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Abstract: A deterministic model for the transmission dynamics of Tuberculosis (TB) under Direct Observation
Therapy Strategy (DOTS) and Isolation in Nigeria is developed and rigorously analysed. The model, consisting
of mutually-exclusive epidemiological compartments representing the number of undetected, detected and
isolated individuals who are treated under DOTS programme and those who developed Multi-drug resistance.
The model has a disease free equilibrium (DFE), which is locally asymptotically stable, whenever the maximum
of the associated reproduction numbers of the model (denoted by R.) is less than unity. Furthermore, the model
undergoes a backward bifurcation, where the disease-free equilibrium co-exists with a stable endemic
equilibrium. Numerical simulations, using epidemiological and demographic data relevant to Nigeria obtained
from WHO and USAID [35,36,38], shows that provided the rate at which the undetected individuals with active
TB recovered exceeded a critical values, then DOTS, the STOP TB initiative programme of WHO can lead to
effective elimination of TB in Nigeria. This suggest that the detection rate plays significant role in the
elimination of TB. Furthermore, it is shown that if the progress or rate of individuals who are susceptible to TB
is low, it can also lead to elimination of the disease in Nigeria. The results also shows that if the effective

contact rate ( ) for TB infection remains below certain critical value (0.187), the disease can be eliminated.

Keywords: Bifurcation, Case Detection Rate (CDR), DOTS, Dynamical system, Reproduction number,
Tuberculosis.

I.  Introduction

Tuberculosis (TB), an airborne-transmitted disease caused by the bacterium Mycobacterium
tuberculosis, remains one of the most important public health challenges for decades. In addition to affecting at
least one-third of the human population (2 billion people), TB is the second greatest contributor of adult
mortality amongst infectious disease (causing at least 2 million death a year globally) [1, 15, 35, 36, 37]. Owing
to the rising deaths and infection rates (especially in developing countries), the World Health Organization
(WHO) declared TB as a global public health emergence in 1993 [14, 21]. Over 80% of all TB patients live in
22 countries, mostly in sub-saharan Africa and Asia.

Over the years, a number of global initiatives, spearheaded by WHO, were embarked upon with the
hope of minimizing the burden of TB worldwide (in particular, to achieve the Millennium Development Goal of
halting ang beginning to reverse the incidence of TB by 2015). These include the "Stop TB Partnership",
"International Standards of Tuberculosis care and patient's care” and the "Global Plan to Stop TB" [1]. A
notable medical contribution in TB control was the introduction of antibiotics, which resulted in significant
decrease in mortality (for instance, a 70% reduction in TB-related mortality was recorded in the USA between
1945 to 1955 [3,13,23]). TB-infected people can be effectively treated using multiple drugs via the Direct
Observation Therapy Strategy (DOTS) [40]. However, if not strictly complied to or administered wrongly, such
therapy may lead to the evolution and development of multi-drug resistant TB (MDR-TB) [8].

Numerous modelling studies have been carried out to gain insights into the transmission dynamics and
control of TB spread in human population (see, for instance [3, 10, 15, 17, 22, 23, 29, 33]). The purpose of the
current study is to provide a rigorous mathematical analysis of a model for TB spread in the presence of DOTS
and isolation of infectious INDIVIDUALS. The model to be designed is an extension of many of the models in
the aforementioned studies.

The paper is organized as follows. The model is formulated in section 2, and is qualitatively analysed
in section 3. Some numerical simulation results are provided in section 4. In particular, a case study, for TB
dynamics in Nigeria is considered.
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Il.  Model Formulation
The total homogeneously-mixing population at time t, denoted by N (t), is subdivided into mutually-
exclusive compartments of, susceptible (S (t)),exposed (E(t)), undetected infectious (T y(t)), detected infectious
(To(t)), isolated (J (1)), treated (H (t)) and those who failed treatment (F(t)) individuals, so that

N@)=S@t)+E®)+T, ) +To@t) +I)+H(E)+ F(t)
The susceptible population is increased by recruitment (either by birth or immigration) into the population (all
recruited individuals are assumed to be susceptible) at a rate Il. This population is decreased by infection, which

can be acquired following effective contact with infectious individuals in the undetected (Ty), detected (Tp),
isolated (J), treated (H ) or failed treatment (F ) category, at a rate given by:

ﬂzﬂ(Tu+770TD+77J‘]+77FF+77HH )
N
In (1), [ represents the effective contact rate (i.e., contact capable of leading to infection), 77, is a modification

parameter comparing the transmissibility of detected infectious individuals in relationship to undetected
infectious individuals. Since detected individuals are offered treatment and/or isolation, it is intuitive to assume

that 77, <1. Similarly, 77;,7- and 7, are modification parameters comparing the transmissibility of
infectious individuals in the isolated, failed treatment and treated classes, respectively, with those in the
undetected infectious class. Here, 77; <1 (since isolated individuals have reduced contact and are offered

treatment during isolation), 77, <1 (since treatment reduces transmissibility) and 7. <1. Finally, this
population decreases by natural death at a rate . Thus, the rate of change of the susceptible population is given
by

ds

i [1-2S — 18 (2)

A fraction, £ , of new infected individuals move to the exposed class (E), while the remaining fraction, (1-¢& ),

move to the infectious undetected class (fast progressors) Ty. The population of exposed individuals is further
increased by the natural recovery rate of undetected individuals (at the rate ©), by the reversion of individual s

who failed treatment (at a rate 8,0, where €, <1) and by individuals who are successfully treated (at a rate
ro , with r < 1 representing the fraction of treated individuals). This population is decreased by progression to
active TB (at a rate x ), exogenous re-infection (at a rate A, where i < 1 accounts for the assumption that

exposed individuals have reduced infection rate in comparison to wholly susceptible individuals) and natural
death (at the rate ). Thus,

dE

E=§ZS+UTU+91pF+raH—(K+l//ﬂ,+,u)E 3)

The population of undetected infectious individuals is increased by the new infection of fast
progressors (at the rate (1-£)A) and the development of symptoms by exposed individuals (at the rate

(1- @)k, where @;is the fraction of exposed individuals who develop symptoms and are detected),
exogenous re-infection of exposed individuals (at the rate (1— @, ) A, where @, is the fraction of re-infected
individuals who are detected) and by individuals who failed treatment (at the rate &, ). This population is
decreased by natural recovery (at the rate v), detection (at a rate J ), natural death (at the rate £¢) and disease-
induced death (at a rate 5U ). Hence,
dT,,
dt
The population of detected individuals increases by the detection of exposed individuals (at the rates @,k
and m,A ), undetected individuals (at the rate yAJ )and failed treated individuals (at a rate [1— (6, + 6,)]p) .
The population is decreased by isolation (at the rate o ), treatment (at a rate 7,), natural death (at the rate 1)

