Square Sum Graph Associated with a Sequence of Positive Integers

Reena Sebastian ${ }^{1}$, K.A Germina ${ }^{2}$
${ }^{1}$ (Department of Mathematics, S.E.S College,Sreekandapuram, India.)
${ }^{2}$ (School of Mathematical and Physical Sciences, Central University of Kerala, Kasargode, India.)

Abstract

A (p,q)-graph G is said to be square sum, if there exists a bijection $f: V(G) \rightarrow\{0,1,2, . ., p-1\}$ such that the induced function $f^{*}: E(G) \rightarrow N$ defined by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}$, for every uv $E E(G)$ is injective. In this paper, a recursive construction of infinite families of square sum graphs associate with a sequence of positive integers are studied. That is for any sequence of positive integers (al,a2,.., an) with ai $\geq 2, i=1,2, . ., n$ we associate some square sum graphs. In particular we obtain the result of level joined planar grid are square sum as the special case.

Keywords: Square sum graphs, Level joined planar grid.

I. Introduction

If the vertices of the graph are assigned values subject to certain conditions, it is known as graph labeling. A dynamic survey on graph labeling is regularly updated by Gallian[1]. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a (p, q)-graph. Unless mentioned otherwise, by a graph we shall mean in this paper a finite, undirected, connected graph without loops or multiple edges. Terms not defined here are used in the sense of Harary[2]. Acharya and Germina defined a square sum labeling of a (p,q)-graph G [3,4] as follows.

Definition 1.1

A $\$(\mathrm{p}, \mathrm{q})$-graph G is said to be square sum, if there exists a bijection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, . . \mathrm{p}-1\}$ such that the induced function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ defined by $\mathrm{f}^{*}(\mathrm{uv})=(\mathrm{f}(\mathrm{u}))^{2}+(\mathrm{f}(\mathrm{v}))^{2}$, for every $\mathrm{uv} \in \mathrm{E}(\mathrm{G})$ is injective
Here, for any sequence of positive integers ($n_{1}, n_{2}, \ldots, n t$) with $n i \geq 2, i=1,2, . . t$, we associate a square sum graph $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}>)$ of order $\mathrm{n} 1+\mathrm{n} 2+\ldots+\mathrm{nt}$ and size $\mathrm{n} 1+\mathrm{n} 2+2 \mathrm{n}_{\mathrm{i}}, 2 \leq \mathrm{i}<\mathrm{t}$. In particular we obtain the result of level joined planar grids are square sum as a special case. Example of square sum graph is shown in Fig 1.

Figure 1

II. Construction of Square Sum Graphs Associated with Sequence of Positive Integers.

Here we present a recursive construction of infinite families of square sum graphs associate with a sequence of positive integers. Let $\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt} \in \mathrm{N}^{>1}$, where $\mathrm{N}^{>1}=\{2,3,4, \ldots$.$\} . Let \sigma$ be a sequence of nonzero integers $<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}>$ of $\mathrm{N}^{>1}$ where $\mathrm{t} \geq 2$. If $\mathrm{n}_{1} \geq 2$, we denote G as the class of square sum graph constructed by the following way.
When $t=2, G$ consists of the graph of the form $\left.H\left(<n_{1}, n_{2}\right\rangle\right)$ where $n_{2} \in N^{>1}$. Let $\mathrm{v}(1,1), \mathrm{v}(1,2), \ldots, \mathrm{v}(1, \mathrm{n} 1), \mathrm{v}(2,1), \ldots, \mathrm{v}(2, \mathrm{n} 2)$ be the vertices of $\mathrm{H}\left(<\mathrm{n}_{1}, \mathrm{n}_{2}>\right)$. The graph $\mathrm{H}\left(<\mathrm{n}_{1}, \mathrm{n}_{2}>\right)$ has $\mathrm{n}_{1}+\mathrm{n}_{2}$ vertices with two layers. The top most layer has vertices $\mathrm{v}(1,1), \mathrm{v}(1,2), \ldots, \mathrm{v}(1, \mathrm{n} 1)$ and the second layer has vertices $\mathrm{v}(2,1), \ldots, \mathrm{v}(2, \mathrm{n} 2)$. The graph $\mathrm{H}<\mathrm{n} 1, \mathrm{n} 2>)$ has edges in the form :

