 2015). These include the "Stop TB Partnership", 

"International Standards of Tuberculosis care and patient's care" and the "Global Plan to Stop TB" [1]. A 

notable medical contribution in TB control was the introduction of antibiotics, which resulted in significant 

decrease in mortality (for instance, a 70% reduction in TB-related mortality was recorded in the USA between 

1945 to 1955 [3,13,23]). TB-infected people can be effectively treated using multiple drugs via the Direct 

Observation Therapy Strategy (DOTS) [40]. However, if not strictly complied to or administered wrongly, such 

therapy may lead to the evolution and development of multi-drug resistant TB (MDR-TB) [8]. 

Numerous modelling studies have been carried out to gain insights into the transmission dynamics and 

control of TB spread in human population (see, for instance [3, 10, 15, 17, 22, 23, 29, 33]). The purpose of the 

current study is to provide a rigorous mathematical analysis of a model for TB spread in the presence of DOTS 

and isolation of infectious INDIVIDUALS. The model to be designed is an extension of many of the models in 

the aforementioned studies. 

The paper is organized as follows. The model is formulated in section 2, and is qualitatively analysed 

in section 3. Some numerical simulation results are provided in section 4. In particular, a case study, for TB 

dynamics in Nigeria is considered. 
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II. Model Formulation 
The total homogeneously-mixing population at time t, denoted by N (t), is subdivided into mutually-

exclusive compartments of, susceptible (S (t)),exposed (E(t)), undetected infectious (TU(t)), detected infectious 

(TD(t)), isolated (J (t)), treated (H (t)) and those who failed treatment (F(t)) individuals, so that  

 )()()()()()()()( tFtHtJtTtTtEtStN DU   

The susceptible population is increased by recruitment (either by birth or immigration) into the population (all 

recruited individuals are assumed to be susceptible) at a rate II. This population is decreased by infection, which 

can be acquired following effective contact with infectious individuals in the undetected (TU), detected (TD), 

isolated (J ), treated (H ) or failed treatment (F ) category, at a rate  given by: 

  )1(
(

N

HFJTT HFJDDU 



  

In (1),   represents the effective contact rate (i.e., contact capable of leading to infection), 
D is a modification 

parameter comparing the transmissibility of detected infectious individuals in relationship to undetected 

infectious individuals. Since detected individuals are offered treatment and/or isolation, it is intuitive to assume 

that 1D . Similarly, FJ  ,  and 
H are modification parameters comparing the transmissibility of 

infectious individuals in the isolated, failed treatment and treated classes, respectively, with those in the 

undetected infectious class. Here, 1J  (since isolated individuals have reduced contact and are offered 

treatment during isolation), 1H  (since treatment reduces transmissibility) and 1F . Finally, this 

population decreases by natural death at a rate . Thus, the rate of change of the susceptible population is given 

by 

   )2(SS
dt

dS
   

A fraction,   , of new infected individuals move to the exposed class (E), while the remaining fraction, (1-  ), 

move to the infectious undetected class (fast progressors) TU. The population of exposed individuals is further 

increased by the natural recovery rate of undetected individuals (at the rate  ), by the reversion of individual s 

who failed treatment (at a rate ,1  where 11  ) and by individuals who are successfully treated (at a rate 

r , with r < 1 representing the fraction of treated individuals). This population is decreased by progression to 

active TB (at a rate  ), exogenous re-infection (at a rate   , where   < 1 accounts for the assumption that 

exposed individuals have reduced infection rate in comparison to wholly susceptible individuals) and natural 

death (at the rate  ). Thus, 

   )3()(1 EHrFTS
dt

dE
U    

 The population of undetected infectious individuals is increased by the new infection of fast 

progressors (at the rate (1- ) ) and the development of symptoms by exposed individuals (at the rate 

(
11  ) , where 

1 is the fraction of exposed individuals who develop symptoms and are detected), 

exogenous re-infection of exposed individuals (at the rate (
21  ) , where 

2  is the fraction of re-infected 

individuals who are detected) and by individuals who failed treatment (at the rate 2
). This population is 

decreased by natural recovery (at the rate v), detection (at a rate U ), natural death (at the rate  ) and disease-

induced death (at a rate U ). Hence, 

)4()()1()1()1( 221 UU
U TUFEES

dt

dT
   

The population of detected individuals increases by the detection of exposed individuals (at the rates 1  

and 2 ), undetected individuals (at the rate U )and failed treated individuals (at a rate ))](1[ 21   . 