=1-8AS+(1-w)kE + (1— @,)WAE + 6,pF — (v + U + 1+ ST, (4)

and disease-induced death (at a rate o < ). This gives
dT,
dt

=wokE + o,y E+ 3, T, +[1—-(6,+6,)]pF —(c+ 7, + 11+ )T (5)
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The population of isolated individuals is generated by the isolation of detected individuals (at the rate o). It
diminishes due to treatment (at a rate 7, ), natural death (at the rate £/) and disease-induced death (at a rate
0; <& ). Hence,
dJ
dt
Individuals in the F class are those in whom treatment has failed. This (treatment failure) could be due to a
number of reasons such as incomplete compliance to the specified treatment regimen, development of resistance

etc. This population is generated by the failure of treatment in detected individuals (at the rate (1—0q,)7;),
isolated individuals (at the rate (1—Q,)7,) and treated individuals (at a rate 1—r)er). In addition to natural

=oly — (7, + u+35;)J (6)

death (at the rate £¢) and disease-induced mortality (at the rate OF ), individuals can leave this class and move
to the exposed class (at the rate &, p), undetected class (at the rate ,p) and detected class (at the rate

[1—- (6, + 6,)]p) ). In other words, it is assumed that individuals in whom treatment has failed can eventually
become latent naturally (i.e., move to the E class) or remain infectious (and join either Ty or Tp class). It should
be noted that the fractions &, and &, are such that 6, + &, <1. Thus,

dF

E =@1-ag)nT, +(1-0,)7, ) +@A-1)aH — (o + u+ 0 )F (7)

The population of treated individuals is increased by the treatment of detected individuals (at the rate g,7z,) and
isolated individuals (at the rate Q,7,). Since there is no cure for TB, successfully-treated individual as
eventually move to the exposed class (at the rate ¢ ). This population is further decreased by natural death (at

the rate £ ) and disease-induced death (at a rate 6, <y ). Hence

dH

EZ%QTD +0,7,d —(a+ pu+6,)H )
Thus, in summary, the TB treatment and isolation model is given by the following system of non-linear
differential equations (a flow diagram is depicted in figure 3; the associated variables and parameters are
described in Tables 2 and 3).

ds
—=]]-48 -
dt #
dE
E:&S +UT, +0,0F +raH — (k + yA+ u)E
d(-jl:[u =(1-&)AS +(1-w)kE + (1— @, )WE + 6,pF —(U+y, + 1+ 5,)T,
dT
dtD = w,kE + w,WAE + y T, +[L— (6, + 0,)]oF — (o + 7, + u+ 5,)T, 9)
dJ
E=O'TD—(r2+,u+5J)J
dF
E=(1—q1)71TD +(1-09,),d +A-r)oH —(p+u+5:)F
dH
E=q171TD +0,7,d — (@ +p+6,)H

The essential features of the model (9) are:
(i) allows for infection by individuals in all infected classes (Ty; Tp; J; F; H ) with exception of those in
the exposed class;

(ii) allows for exogenous re-infection (at the rate {74 ) and endogenous re-activation (at the rate K );

(iii) allows for slow progression (at the rate &4 ) and fast progression (at the rate &4 to disease;

(iv) treatment and isolation of infected individuals, and allowing for the possibility of treatment failure.
Individuals who failed treatment are distributed into the exposed or infectious classes for detected
and undetected individuals;
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(v) exposed individuals who develop symptoms (either due to re-activation or reinfection) are distributed
into the undetected and detected classes.
The model extends some of the earlier models, such as those in [1, 8, 23], by including;
(@) theisolated class (J),
(b) the failed treatment class (F ),

(c) slow and fast progression aspect of TB disease( & ), and

(d) screening and detection of undetected infectious individuals (at the rate AU ).
Using a set of demographic and epidemiological data relevant to Nigeria (given in Table 1), the model (9) gives
a reasonable fit of the observed TB burden data from Nigeria for the period 2000-2007 [36, 37] as depicted in
Figure 4. This shows that the model can be used to gain insights into TB transmission dynamics in a population
such as Nigeria.

I11.  Analysis Of The Model

Lemma 1: The closed set D :{(S, E,T,,T,,J,F,H) eR :N SH} is positively-invariant and
U
attracting with respect to model (9).

I1
Proof 1: Consider the biologically-feasible region, D = {(S, E, T, T, J,F,H eR :N<—
U
We shall show that D is positive invariance (i.e; all solutions in D remain in D for all time t > 0). The rate of
change of the total population, obtained by adding all the equations in model (9), is given by:

(L—T:H—,uN —8,T, -8.T, =8, = 5.F (10)

dN dN
It follows that E<O whenever N >H. Note that s is bounded by [[—#N, and a standard

U
I1

comparison theorem [32] can be sued to show that N(t)<N(0)e™ +—(@1—e™). In particular
u

[1

N(t)<—, if N(0)< I ,. Therefore, all solution of the model with initial conditions in D remains there for

t>0 (i.e. the w-limits sets of the system (9) are contained in D). This implies that D is positively-invariant and
attracting. In this region, the model can be considered as been epidemiologically and mathematically well-posed
[19].

3.1 DISEASE FREE EQUILIBRIUM (DFE)
The model (9) has a disease free equilibrium (DFE) given by

C,=(S"E" T, 75, 3", F" H')= (H,o,o,o,o,o,oj (12)
M

Using the next generation matrix (see[25])/ The non-negative matrix F (of the new infection terms) and the non-
singular matrix V are given, respectively by:

F:Fl F,
0 O

Where,
0 & &bBnp &b, &b &by
F=|0 @A-8B8 @-8)pBnp| F,=|A-8)pn, A-8)pBn. 1-E)pny
0 0 0 0 0 0

V: Vl V2
Vv, V,
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Where
K, -v 0 0 - pb, -ra
V,=|-l-o)x K, 0 |V,=|0 - pb, 0
- oK - K, 10 -1-6+6,))p O
00 -o K, 0 0
V;=10 0 Q-0a)z | Vy=|-(1-0a,)7, Ky —(1-7)e
00 7y L — 0.7 0 Ko

and, Ki=x+u, K=o+ J+u, Kj=o+1,+u+,, K,=7,+u+75,
Ki=p+u+o:, Ki=a+u+do,

Define,

R — BL-E)K K, +nDMK, +7Dxvew) + (1w, )(ExK,; + SxnDyv) + kD w, K, | (12)
' Ks[K K, +vic(@, —1)]

R — BAL-Ene KKy +(L-0,)Ene7,Ke, + L=7)Ene 7,00, + 87, KKy + 8171 a0, K ]

K, KK,

It follows that the basic reproduction number, denoted by Rc, is given R. = o/(FV ') = max{R,, R, } where

o denotes the spectral radius (dominant eigenvalue magnitude) of the next generation matrix F V. Hence,
using Theorem (2) of [25], we have established the following result.

Lemma 2: The DFE of the model (9), given by (10), is locally asymptotically stable

(LAS) if Rc < 1, and unstable if Rc > 1.

The threshold quantity, Rc, is the reproduction number for the model. It measures the average number of new
TB infections generated by a single TB-infected individual in a population where a certain fraction of infected
individuals are treated and/or isolated. The epidemiological implication of Lemma 2 is that TB can be controlled
in the community (when Rc < 1) if the initial sizes of the sub-populations of the model are in the basin of
attraction of co. Since TB models are often shown to exhibit the phenomenon of backward bifurcation [23],
where the stable DFE co-exists with a stable endemic equilibrium when the associated reproduction threshold
(Rc ) is less than unit, it is instructive to determine whether or not the TB dynamics model (9) exhibits this
feature. This is investigated below,

Theorem 1: The model (9) undergoes a backward bifurcation at R.=1 if
2
azﬂ(&)s(a)2 + W+ O+ O+ Oy + @) + U (@, + Oy + 0, + O + 0y + @) +
T

@ (1= @,)0; + 0,0, — ;) = v, (W, + Wy + B + V5 + 05 + @;) — V3 (@, + W,y + B
+ oy + oy + @,)) (7,05 + N0, + O + Ny, +1;0,) 1S positive
The proof, based on the centre Manifold theory, is given in Appendix A.

3.2 GLOBAL STABILITY OF THE DFE
Here, the global asymptotic stability (GAS) property of the DFE of the model (9) will be explored for

the case y =0 (i.e, in the absence of re-infection). By letting ¥ =0, =y =0, =0 =5, =0 inthe
model (9), it follows that S =N~ —E —T,—T4 —J —F —H at steady state. Hence, the global stability of

&, can be established by considering the following mass action equivalent of the model (9).
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%§=aﬂv—5—n—ﬂfJ—F—HMvR+p@FHﬂH—Nﬁ-
ETLF Q-OAUN —E-T, ~Tp = = F = H) + (L~ @)4E + p&,F — KT,
-
d_?[ = kE+y, T, +[1- (‘91 +6,)]0F — K51,
((jj_\: =oTp —Ky,J a3
dF
E =(1- ql)TlTD +(1- qz)TzJ +(@1-r)eH - KisF
dH
E =07, 1p +0,7,d — KigH
Where now

A= By +nTp +17,d + 1 F + 7, H)

N

and,

Kp=x+u Kp=0+M+u, Kg=p+u, Kg=a+u Ky=o+r,+p, K,=7,+u
Here, the invariance region is given by

D ={(E,T,.T,,J,F,H) eR®E +T, +Tp+J+F+H< N’} a4)
For the model (13), the associated reproduction number, denoted by R, is given by Ry =max{R,,, R,,}.
where

R = BA-E)(KyuKys +7DWK,, +7Dxvay) + (11— o )(GkK 5 + SknDyv) + SknD v Ky, ] (15)
" Kis[Ky; Ky, +0K(0, -1)]

B BA=ne KKy +(1-0,)8me7,K w6t (A-7)ene7y00, + S, KisKyg + Sy o, Ko
02 =

K14 KlS KlG

Theorem 2: The DFE of the model (13), given by (11), is GAS in D" if Ro<1.
Proof: The equations in (13) can be re-written as:

dE E

dt

dTU Ty

dt

dT, T,
dt |_(6,-G,-6,) (16)

dJ

E J

dF

E F
dH

gt H

Where the matrices G,, G,, and G, are given by
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0 & &Bnp &b, &P &b
0 -8B @-8)pn, A=-8)pn, A-8)pn. -5,
0 0 0 0 0 0
G =
0 0 0 0 0 0
0 0 0 0 0 0
10 0 0 0 0 0 |
[ K, -0 0 0 — pb, —ra |
-1l-o)x K, 0 0 - pob, 0
G =| oK - K, 0 -A-(6,+6,))p 0
? 0 0 ~c K, 0 0
0 0 -(l-g)r, —(-q,)r, Ks -(1-nNa
L 0 0 —-qn — Q0 0 Ke |
And )
0 A A 7 A A
1-9H2 -84 1-9H)4 (1-5H1 (1-H)4 A-9)4
0 0 0 0 0 0
G =
0 0 0 0 0 0
0 0 0 0 0 0
| 0 0 0 0 0 0 |
Since matrix Gs is non-negative, thus,
d£ E
dt
aT, T
dt
aTy To
dt
4 <(G-Gy) J an
dt
aF
dt F
dH
dt H

If Rp < 1, then p(Glefl) <1 (from the local stability result given in lemma 2, which is equivalent to G;-G;
having all its eigenvalues in the left-half plane [32]. It follows that the linearized differential inequality system
(13) is stable whenever R, <1. Consequently, by comparison theorem [32], it follows that (E; Ty; Tp; J; F; H)
—>(0; 0; 0; 0; 0; 0). Hence, since D is positively-invariant, it follows that DFE is GAS in D™ if R, <1

3.3: Existence of Endemic Equilibrium Point (EEP)
For a special case of model (9) when q;=q,=1 and v and & are very small (negligible), then the model (9)
becomes

ds

— =[]-4S -

dt #
dE

E:&S + KllE
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th“ —(L- )25 + (L- w)E — KygT,

dT

d_tD = o kE +y, T, — KT, (18)
dJ

o =T~ Kud

dH

E = TlTD +T2J — K26H

*

and, Ky, =x+4, Ky =py +4 Kg=o+z,+p, Ky =7, + 47, Kyg = 1

For the model (18), the associated reproduction number, denoted by Ré is given by Ré = max{ Rll.Ré},
where

R! — BA=E)K, K+ 57, Kyy) + L= )(EK ; + Exnpyo) + Sk, K, ]
! =
KKKy,

Kl4

Let g = (S, E*,TJ,T,;, J",H") represents any arbitrary endemic equilibrium of the model (18). Solving
the equations of the model at steady-state gives