The population is decreased by isolation (at the rate  ), treatment (at a rate 1 ), natural death (at the rate  ) 

and disease-induced death (at a rate UD   ). This gives   

)5()()](1[ 12121 DDUU
D TFTEE

dt

dT
   
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The population of isolated individuals is generated by the isolation of detected individuals (at the rate  ). It 

diminishes due to treatment (at a rate 
2 ), natural death (at the rate  ) and disease-induced death (at a rate 

UJ   ). Hence, 

  )6()( 2 JT
dt

dJ
JD    

Individuals in the F class are those in whom treatment has failed. This (treatment failure) could be due to a 

number of reasons such as incomplete compliance to the specified treatment regimen, development of resistance 

etc. This population is generated by the failure of treatment in detected individuals (at the rate ( ))1 11 q , 

isolated individuals (at the rate ))1( 22 q  and treated individuals (at a rate ))1 r . In addition to natural 

death (at the rate  ) and disease-induced mortality (at the rate F ), individuals can leave this class and move 

to the exposed class (at the rate 1
), undetected class (at the rate 2

) and detected class (at the rate 

))](1[ 21   ). In other words, it is assumed that individuals in whom treatment has failed can eventually 

become latent naturally (i.e., move to the E class) or remain infectious (and join either TU or TD class). It should 

be noted that the fractions 
1 and 

2  are such that 121  . Thus, 

)7()()1()1()1( 2211 FHrJqTq
dt

dF
FD    

The population of treated individuals is increased by the treatment of detected individuals (at the rate
11q ) and 

isolated individuals (at the rate 
22q ). Since there is no cure for TB, successfully-treated individual as 

eventually move to the exposed class (at the rate  ). This population is further decreased by natural death (at 

the rate  ) and disease-induced death (at a rate DH   ). Hence 

  )8()(2211 HJqTq
dt

dH
HD    

Thus, in summary, the TB treatment and isolation model is given by the following system of non-linear 

differential equations (a flow diagram is depicted in figure 3; the associated variables and parameters are 

described in Tables 2 and 3). 

SS
dt

dS
   

EHrFTS
dt

dE
U )(1    

UUu

U TFEES
dt

dT
)()1()1()1( 221    

)9()()](1[ 12121 DDUU
D TFTEE

dt

dT
   

JT
dt

dJ
JD )( 2    

FHrJqTq
dt

dF
FD )()1()1()1( 2211    

HJqTq
dt

dH
HD )(2211    

The essential features of the model (9) are: 

(i) allows for infection by individuals in all infected classes (TU; TD; J; F; H ) with exception of those in 

the exposed class; 

(ii) allows for exogenous re-infection (at the rate  ) and endogenous re-activation (at the rate   ); 

(iii) allows for slow progression (at the rate  ) and fast progression (at the rate  to disease; 

(iv) treatment and isolation of infected individuals, and allowing for the possibility of treatment failure. 

Individuals who failed treatment are distributed into the exposed or infectious classes for detected 

and undetected individuals;  
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(v) exposed individuals who develop symptoms (either due to re-activation or reinfection) are distributed 

into the undetected and detected classes. 

The model extends some of the earlier models, such as those in [1, 8, 23], by including; 

(a) the isolated class (J ), 

(b) the failed treatment class (F ), 

(c) slow and fast progression aspect of TB disease( ), and 

(d) screening and detection of undetected infectious individuals (at the rate U ). 

Using a set of demographic and epidemiological data relevant to Nigeria (given in Table 1), the model (9) gives 

a reasonable fit of the observed TB burden data from Nigeria for the period 2000-2007 [36, 37] as depicted in 

Figure 4. This shows that the model can be used to gain insights into TB transmission dynamics in a population 

such as Nigeria. 

 

III. Analysis Of The Model 

Lemma 1:  The closed set 







 

 


NHFJTTESD du :),,,,,,( 7
 is positively-invariant and 

attracting with respect to model (9). 