S™ = **L

A+ u
E™ = A S

K
w @A=EATST + (- a)l)KE**
T, =
Ky,
TS* _ o kE +yy T, (19)
Kis

3" ol

Kia
H™ = Q171T|; +0,7,J ”

Kas

The expression for A at the endemic steady-state, denoted by A ** is given by

;L**:ﬂ[Tu +1pTp I‘\'I'Zj‘] +n,H ] (20)

Fro computational convenience, we re-write expressions (19) intermsof A 'S as below:

*% o Kk

o S

Kll
TJ*:(1—§)/1 S , (1-m)é&i S _ps”
K22 K11K22
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T - o kELS” L PAS™
K13 K11K22
e _ 0 qua,s L JuPRATS }:Rﬁfsﬁ
K14 K11K13 KlS

=P,A"S™ (21)

H™ =L P,A"S" + 2 PA"S" =P,A"s"
K 26 K 26
Where

o (10 (-
K22 K11|<22

__oxE 7, {(1—§)+(1—w1>@<}

2

- K11K13 K13 K22 KllKlZ
o [ oxé 7, {(1—§)+(1—w1)&<ﬂ

3 =

Kl4 K11K13 K13 K22 K11K12

_n { oKE 7, {(1—5)+(1—w1)&<ﬂ+ 2 g{ oKE | 7, ((1—§)+(1—w1)&<ﬂ
-
K26 K11K13 K13 K22 K11K22 K26 K14 K11K13 K13 K22 K11K22

Substituting the expressions in (21) into (20) gives

ST+ &KS +PAST+PATST + P3/1**S** +PA7S7]= B ST[P + 1P, +1,P, +1,P,] (22)
11
Dividing each term in (22) by A~ S™ (noting that, at the endemic steady-state, 1~ S~ #0 gives

1+ RA" = pIP, + 1P, +1,P, +1,,P.]

Where
P5:i+P1+P2+P3+P4ZO
11
So that,
1+ Psfr = K_K Kﬁ K_K [(L- &K KK Kog + (L= @)K K Ko +17p0,86K K Kog + 7757,
RLAYZLASELSPLANTS
(1=K K Ko +157, (L= @) GK Koy + 1,00, 86K 5, Ky + 17507, (L= E) K Kog + 17,07 (L- @) éxK
17 7,0, 5K , Ky + 17707 L= EK K, + 11y 707 (L= 0,)86K,, + 177,00, 80K, + 177,07, (L= 6K,
W T,07y (1_(01)5’(] = Rll +Q
Where
Q= p [17, 2, 5K 1, K, + 17, K [(L= E) Ky + (= @) ] + 17y 10, 8K, K, +
K1iK oK 5K Ky

MaTVu K@= $K,y + - @) éx] + 7y 7,00.86K,, + 1y 7,07 [ - E)Kyy + (- @) k]

Therefore, 1+ P4~ =R/ +Q

« Ri+Q-1
Sothat, A = Ri+Q-1 >0 whenever R} >1

5
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34 LOCAL STABILITY OF THE ENDEMIC EQUILIBRIA POINT (EEP)
Define D, ={(S,E,T,,Ty,J,H)e D:E =T, =T, =J =H =0}, as the stable manifold of the DFE
(80) . To prove the local stability of the EEP of the model (18), we consider the case where N=N** (i.e. the

total population is at an endemic equilibrium). Using this definition (S=N"" —E -T, -To—J—H) in
(18) gives the following systems:

d_E= Py +15Tp +7,d +17, H)N" —E-T, =T, -J _H)—K E
dt N .

dT, _ A-&)Ba, +n,T, +17,d +77HH)(NH_E_TU -Ty, —J—H)
dt N~

+(1—-w)xE -K,,T,

dT,

d_tD = kE +y, T, —KiTp (23)
dJ
E =ol, - K,J

dH
dt
Let & =(E™, T, , T, 37, H™) denotes any arbitrary equilibrium of model (23). We claim the following:

=1,Tp +7,d — Ky6H

Theorem 3: The unique endemic equilibrium, 811, of the model (23) is LAS in D/D, whenever Rl1 >1.

Proof: We will follow the method given in Thieme [44] (see also [42,43]), which is based on using a
Krasnoselskii sub-linearity approach. The approach essentially entails showing that the linearization of the

system (23), around the equilibrium 511 , has solutions of the form
Z(t)=Zoe" (24)

with Zo =(Z,,2,,2,,2,,Z;),Z, € C and Re 7 > 0. The consequence of this is that the eigenvalues of
the characteristics polynomial associated with the linearized method will have negative real part; in which case,
the equilibrium &; is LAS.

Linearizing the model (23) around the endemic equilibrium 811 , gives

O (P~ KE+ (Pys = )Ty + 00 = Pu)To + 7, Ri = P + (2 Pra ~ Po)M

T = (- 0k = R + (Puy = Pry =Ko )Ty + (0P — Po)To + (7, Pay = )3 + (74 Pa — P
d;:[D = o kE+ 7, T, —KiTp (25)

(;—‘z = 0T, — K,,J

dd—T =7,Ty+7,d —K,H

Where

- - - - - 1- - - - -
Pll=|§—"z*(TU +1pTp +m,d + 1, H )’ Plz:%s 'P13:(N—§)IB(TU +1pTp +,d + 1, H )

*%

and P, = w\%

Substituting a solution of the forms (24) into the linearized system (23) around 811 gives the following system of
linear equations
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Z, = (P —Ky)Z, + (P = P1)Z, + (17pP —P)Zs + (7, Py, — P Z, + (7 B, — P Zs
2, =1-o)k—P,)Z, +(P,—P3—K,,)Z, +(175P, = P3)Zs + (7, Py — Rg)Z, + (74 Py — P3) Zs

Ly =kl +y,Z, — Kl (26)

Z,=0l,-K,Z,

Uy =12,+7,7,—KZs

Solving for Zs; Z,and Zs from the third, fourth and fifth equations respectively of (26) in term of Z; and Z, each,

and then after substituting the values of Z3; Z, and Zs into the remaining equations of (26) adding the first two
equations and simplifying, gives the equivalent system

Z, [+ F ()] + [+ F,2)]Z, = (M Z2), + (M 2),

[L+F,2)]Z, = (M Z),

L+F,0)]Z,=(M2), (27)
[1+F7)]Zs =(MZ),
Where,
+P, P P P
F,(r) = T+ n 13 +( LI 13 JAi
K11 Kzz - PlZ K11 Kzz - P12
P +P, P P
F, () = o, 2T _’_( LI 13 jAZ (28)
K11 Kzz - P12 K11 K22 - F)12
T T T
F@)=— F@)=— K@@=
K13 K14 Kzs
With
0 5~ 14£608" n,5665" 1 p0s”
N"K,, N"K,, N"K,, N"K,,
(-a)x 0 (1 -£)ps™~  (1;(=6)B" (1) p5™
M Kao=Pa N™"(Kp=Pg) N™"(Kp—P4) N""(Kz—P4)
Row 0 0 0
0 0 o 0 0
o 0 [on 0
A - oK ow, K oo+ 7,0 oK |
; T+K, (T+K)(T+Ky) t+Ky, )T+ K,
An
A, = Vi + T + 7+ £29 Yu
t+K, (t+Ky,)(r+Ky) t+K, JT+K,

where, the notation M (Z), (with i = 1; 2; 3; 4; 5) denotes the ith coordinate of the vector M (Z ). It should

further be noted that the matrix M has non-negative entries provided K,, — p, >0 and the equilibrium 811

satisfies 811 = I\/Igll. Furthermore, since the coordinates of 811 are all positive, it follows then that if Z is a
solution of (27), then it is possible to find a minimal positive real number s such that

‘z <séel (29)
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Where,

2‘ = (|Zl|,|Zz|,|ZS|,|Z4|,|ZS|) with the lexicographic order, and | | isanormin C.

The main goal is to show that Rez <0. Assume the contrary (i.e. Rez >0, consider two cases:
=0 and 7 #0. Assume the first case 7 =0. Then, (26) is a homogenous linear system in the various
Zi(i=1,2,3,4,5). The determinant of this system corresponds to that of the Jacobian of system (23) evaluated at

gll, which is given by

E** +T** + T*'k + J** + H‘k* S** S**
A=- u "Moo o s M Bl - K11K22K13K14K26[1 - F Rllj + F Bzv (30)

N

E** T‘k* T** *%k H** *%k *%k
=T LT LE: : )+, B, - K11K22K13K14K26[1_ S_** R11 - > s B, j
N N N KKK K Ko

here
B, = (7K, + oKy + K Ky + m'z)l_(l_ ) K, + - a’l)ég’(ﬂ/# + a)l’(éaKzzj

+K13K14K26[(1_ SK+ (- @)k + Sngz]
B, = (077, Kys + 7, + 11 K- Ky, + A= @)éky,, + iyxedy ]
Solving (25) at the endemic steady-state (gll) and then from the first equation of (26) it can be shown that,
A < 0. Consequently, the system (26) can only have the trivial solution 2 = 6 Z=0 (which corresponds to the
DFE, &)).
Now we consider the case 7 # 0. In this case, Re F(7) > 0(i =1,2,3,4,5) since, by assumption, Rez >0.

It is easy to see that this implies |1+ F (Z')| >1, for all i. Now, define
F(r)= min|1+ F (Z')| >1,1=12,34,5. Then F(z)>1, and therefore, F) <'S. The minimality of s
T
S S
implies that |Z| > mgll But, on the other hand, taking norms on both sides of the second equation of (26),
T
and using the fact that M is non-negative, we obtain
F(0)|Z5] <M(Z]); < s(M]ef)s < T (31)

S **k
Then, it follows from the above inequality that |Z,| < —F( )TU which is a contradiction. Hence, Re7 <0,
T

which implies that &, is LAS, if R} >1.
The epidemiological implication of Theorem 3 is that the disease would persists in the community if the basic
reproduction threshold Rll >1 if the initial sizes of the sub-populations of the model are in the basic of

attraction of the endemic equilibrium point gll .

Appendix A
To explore the possibility of a backward bifurcation in the model (9), we re-label the variables by

S=x,E,E=x,T, =%, T, =%,,J =%, F=x, and H=x, s0 that
N =X, + X, + X3 + X, + X5 + Xz + X, .Further by introducing the vector  notation

T L dX
X = (X, + X, + X3+ X, + X5 + X +X;) . the model (9) can be written in the form pra F(x), where

F=(f,f, f, f,f,f, f7)T as follows
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_f _H_IB(Xﬂ?H + Xs7e + X3 + X475 + Xs77,) X, — 1X
L 1 1
(X, + X, + X5 + X, + X + Xg +X;)

o
dt
% . BXamy + XeMe + X3 + X775 + Xs775)

dt 2 (X Xy Xy Xy F X F X F X))
‘//,B(X777H + Xgle + X3+ X477 + X5773) X
(X, + X, + X5 + X, + X5 + Xg + X;)
% £ (d—8) B (X114 + Xelle + X5 + X115 + Xs77,)

X, —UXg + pO Xs + 10X, —

(k+pu+ 2

3
dt X, + X, + X3 + X, + X + Xg + X5

(L= @, )wB(X 1y + XeMg + X3 + X475 + Xs775)
X, + X, + Xg + X, + Xg + Xg + X,

X, + (- @)X, + pO, X +

X, —(U+yy + 1+ 0y)X,, (32)

dﬁ = f, = oKX, + W B(X 11y + Xelle + X + XyTlp + Xs11;) X, + 7y X + (L6, — 6,) pxs —
dt Xg + Xy + X5 + X, + X + Xg + X5
(c+7, +u+0y)X%,,
dx
d_t5= fo =ox, —(z, + 1+ 5,)%
dx
d_te =fo =(1-a)7 %, +1-0,)7, X + L-r)ax; —(p+ pu+ 5 )X
dx,
dt =f, =q0X, + 0,7, X — (@ + 1+ 6,)%;,
The Jacobian of the system (18), at the DFE is given by
—H 0 -p - B, - Bn, - Bne - By
0 -K, g+v &Bip &bn, B +pb By +ra
0 (-w)x (-9)B-K, U-8pn, @-8)pBn, (-8)Bne +p0, (1-S&)Bn,
J=0 K 7y -K, 0 1-6,-6,p 0
0 0 0 o -K, 0 0
0 0 0 1-9)z,  (1-a,)7, - K 1-Na
0 0 0 07 0.7, 0 -Ke

From which it can be shown that R, = p(FV ™) =, max{R,, R, }, where

Ki=x+u,K,=vo+y, +u+o,, K=o+, +u+65,K, =7, + u+06,,Kc=p+pu+06 and
Ke=a+u+od,.