Proof 1: Consider the biologically-feasible region, 







 

 


NHFJTTESD du :),,,,,,( 7
 

We shall show that D is positive invariance (i.e; all solutions in D remain in D for all time t > 0). The rate of 

change of the total population, obtained by adding all the equations in model (9), is given by: 

  

 )10(FJTTN
dt

dN
FJDDUU  

 

It follows that 0
dt

dN
 whenever 




N . Note that  

dt

dN
 is bounded by N , and a standard 

comparison theorem [32] can be sued to show that )1()0()( tt eeNtN 



 


 . In particular 

,)(



tN  if ,)0(




N . Therefore, all solution of the model with initial conditions in D remains there for 

t>0 (i.e. the w-limits sets of the system (9) are contained in D). This implies that D is positively-invariant and 

attracting. In this region, the model can be considered as been epidemiologically and mathematically well-posed 

[19]. 

 
3.1 DISEASE FREE EQUILIBRIUM (DFE) 

The model (9) has a disease free equilibrium (DFE) given by 

    )11(0,0,0,0,0,0,,,,,,, *******

0 










HFJTTESC DU  

Using the next generation matrix (see[25])/ The non-negative matrix F (of the new infection terms) and the non-

singular matrix V are given, respectively by: 

   









00

21 FF
F  

Where,  

 





































000

)1()1()1(,

000

)1()1(0

0

21 HFJ

HFJ

FF 







 

   







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43

21

VV

VV
V  
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Where 

 
















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





























0))1(0

00

0

,0)1(

0
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2

1

2
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1

1
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
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
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




















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4

4
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113

0

)1()1(

00

,

00

)1(00

00

Kq

Kq

K

V

q

qV











 

and, JD KKUKK   241321 ,,,  

 HF KK   65 ,  

Define, 

 

654

526522162231

2

1213

21311131

1

])1()1()1(

)12(
)]1([

]))(1())(1(

KKK

KqKKqKqKK
R

KKK

KDDKDUKDKK
R

HJFFF 













 

It follows that the basic reproduction number, denoted by Rc, is given },max{)( 21

1  FVRC  where 

  denotes the spectral radius (dominant eigenvalue magnitude) of the next generation matrix F V
-1

.  Hence, 

using Theorem (2) of [25], we have established the following result. 

 

Lemma 2: The DFE of the model (9), given by (10), is locally asymptotically stable 

(LAS) if Rc < 1, and unstable if Rc > 1. 

The threshold quantity, Rc, is the reproduction number for the model. It measures the average number of new 

TB infections generated by a single TB-infected individual in a population where a certain fraction of infected 

individuals are treated and/or isolated. The epidemiological implication of Lemma 2 is that TB can be controlled 

in the community (when Rc < 1) if the initial sizes of the sub-populations of the model are in the basin of 

attraction of c0. Since TB models are often shown to exhibit the phenomenon of backward bifurcation [23], 

where the stable DFE co-exists with a stable endemic equilibrium when the associated reproduction threshold 

(Rc ) is less than unit, it is instructive to determine whether or not the TB dynamics model (9) exhibits this 

feature. This is investigated below, 

 

Theorem 1: The model (9) undergoes a backward bifurcation at Rc=1 if 

positiveis

a

JDFH )))((

(()())1(

)()((
2

765433765

1232376512322224322

7651232176512323
















 

The proof, based on the centre Manifold theory, is given in Appendix A.  

 
3.2:  GLOBAL STABILITY OF THE DFE 

      Here, the global asymptotic stability (GAS) property of the DFE of the model (9) will be explored for 

the case 0 (i.e, in the absence of re-infection). By letting 0 HFJDU   in the 

model (9), it follows that HFJTTENS du  *
 at steady state. Hence, the global stability of 

0  can be established by considering the following mass action equivalent of the model (9). 
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.)( 111

* EKHrFTHFJTTEN
dt

dE
UDU  

UDU
U TKFEHFJTTEN

dt

T
1221

* )1()()1(  

DUU
D TKFTE

dt

T
1321 )](1[

1
 

)13(14JKT
dt

dJ
D 

.)1()1()1( 152211 FKHrJqTq
dt

dF
D  

 

HKJqTq
dt

dH
D 162211  

 
Where now 

 
*

)(

N

HFJTT HFJDDU 





 
and, 

  21411316151211 ,,,, KKKKUKK
 Here, the invariance region is given by 

       )14(}:),,,,,{( *6* NHFJTTEHFJTTED DUDU    

For the model (13), the associated reproduction number, denoted by R0, is given by },max{ 02010 RRR  , 

where  

161514

15216152216221311
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1121113

1211311111311
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])1()1()1(

)15(
)]1([

]))(1())(1(
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KqKKqKqKK
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KDDKDUKDKK

HJFFF 













 

Theorem 2: The DFE of the model (13), given by (11), is GAS in D
*
 if R0<1. 