We choose /3 as our bifurcation parameter. Using the following theorem ([3]), we will determine whether or not
the system (18) undergoes a backward bifurcation at R.=1

Theorem 4: Consider the following general system of ordinary differential equations with a parameter ¢ .

ax_ f(x,4), f :R"xR—R" and f eC*(R"xR),

dt
Where

0 is an equilibrium point of the system (that is, f(0,¢#)=0 forall ¢)and

of.
Al. A=D,f(0,0) :a—'(0,0) is the linearization matrix of the system around the equilibrium 0 with ¢
X .

i
evaluated at O;
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A2. Zero is a simple eigenvalue of A and all other eigenvlaues of A have negative real parts;
A3. Matrix A has a right eigenvector w and a left eigenvector v corresponding to the zero eigenvalue.
Let f, be the k™" component of f and

n asz
a= v,ww. ———(0,0 3.3
k;j_lk it aXian ( ) ( )
n 0% f
b=>)v,w —* (0,0
k%k ' ox.0¢ 0.0)

Then the local dynamics of the system around the equilibrium point 0 is totally determined by the signs of a and
b. particularly, if a>0 and b>0, then a backward bifurcation occurs at ¢ =0.
Case 1: R;>R,: Consider a situation where R;>R,, so that the basic reproduction number Rc=1 gives 1. R; > R,.
Since A is our chosen bifurcation parameter, solving for f from R.=1 gives

B = K, (KK, +ux(e, —1)

[A- (KK, + 17 Ky +11px0@) + (L — ) (ExK; + Excmp ) + SxmpoK, ]

Case 2: R,>R;: Consider a situation where R,>R;, so that the basic reproduction number Rc=1 gives 1. R, > R;.
Since A is our chosen bifurcation parameter, solving for £ from R.=1 gives

K, KK,
[A- ) K, Ke +1-0,)n:7,Ke + A=1)En 7,00, +E17, KK + 817 0, K ]
For our convenience, we denote the value of Jwhen = 3" by Jﬂ*

p=Fp =

Eigenvectors of J 5
Secondly, the following computations are carried out.
Eigenvectors of J (‘90)|ﬂ=ﬁ*

It can be shown that the Jacobian of the system (33) at f = ﬂ* denoted by J (50)|ﬁ:ﬁ* =J . has a right

B
eigenvector (corresponding to the zero eigenvalue) given by

W= (o, @, 0, 0,, 05, 0,)",

_ —(Bny o, + e w, + Py + Pryo, + B, 05)

2}
Where MU
w, = free
w, = free
_Yu@3 +(1-6,-0,) pw, + ko0,
, =
K,
oy = X4
K4
wg = free
w, + 10
o, = 017104 +0,7,9s

KB
Furthermore, the Jacobian Jﬂ* has left eigenvectors (associated with the zero eigenvalue) given by

V=(0,0,,05,0,,05,U5,0;) where
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v, =0
v, = free
_ (&6 +v)v, + 70

K, —(-9)p)
v, = free
Do = &P 0, + (L= E) Br,05 + (L= 0,)7,05 + UyTo0;

5

K,
_ (&8 + pbu, + (1= &) e +p92)l)3 +(1-6,-6,)pv,
K5

v = (&Bny +ra)u, + (1= &) B o, + (L-Tay,

, =

K6

COMPUTATIONS OF A AND B
FOR the system (18), the associated non-zero second partial derivatives of F (at the DFE) are given by:

o°f, _—pu+v) 0°f, —PnopEty) 0, —pnuE+y) 0°f, - prepE+y)

Us

OX,0%, [T ox,ox, I1 " OX, 0%, I " OX, 0%, I1
0°f, _—PnauG+y) 0, -SPuln,+) 0°f, -28nop 0°f, _—Puln, +n,)
OX,0, I "X, 0%, I " OX, 0%, M ox,0x I1 '
0°f, _—&ule +no) 0°f, _—SPulny +np) 0°F, _—28un, °f, _—SPule +n,)
OX 40X I ' X, 0, I " 0% OXs [T ' 6x0x, I ’
o f, :—éﬂﬂ(m +17,) azfz :_zgﬂ,‘”ﬁ: aZfz :_(1_5_1//'“//0)2);3#
OXs0X, I " OX4OX, [T ox,ox, I ’
o’ f, :_fﬂ/’l(ﬂF +174) 0 f, :_ZéﬂﬂﬂH azfz :_(1_§_I//+'//w2)’70ﬂ,u
OX0X, I " O, 0%, M ox,0x, I

o'ty _-Q-&-yrya)n,pu 0°f, _-20-pu °f, _ (1+&)Bul+ny)

OX,0Xs I oxox, 11 oxgox, I ’
o’ fs _ (-1+ &) pull+n,) 0 fy _ (=1+ &) puld+n:) 0 fy _ (-1+&)pul+n,)
OX,0Xs I1 | OX,0% I1 " OX,0X, I1
0 fs _ 2(=1+ &) pun, 0 f, _ (-1+ &) pun, +n,) 0 fs :(_1+§)ﬂﬂ(77D +77¢)
X, 0X, I "X, OXq I "X, 0% I1 ’
0 f, :(_1+§)ﬂ,u(77b +77y) 0 f, :_2(_1+§)ﬂ/“73 0 fs :(_1"'65),3/1(773 +17g)
X, 0%, I1 " OX, O, I1 " OX, O, I1 '
0 fs :(_1+§)ﬂ,u(77J +77y) 0 f, 2_2(_1+§);Bﬂ77F 0 f, :(_1+§)ﬁﬂ(77H +77¢)
X 0%, I " OXg 0% I " OXg0X, I ’
0 fs _ 2(-1+ &) Bun,, 0 f, _ o,y Pu 0 f, _ o,y Bun, 0 f, _ @,y Bun,
X, 0%, I "X, 0%, [T ' ox,0x, [T ox,0% n
o f, _ o,yPun.  0°f, _ @,y Puny
OX,0X, 1 ox,ox, I
It follows from the above expressions that

’ o*f,  2pBu
a:vZUka)ia)j 6X.6; :7(§Us(a)2+a)3+a)4+a)5+a)6+a)7)+

v(o, +o, +0, + 0, + 05 + ©,)+0,p(l-w,)v, +v,0, —0,) —
v,(w, + 03+ 0, + O + 05 + 0,) —U;(@, + ©; + 0, + O + O + @)

(ny @5 + e @, + @5 + Ny + 17, 0,)
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From which it can be showed that a>0 iff

(v, +o )@, + 03 + 0, + O + WV + ©;) + V(11— w,)0;, + V0,0, —U,) >
(v, +v)(@, + @, + @, + O + W + @;)

For the sign of b, it can be shown that the associated non-vanishing derivatives of F are