Proof: The equations in (13) can be re-written as: 
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Where the matrices G1, G2, and G3, are given by  
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Since matrix G3 is non-negative, thus,  
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If R0 < 1, then 1)(
1

21 


GG  (from the local stability result given in lemma 2, which is equivalent to G1-G2 

having all its eigenvalues in the left-half plane [32]. It follows that the linearized differential inequality system 

(13) is stable whenever R0 <1. Consequently, by comparison theorem [32], it follows that (E; TU; TD; J; F; H) 

 (0; 0; 0; 0; 0; 0). Hence, since D is positively-invariant, it follows that DFE is GAS in 10

* RifD  

   3.3: Existence of Endemic Equilibrium Point (EEP) 

For a special case of model (9) when q1=q2=1 and   and   are very small (negligible), then the model (9) 

becomes 

SS
dt

dS
   

EKS
dt

dE
11  
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U
U TKES

dt

dT
221)1()1(    
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D TKTE

dt
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JKT
dt

dJ
D 14  
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dt

dH
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and, 
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For the model (18), the associated reproduction number, denoted by 
1

0R  is given by }.max{ 1
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Let ),,,,,( ******

1 HJTTES DU  represents any arbitrary endemic equilibrium of the model (18). Solving 

the equations of the model at steady-state gives  
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The expression for   at the endemic steady-state, denoted by  ** is given by 

  )20(
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**
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Fro computational convenience, we re-write expressions (19) in terms of 
**** S  as below: 
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Substituting the expressions in (21) into (20) gives 
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Dividing each term in (22) by  
**** S  (noting that, at the endemic steady-state, 0**** S  gives 
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3.4 LOCAL STABILITY OF THE ENDEMIC EQUILIBRIA POINT (EEP) 

Define }0:),,,,,{(0  HJTTEDHJTTESD DUDU , as the stable manifold of the DFE 

)( 0 . To prove the local stability of the EEP of the model (18), we consider the case where N=N** (i.e. the 

total population is at an endemic equilibrium). Using this definition )( ** HJTTENS DU   in 

(18) gives the following systems: 
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Let ),,,,( **********1

1 HJTTE DU  denotes any arbitrary equilibrium of model (23). We claim the following: 

Theorem 3: The unique endemic equilibrium, 
1

1 , of the model (23) is LAS in D/D0 whenever 11

1 R . 

Proof: We will follow the method given in Thieme [44] (see also [42,43]), which is based on using a 

Krasnoselskii sub-linearity approach. The approach essentially entails showing that the linearization of the 

system (23), around the equilibrium 
1

1 , has solutions of the form 

   )24()( 0
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With CZZZZZZZ i 
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),,,,,( 543210  and Re 0 . The consequence of this is that the eigenvalues of 

the characteristics polynomial associated with the linearized method will have negative real part; in which case, 

the equilibrium 
1

1  is LAS. 

Linearizing the model (23) around the endemic equilibrium 
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Substituting a solution of the forms (24) into the linearized system (23) around 
1

1  gives the following system of 

linear equations 
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Solving for Z3; Z4 and Z5 from the third, fourth and fifth equations respectively of (26) in term of Z1 and Z2 each, 

and then after substituting the values of Z3; Z4 and Z5 into the remaining equations of (26) adding the first two 

equations and simplifying, gives the equivalent system 
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where, the notation iZM )( (with i = 1; 2; 3; 4; 5) denotes the ith coordinate of the vector M (


Z ). It should 

further be noted that the matrix M has non-negative entries provided 0422  pk  and the equilibrium 
1

1  

satisfies 
1

1

1

1  M . Furthermore, since the coordinates of 
1

1  are all positive, it follows then that if 


Z  is a 

solution of (27), then it is possible to find a minimal positive real number s such that 
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Where, ),,,,( 54321 ZZZZZZ 


 with the lexicographic order, and  is a norm in C . 

 The main goal is to show that 0Re  . Assume the contrary (i.e. 0Re  , consider two cases: 

00   and . Assume the first case  =0. Then, (26) is a homogenous linear system in the various 

Zi(i=1,2,3,4,5). The determinant of this system corresponds to that of the Jacobian of system (23) evaluated at 
1

1 , which is given by 
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Solving (25) at the endemic steady-state (
1

1 ) and then from the first equation of (26) it can be shown that, 

0 . Consequently, the system (26) can only have the trivial solution 


 0Z Z=0 (which corresponds to the 

DFE, 0 ). 