0% f f 82f 62f 62f
2 =< =¢n D1—_§ Ny — = =8N — o =Ny
oX0B ox,08 %03 OX;08" ox,08"
o f, o f, o f, o f,
T —(—f) xAp =(1 —5)77[)785(% =( —5)773, xof = (1=,
o f,
— 3 _=(1-
ox,08 L-Sny
So that,
7 2
bzzuka)l 4 fk*
%0

= (v, —v3) + Uy —V )W + W, + O+ W + O + Vs + @, ) (N O + Ny + O + s + 17y 0;) >0
Thus we have established the following results.
FIGURES AND TABLE

Tablel: Estimate of Epidemiological Burden of TB in Nigeria, 2007

All forms of TB (thousands of new cases per year) 460 123

All forms of TB (new cases per 10,000 pop/year) 311 83

New ss* cases (thousands of new cases per year) 195 43

New ss* cases (per 100,000 pop/year) 131 29

HIV* incident TB cases (% of all TB cases) 27 -

Prevalence All In HIV* people

All forms of TB (thousands of cases) 772 62

All forms of TB (cases per 10,000 pop) 521 42

2015 target for prevalence (cases per 1000,000 pop) 141 -

All forms of TB (thousands of cases) 138 59

All forms of TB (cases per 10,000 pop) 93 40

2015 target for prevalence (cases per 1000,000 pop) 18 -

2000 2001 2002 2003 2004 2005 2006 2007

DOTs coverage (%) 47 55 55 60 65 65 75 91
Notification rate (new&relapse cases/100,000pop) 21 36 29 33 41 44 49 56
%notified (new&relapse cases under DOTS) 100 66 78 100 100 100 100 100
Notification rate (new ss* cases/100,000pop 14 18 17 21 24 25 28 30
% notified new ss* cases/100,000 pop 100 81 89 100 100 100 100 100
Cases detection rate (all new cases, %) 7.4 12 9.1 9.7 12 13 15 17
Cases detection rate (new ss* cases, %) 12 15 13 15 17 18 20 23
Treatment success (new ss* patients, %) 79 79 79 78 73 75 76 -
Re-treatment success (ss patients, %) 71 71 73 - 73 66 77 -

Table 2: Description of variables of the model

Variable Description

S(t) Susceptible individuals

E(t) Infected (exposed) individuals

Tu(t) Undetected individuals with active TB
To(t) Detected individuals with active TB
A[()] Isolated individuals with active TB
F(t) Individuals who failed treatment

H(t) Treated individuals
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Table 3: Description of parameters of the model

Parameter Description

T Recruitment rate into the population

yZi Per capita natural mortality rate

y) Infection rate

IB Effective contact rate for TB infection
Modification parameters

Moy e Ty

o Isolation rate for detected individuals

4
1-$)

8y ,0p,0;,0¢, 0y

a
R

Slow progressors
Fast progressors

Exogenous re-infection rate

Progression rate of individuals in latent stage to active TB
Endogenous reactivation rate

Fraction of re-infected individuals that moves to detected class
Detected rate for undetected individuals

Natural recovery rate of undetected individuals
Treatment rate for detected individuals

Treatment rate for isolated individuals
Fraction of detected individuals who are successfully treated

Fraction of isolated individuals who are successfully treated
Rate at which individuals who failed treatment move to other classes

Number of unsuccessfully treated individuals who move to the latent class
Number of unsuccessfully treated individuals who move to the undetected class
Tuberculosis-induced mortality rate for classes, Ty, Tp, J, F, H respectively

Rate at which treated individuals lose their treatment-induced immunity
Fraction of treated individuals who move to exposed class after treatment wanes

Table 4: Parameters values

Parameter Description References
T 200( per 100000 population) 1l
y7s 0.02 [8,23]
B 0.1 [38]
o 0.20619 [44]
é: 0.7 [23]
v 0.85 Assumed
K 0.2522 (8]
o, 0.16 [8]
o, 0.7 [23]
0.2 [38]
Yu
v 0.2 [6,8]
Variable
0.7
01 0.7 [38]
(o3 0.95 [38]
Yo 0.1 Assumed
Modification parameters
6,.0,
0.3,0.1,0.1,0.3,0.01 [8]
8y,0p,6;,0¢, 6y
0.001,0.001,0.001,0.001 [23]
Mo My M1y
o 5 [1
R 0.8 Assumed
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FIGURE 4: Comparison of observed TB data for Nigeria (Solid line) and model prediction (dotted line).
Parameter values used are as given in Table 4, with = 0.2
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FIGURE 5: Simulation of the model (9) showing the total number of infected individuals (E+ T, + Ty +J +F )
as a function of time, using the parameters in Table 4 with 7z =200, £ =0.02,5, =0.3,6, =0.1,6, =0.1,
or =035, =0.2(A)B =0.07(R, =0.1046).(B) f =1L(R, =1.4977).(C) f =13(R, =19.4696).
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FIGURE 6: Simulation of the model (9) showing the total number of infected individuals (E+TU +TD +J+F)
asa
function of time, using the parameters in Table 4 with 7 = 200, # =0.02,6, =0.3,6, =0.1,6, =0.1,

5. =0.3,7, = 0.2(A)B = 0.07(R, = 2.0042e°**).(B) 8 =1(R, = 0.0029).(C) 8 =13(R, = 0.0372).
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FIGURE 7: Simulation of the model (9) showing the total number of infected individuals (E+ T, + T, +J + F )
asa
function of time, using the parameters in Table 4 with 7 =200, 4 =0.02,5, =0.3,6, =0.1,6, =0.1,

5. =03,7, =02, p=2 (A)S=0.07(R, =0.1048).(B) 3 = 13(R, =19.4696).
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FIGURE 8: Simulation of the model (9) showing the total number of infected individuals (E+ T, + Ty +J +F)

as a function of time, using the parameters in Table 4 with 7 =200, x =0.02,6, =0.3,6, =0.1,5, =0.1,
5. =03,7, =0.2,p=2 (A) B =0.07(R, =1.0701e°**).(B) # =13(R, = 0.0199).
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FIGURE 9: Simulation of the model (9) showing the total number of infected individuals (E+TU +TD +J+F )
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function of time, using the parameters in Table 4 with 7 =200, £ =0.02,6, =0.3,6, =0.1,6, =0.1,
or =0.3,7, =0.2,p=2(A)f =0.68(R, =1.0184).(B) 5 =0.7(R, =1.0282).
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FIGURE 10:Simulation of the model (9) showing the total number of infected individuals (E+ T, + Ty +J +F
) as a function of time, using the parameters in Table 4 with 7 =200, x=0.02,