Now we consider the case 0 . In this case, )5,4,3,2,1(0)(Re  iFi   since, by assumption, 0Re  . 

It is easy to see that this implies 1)(1  iF , for all i. Now, define 

.5,4,3,2,1,1)(1min)(  iFF i   Then 1)( iF , and therefore, s
F

s


)(
. The minimality of s 

implies that 
1

1
)(


F

s
Z 


. But, on the other hand, taking norms on both sides of the second equation of (26), 

and using the fact that M is non-negative, we obtain 

  )31()()()( **

3

1

133 UsTMsZMZF    

Then, it follows from the above inequality that 
**

3
)(

UT
F

s
Z


  which is a contradiction. Hence, 0Re  , 

which implies that 
1

1  is LAS, if 11

1 R . 

The epidemiological implication of Theorem 3 is that the disease would persists in the community if the basic 

reproduction threshold 11

1 R  if the initial sizes of the sub-populations of the model are in the basic of 

attraction of the endemic equilibrium point
1

1 . 

 
Appendix A 

To explore the possibility of a backward bifurcation in the model (9), we re-label the variables by 

7654321 ,,,,,, xHandxFxJxTxTxEExS DU  ,so that 

7654321 xxxxxxxN  .Further by introducing the vector notation 

TxxxxxxxX )( 7654321  . the model (9) can be written in the form )(xF
dt

dX
 , where 

TfffffffF ),,,,,,( 7654321  as follows 
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The Jacobian of the system (18), at the DFE is given by 
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From which it can be shown that },max{,)( 21

1 RRFVRc   , where  

FJDUU KKKKK   5241321 ,,,,  and 

HK  6 . 

We choose  as our bifurcation parameter. Using the following theorem ([3]), we will determine whether or not 

the system (18) undergoes a backward bifurcation at Rc=1  

Theorem 4: Consider the following general system of ordinary differential equations with a parameter  . 

)(:),,( 2 RRCfandRRRfxf
dt

dx nnn   , 

Where  

0 is an equilibrium point of the system (that is, 0),0( f  for all  ) and  

A1. )0,0()0,0(
j

i
x

x

f
fDA




  is the linearization matrix of the system around the equilibrium 0 with   

evaluated at 0; 
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A2. Zero is a simple eigenvalue of A and all other eigenvlaues of A have negative real parts; 

A3. Matrix A has a right eigenvector w and a left eigenvector v corresponding to the zero eigenvalue. 

Let fk be the k
th

 component of f and 
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Then the local dynamics of the system around the equilibrium point 0 is totally determined by the signs of a and 

b. particularly, if a>0 and b>0, then a backward bifurcation occurs at  =0. 

Case 1: R1>R2: Consider a situation where R1>R2, so that the basic reproduction number Rc=1 gives 1. R1 > R2. 

Since   is our chosen bifurcation parameter, solving for   from Rc =1 gives 
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Case 2: R2>R1: Consider a situation where R2>R1, so that the basic reproduction number Rc=1 gives 1. R2 > R1. 

Since   is our chosen bifurcation parameter, solving for   from Rc =1 gives 
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For our convenience, we denote the value of J when 
*   by *

J     

Eigenvectors of *
J  

Secondly, the following computations are carried out. 
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It can be shown that the Jacobian of the system (33) at 
*   denoted by **)( 0 

 JJ 


 has a right 

eigenvector (corresponding to the zero eigenvalue) given by 
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Furthermore, the Jacobian *
J  has left eigenvectors (associated with the zero eigenvalue) given by 

),,,,,,( 7654321 v  where 
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COMPUTATIONS OF A AND B 
FOR the system (18), the associated non-zero second partial derivatives of F (at the DFE) are given by: 
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It follows from the above expressions that    
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From which it can be showed that a>0 iff 
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For the sign of b, it can be shown that the associated non-vanishing derivatives of F are  
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Thus we have established the following results. 

FIGURES AND TABLE 
 

Table1: Estimate of Epidemiological Burden of TB in Nigeria, 2007 
All forms of TB (thousands of new cases per year) 460 123 

All forms of TB (new cases per 10,000 pop/year) 311 83 
New ss+ cases (thousands of new cases per year) 195 43 

New ss+ cases (per 100,000 pop/year) 131 29 

HIV+ incident TB cases (% of all TB cases) 27 - 

Prevalence  All In HIV+ people 

All forms of TB (thousands of cases) 772 62 

All forms of TB (cases per 10,000 pop) 521 42 
2015 target for prevalence (cases per 1000,000 pop) 141 - 

All forms of TB (thousands of cases) 138 59 

All forms of TB (cases per 10,000 pop) 93 40 

2015 target for prevalence (cases per 1000,000 pop) 18 - 

 
 2000 2001 2002 2003 2004 2005 2006 2007 

DOTs coverage (%) 47 55 55 60 65 65 75 91 

Notification rate (new&relapse cases/100,000pop) 21 36 29 33 41 44 49 56 

%notified (new&relapse cases under DOTS) 100 66 78 100 100 100 100 100 
Notification rate (new ss+  cases/100,000pop 14 18 17 21 24 25 28 30 

% notified new ss+ cases/100,000 pop 100 81 89 100 100 100 100 100 
Cases detection rate (all new cases, %) 7.4 12 9.1 9.7 12 13 15 17 

Cases detection rate (new ss+ cases, %) 12 15 13 15 17 18 20 23 

Treatment success (new ss+ patients, %) 79 79 79 78 73 75 76 - 
Re-treatment success (ss+ patients, %) 71 71 73 - 73 66 77 - 

 

Table 2: Description of variables of the model 
Variable Description 

S(t) Susceptible individuals 

E(t) Infected (exposed) individuals 
TU(t) Undetected individuals with active TB 

TD(t) Detected individuals with active TB 

J(t) Isolated individuals with active TB 
F(t) Individuals who failed treatment 

H(t) Treated individuals  
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Table 3: Description of parameters of the model 
Parameter  Description 

  Recruitment rate into the population 

  Per capita natural mortality rate 

  
Infection rate 

  Effective contact rate for TB infection 

HFJD  ,,,  
Modification parameters 

  Isolation rate for detected individuals 

  Slow progressors 

(1- ) Fast progressors 

  Exogenous re-infection rate 

  Progression rate of individuals in latent stage to active TB 

1  
Endogenous reactivation rate 

2  
Fraction of re-infected individuals that moves to detected class 

U  
Detected rate for undetected individuals 

  Natural recovery rate of undetected individuals 

1  
Treatment rate for detected individuals 

2  
Treatment rate for isolated individuals 

q1 Fraction of detected individuals who are successfully treated 
q2 Fraction of isolated individuals who are successfully treated 

  Rate at which individuals who failed treatment move to other classes  

1  
Number of unsuccessfully treated individuals who move to the latent class 

2  
Number of unsuccessfully treated individuals who move to the undetected class 

HFJDU  ,,,,  
Tuberculosis-induced mortality rate for classes, TU, TD, J, F, H respectively 

  Rate at which treated individuals lose their treatment-induced immunity 

R Fraction of treated individuals who move to exposed class after treatment wanes 

 

Table 4: Parameters values 
Parameter  Description References 

  200( per 100000 population) [] 

  0.02 [8,23] 

  0.1 [38] 

  0.20619 [44] 

  0.7 [23] 

  0.85 Assumed 

  0.2522 [8] 

1  
0.16 [8] 

2  
0.7 [23] 

U  
0.2 [38] 

  0.2 [6,8] 

1 , 2  
Variable  

q1 0.7 [38] 

q2 0.95 [38] 

  0.1 Assumed 

1 , 2  
Modification parameters  

HFJDU  ,,,,  
0.3,0.1,0.1,0.3,0.01 [8] 

HFJD  ,,,  
0.001,0.001,0.001,0.001 [23] 

  5 [1] 

R 0.8 Assumed 
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FIGURE 4: Comparison of observed TB data for Nigeria (Solid line) and model prediction (dotted line). 