5, =036, =015, =0.1,6, =0.3,5, =0.2, p=2(A) 3 =0.68(R, = 0.0010).(B) 3 = 0.7(R, = 0.010).
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FIGURE 11: Simulation of the model (9) showing the total number of infected individuals
E+Ty+Ty+J+F)asa
function of time, using the parameters in Table 4 with 7 =200, £ =0.02,6, =0.3,6, =0.1,6, =0.1,
or =03y, =0.2,£ =0.067(A) 4 =0.68(R, =1.1989).(B) S =0.7(R, = 0.9743).
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FIGURE 12: Simulation of the model (9) showing the total number of infected individuals
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function of time, using the parameters in Table 4 with 7 =200, #=0.02,6, =0.3,6, =0.1,6, =0.1,
5. =0.3,5, =0.2,& =0.09(A) B = 0.68(R, =3.7522e°*).(B)# = 0.7(R, = 0.0013).
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FIGURE 13: Simulation of the model (9) showing the total number of infected individuals
(E+T,+Ty+J+F)asa

function of time, using the parameters in Table 4 with 7 =200, 4 =0.02,5, =0.3,6, =0.1,6, =0.1,

5. =03,p=2(A)y, =02 (B)y, =05 (C)y, =1.0

V. Discussion And Conclusions

A deterministic model for the transmission dynamics of tuberculosis (TB) in Nigeria under DOTS programme is
designed. The model is rigorously analysed to gain insight into its dynamical features. Relevant demographics
and biological data are used to simulate the model and explore the possibility of reducing the burden of the
disease in the society. The study shows the following:

@)

)
®)

(4)

(®)
(6)
()

The classical epidemiological requirement of having the maximum associated reproduction number Rc
less than unity i.e one (1), while necessary, is not sufficient for the disease elimination due to the
phenomenon of backward bifurcation, which the model exhibits.

The model highlight the significant roles of the case detection rate (CDR) in reducing the burden of the
disease in Nigeria.

From the study, we also established that DOTS can lead to effective elimination of TB in Nigeria provided
the rate at which the undetected individuals with active TB recovered exceeded a critical values, otherwise
the disease will persist.

The model also established that if the rate at which individuals who failed treatment (i.e people who
developed multi-drug resistant) moves to other classes increases where they can be retreated under DOTS,
then the burden of the disease will reduces.

The study also shows that if the effective contact rate ( /) for TB infection does not exceed certain critical
value (0.187), the disease can be eliminated in Nigeria.

The model predicts a substantial decline in TB incidence in the society provided the progressor rate (& )

of individuals who are susceptible to TB is low.
The occurrence of the backward bifurcation phenomenon necessarily requires the exogenous re-infection.

Numerical simulations of the model, using appropriate demographic and epidemiological data for Nigeria, show
the following results:
(2) Using the data in Table 4, Figure 5 and 6 shows that when the effective contact rate is very low ( S =

0.07, correspond to Ry= 0.1048 < 1 and R,= 2.0042e™ < 1) (see Fig.5A and 6A respectively) the model
prediction shows that Nigeria would have maximum of 4800 per 100000 infected cases and in the next
50years years, the disease would have been eliminated completely in Nigeria. But when the effective
contact rate is above the critical values for instance ( = 1.0, correspond to Ry= 1.4977 > 1 and R,=
0.0029 < 1) (see Fig.5B and 6B respectively) it is shown that Nigeria will have maximum of 2.8 x 10* per
100000 infected individuals and in the next 80years, about 1.1 x 10*per 100000 infected individuals would
remain constant in the society. Further increase in effective contact rate (f = 13, correspond to R;=
19.4696 > 1 and R,= 0.0372 > 1) (see Fig.5C and 6C respectively) shows that Nigeria will have maximum
of 5.7 x 10*per 100000 infected individuals and in the next 45years, about 1.4 x 10*per 100000 infected
individuals would remain constant in the society.

www.iosrjournals.org 48 | Page



Modelling the Effect of DOTS and Isolation on TB Transmission Dynamics

®3)

(4)

()

(6)

The simulation of the model using data in Table 4, with the rate at which those who developed multi-drug
resistant ( o) moves to other class for possible re treatment under DOTS increases (p =2, £ =0.07;

correspond to Ry= 0.1048 and R,= 1.0701e**and # = 13; correspond to R,= 19.4696 and R,= 0.0199 )

(see Fig.7A & 8A and 7B & 8B respectively) shows that when is increased, it increases the prospect of
reducing the burden of TB in the society. The epidemiological implication of this is that when people who
developed multi-drug resistant are moved to classes where they can be treated again at faster rate it can
reduce the burden of TB in the society.

In Figure 9 and 10, the results shows that 5 = 0.68 when the effective contact rate () is above the
critical value (o = 2,;but less than unity, correspond to R;= 1.0184 > 1 and R,= 0.0010 < 1), the
maximum number of infected individuals is about 25000 per 100000 (Fig.9A & 10A) and the disease
cannot be totally eliminated in the society compared to (Fig.5A & 6A). But an increase in recovered rate of
the undetected individuals (v) shows that (with p =2, f =0.7; correspond to R;= 1.0282 > 1 and R, =
0.0010 < 1), in the early 40years the number of infected individuals in the society is insignificant, but
gradually increases with time see (Fig.9B & 10B).

The results of Figure 11 & 12 reveals that with low progressor (£ = 0:067; correspond to R;= 1.1989 > 1
and R,= 3.7522e* < 1), reduces the burden of TB in the society to about 60years (Fig.11B & 12B)
compare to about 80years and emergency resurface in between 90-110years when & = 0.09 (high
progressor). R;=0.9743<1 and R,=0.0013.

The results of Figure 13 A, B, C shows that as the case detection rate is increasing the numbers of years is

decreasing. This implies that the case detection rate (CDR) plays a vital roles in the prospect of reducing
(eliminating) TB burden in the society.

In summary, this study shows that the prospect of effectively reducing (or even eliminate) TB in Nigeria seems
plausible provided the following measures are taken and/or improved upon:

(@)

(b)
(©)

(d)

(1
[2]

(3]

[4]
(5]

(6]
[71

(8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

That concerted effort be made to keep the effective contact rate at minimum level. i.e below the critical
value (0.187)

The case detection rate is projected beyond the current target levels.

All possibilities of developing Multi-drug resistant should be averted, e.g by employing trained personnel
who will be able to administer drug to TB patients correctly. Also, the source of the drug must be reliable
and the drug delivery should be regulated.

DOTS should be promoted even in the rural areas in Nigeria.
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