Parameter values used are as given in Table 4, with 2.0  

                             (A)                                                         (B) 

 

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (years)

 T
o

ta
l 
n

u
m

b
e

r 
o

f 
in

fe
c
te

d
 i
n

d
iv

id
u

a
ls

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time (years)

 T
o

ta
l 
n

u
m

b
e

r 
o

f 
in

fe
c
te

d
 i
n

d
iv

id
u

a
ls

 
(C) 

 

 

FIGURE 5: Simulation of the model (9) showing the total number of infected individuals (E+ UT + DT + J + F ) 

as a function of time, using the parameters in Table 4 with ,1.0,1.0,3.00.02, ,200 U  JD   

).4696.19(13)).(4977.1(1)).(1046.0(07.0)(2.0,3.0 111  RCRBRAUF                 
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FIGURE 6: Simulation of the model (9) showing the total number of infected individuals (E+ UT + DT + J + F ) 

as a 

function of time, using the parameters in Table 4 with ,1.0,1.0,3.00.02, ,200 U  JD   

).0372.0(13)).(0029.0(1)).(0042.2(07.0)(2.0,3.0 22

004

2   RCRBeRAUF 
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FIGURE 7: Simulation of the model (9) showing the total number of infected individuals (E+ UT + DT + J + F ) 

as a  

function of time, using the parameters in Table 4 with ,1.0,1.0,3.00.02, ,200 U  JD   

).4696.19(13)).(1048.0(07.0)(2,2.0,3.0 11  RBRAUF   
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FIGURE 8: Simulation of the model (9) showing the total number of infected individuals (E+ UT + DT + J + F ) 

as a function of time, using the parameters in Table 4 with ,1.0,1.0,3.00.02, ,200 U  JD   
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FIGURE 9: Simulation of the model (9) showing the total number of infected individuals (E+ UT
+ DT

+ J + F ) 

as a  

function of time, using the parameters in Table 4 with ,1.0,1.0,3.00.02, ,200 U  JD   

).0282.1(7.0)).(0184.1(68.0)(2,2.0,3.0 11  RBRAUF 
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FIGURE 10:Simulation of the model (9) showing the total number of infected individuals (E+ UT + DT + J + F  

) as a function of time, using the parameters in Table 4 with 0.02, ,200    
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FIGURE 11: Simulation of the model (9) showing the total number of infected individuals 

(E+ UT + DT + J + F ) as a 

function of time, using the parameters in Table 4 with ,1.0,1.0,3.00.02, ,200 U  JD   

).9743.0(7.0)).(1989.1(68.0)(067.0,2.0,3.0 11  RBRAUF   
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FIGURE 12: Simulation of the model (9) showing the total number of infected individuals 

(E+ UT + DT + J + F ) as a 

function of time, using the parameters in Table 4 with ,1.0,1.0,3.00.02, ,200 U  JD   

).0013.0(7.0)).(7522.3(68.0)(09.0,2.0,3.0 2

004

2   RBeRAUF     

                                   

(A)                                                                             (B) 

                                                                   

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (years)

 T
o

ta
l 
n

u
m

b
e

r 
o

f 
in

fe
c
te

d
 i
n

d
iv

id
u

a
ls

 
                                                          

                                                             

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (years)

 T
o

ta
l 
n

u
m

b
e

r 
o

f 
in

fe
c
te

d
 i
n

d
iv

id
u

a
ls



Modelling the Effect of DOTS and Isolation on TB Transmission Dynamics 

www.iosrjournals.org                                                             48 | Page 

(C) 

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (years)

 T
o

ta
l 
n

u
m

b
e

r 
o

f 
in

fe
c
te

d
 i
n

d
iv

id
u

a
ls

 
FIGURE 13: Simulation of the model (9) showing the total number of infected individuals 

(E+ UT + DT + J + F ) as a  

function of time, using the parameters in Table 4 with ,1.0,1.0,3.00.02, ,200 U  JD   

0.1)(5.0)(;2.0)(2,3.0  uuuF CBA   

 

IV. Discussion And Conclusions 
A deterministic model for the transmission dynamics of tuberculosis (TB) in Nigeria under DOTS programme is 

designed. The model is rigorously analysed to gain insight into its dynamical features. Relevant demographics 

and biological data are used to simulate the model and explore the possibility of reducing the burden of the 

disease in the society. The study shows the following: 

(1) The classical epidemiological requirement of having the maximum associated reproduction number Rc 

less than unity i.e one (1), while necessary, is not sufficient for the disease elimination due to the 

phenomenon of backward bifurcation, which the model exhibits. 

(2) The model highlight the significant roles of the case detection rate (CDR) in reducing the burden of the 

disease in Nigeria. 

(3) From the study, we also established that DOTS can lead to effective elimination of TB in Nigeria provided 

the rate at which the undetected individuals with active TB recovered exceeded a critical values, otherwise 

the disease will persist. 

(4) The model also established that if the rate at which individuals who failed treatment (i.e people who 

developed multi-drug resistant) moves to other classes increases where they can be retreated under DOTS, 

then the burden of the disease will reduces. 

(5) The study also shows that if the effective contact rate (  ) for TB infection does not exceed certain critical 

value (0.187), the disease can be eliminated in Nigeria. 

(6) The model predicts a substantial decline in TB incidence in the society provided the progressor rate (  ) 

of individuals who are susceptible to TB is low. 

(7) The occurrence of the backward bifurcation phenomenon necessarily requires the exogenous re-infection. 

Numerical simulations of the model, using appropriate demographic and epidemiological data for Nigeria, show 

the following results: 

(2) Using the data in Table 4, Figure 5 and 6 shows that when the effective contact rate is very low (   = 

0.07, correspond to R1= 0.1048 < 1 and R2= 2.0042e
-004

 < 1) (see Fig.5A and 6A respectively) the model 

prediction shows that Nigeria would have maximum of 4800 per 100000 infected cases and in the next 

50years years, the disease would have been eliminated completely in Nigeria. But when the effective 

contact rate is above the critical values for instance (   = 1.0, correspond to R1= 1.4977 > 1 and R2= 

0.0029 < 1) (see Fig.5B and 6B respectively) it is shown that Nigeria will have maximum of 2.8 x 10
4 

per 

100000 infected individuals and in the next 80years, about 1.1 x 10
4
per 100000 infected individuals would 

remain constant in the society. Further increase in effective contact rate (   = 13, correspond to R1= 

19.4696 > 1 and R2= 0.0372 > 1) (see Fig.5C and 6C respectively) shows that Nigeria will have maximum 

of 5.7 x 10
4
per 100000 infected individuals and in the next 45years, about 1.4 x 10

4
per 100000 infected 

individuals would remain constant in the society. 
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(3) The simulation of the model using data in Table 4, with the rate at which those who developed multi-drug 

resistant (  ) moves to other class for possible re treatment under DOTS increases (   = 2,   = 0.07; 

correspond to R1= 0.1048 and R2= 1.0701e
-0.04

and   = 13; correspond to R1= 19.4696 and R2= 0.0199 ) 

(see Fig.7A & 8A and 7B & 8B respectively) shows that when is increased, it increases the prospect of 

reducing the burden of TB in the society. The epidemiological implication of this is that when people who 

developed multi-drug resistant are moved to classes where they can be treated again at faster rate it can 

reduce the burden of TB in the society. 

(4) In Figure 9 and 10, the results shows that 68.0  when the effective contact rate (  ) is  above the 

critical value (   = 2,;but less than unity, correspond to R1= 1.0184 > 1 and R2= 0.0010 < 1), the 

maximum number of infected individuals is about 25000 per 100000 (Fig.9A & 10A) and the disease 

cannot be totally eliminated in the society compared to (Fig.5A & 6A). But an increase in recovered rate of 

the undetected individuals (v) shows that (with   = 2,   = 0.7; correspond to R1= 1.0282 > 1 and R2 = 

0.0010 < 1), in the early 40years the number of infected individuals in the society is insignificant, but 

gradually increases with time see (Fig.9B & 10B).  

(5) The results of Figure 11 & 12 reveals that with low progressor (  = 0:067; correspond to R1= 1.1989 > 1 

and R2= 3.7522e
-004

 < 1), reduces the burden of TB in the society to about 60years (Fig.11B & 12B) 

compare to about 80years and emergency resurface in between 90-110years when   = 0.09 (high 

progressor). R1=0.9743<1 and R2=0.0013. 

(6) The results of Figure 13 A, B, C shows that as the case detection rate is increasing the numbers of years is 

decreasing. This implies that the case detection rate (CDR) plays a vital roles in the prospect of reducing 

(eliminating) TB burden in the society. 

In summary, this study shows that the prospect of effectively reducing (or even eliminate) TB in Nigeria seems 

plausible provided the following measures are taken and/or improved upon: 

(a) That concerted effort be made to keep the effective contact rate at minimum level. i.e below the critical 

value (0.187) 

(b) The case detection rate is projected beyond the current target levels. 

(c) All possibilities of developing Multi-drug resistant should be averted, e.g by employing trained personnel 

who will be able to administer drug to TB patients correctly. Also, the source of the drug must be reliable 

and the drug delivery should be regulated. 

(d) DOTS should be promoted even in the rural areas in Nigeria. 
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