1) If $n 2 \leq n 1$, then $E(H(<n 1, n 2>))=\left\{(v(1, i), v(2, i)),(v(1, i+1), v(2, i)): 1 \leq i \leq n_{2}\right\} \cup$
$\left\{(\mathrm{v}(1, \mathrm{i}+1), \mathrm{v}(2, \mathrm{n} 2)): \mathrm{n} _2<\mathrm{i} \leq \mathrm{n}_{1}-1\right\} \cup\{(\mathrm{v}(2,1), \mathrm{v}(2, \mathrm{n} 2))\}$.
2) If $n 1<n 2$, then
$\mathrm{E}(\mathrm{H}(\langle\mathrm{n} 1, \mathrm{n} 2\rangle))=\{(\mathrm{v}(1, \mathrm{i}), \mathrm{v}(2, \mathrm{i})),(\mathrm{v}(1, \mathrm{i}), \mathrm{v}(2, \mathrm{i}+1)): 1 \leq \mathrm{i} \leq \mathrm{n} 1\} \cup$
$\{(\mathrm{v}(1, \mathrm{n} 1), \mathrm{v}(2, \mathrm{i}+1)): \mathrm{n} 1<\mathrm{i} \leq \mathrm{n} 2-1\} \cup\{(\mathrm{v}(2,1), \mathrm{v}(2, \mathrm{n} 2))\}$
It is square sum with the following labeling:
$\mathrm{f}(\mathrm{v}(1, \mathrm{i}))=\mathrm{i}-1$ for $1 \leq \mathrm{i} \leq \mathrm{n}_{1}$ and $\mathrm{f}(\mathrm{v}(2, \mathrm{i}))=\mathrm{n} 1+\mathrm{i}-1$ for $1 \leq \mathrm{i} \leq \mathrm{n}_{2}$.
(see Fig. 2 for $\mathrm{H}(\langle 5,3\rangle)$ and $\mathrm{H}(<5,8\rangle$)

Figure 2.
When $t=3, G$ consists of the graph of the form $H(<n 1, n 2, n 3>)$ where $n 3 \in N^{>1}$. Let $\mathrm{v}(1,1), \mathrm{v}(1,2), \ldots, \mathrm{v}(1, \mathrm{n} 1), \mathrm{v}(2,1), \ldots, \mathrm{v}(2, \mathrm{n} 2), \mathrm{v}(3,1), \ldots, \mathrm{v}(3, \mathrm{n} 3)$ be the vertices of $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3>)$. The graph $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3>)$ has $\mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3$ vertices with three layers. The top most layer has vertices $\mathrm{v}(1,1), \mathrm{v}(1,2), \ldots, \mathrm{v}(1, \mathrm{n} 1)$, the second layer has vertices $\mathrm{v}(2,1), \ldots, \mathrm{v}(2, \mathrm{n} 2)$ and third layer has vertices $\mathrm{v}(3,1), \ldots, \mathrm{v}(3, \mathrm{n} 3)$. We arrange the vertices of $\mathrm{H}(\langle\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3\rangle)$ layer by layer and from left to right as follows.
a) The top most layer is $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2>)$
b) The second layer has vertices $v(3,1), \ldots, v(3, n 3)$. The graph $H(<n 1, n 2, n 3>)$ has edges of the form :
1). If $\mathrm{n} 3 \leq \mathrm{n} 2$, then $\mathrm{E}(\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3>))=\mathrm{E}(\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2>)) \cup\{(\mathrm{v}(2, \mathrm{i}), \mathrm{v}(3, \mathrm{i})),(\mathrm{v}(2, \mathrm{i}+1), \mathrm{v}(3, \mathrm{i})): 1 \leq \mathrm{i} \leq \mathrm{n} 3\} \cup$
$\{(\mathrm{v}(2, \mathrm{i}+1), \mathrm{v}(3, \mathrm{n} 3)): \mathrm{n} 3<\mathrm{i} \leq \mathrm{n} 2-1\} \cup(\mathrm{v}(3,1), \mathrm{v}(3, \mathrm{n} 3))\}$.
2) If $\mathrm{n} 2<\mathrm{n} 3$, then $\mathrm{E}(\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3>))=\mathrm{E}(\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2>)) \quad \mathrm{U}\{(\mathrm{v}(2, \mathrm{i}), \mathrm{v}(3, \mathrm{i})),(\mathrm{v}(2, \mathrm{i}), \mathrm{v}(3, \mathrm{i}+1)): \quad 1 \leq \mathrm{i} \leq$ $\left.\mathrm{n} _2\right\} \cup\{(\mathrm{v}(2, \mathrm{n} 2), \mathrm{v}(3, \mathrm{i}+1)): \mathrm{n} 2<\mathrm{i} \leq \mathrm{n} 3-1\} \cup\{(\mathrm{v}(3,1), \mathrm{v}(3, \mathrm{n} 3))\}$.
We can extend the labeling of f in $\mathrm{G}=\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2>)$ to $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3>)$ by defining
$\mathrm{f}(\mathrm{v}(3, \mathrm{i}))=\mathrm{n} 1+\mathrm{n} 2+\mathrm{i}-1$ for $1 \leq \mathrm{i} \leq \mathrm{n} 3$. With the above defined vertex labeling no two of the edge labels are same as the edge labels are in an increasing order.
(See Fig. 3 and Fig. 4 for $\mathrm{H}(<5,3,4>)$ and $\mathrm{H}(<5,8,6>)$.

Figure 3

$H(<5,8,6>)$
Figure 4

Induction Hypothesis

Assume that $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}>)$ is square sum. For any $\mathrm{n}\{\mathrm{t}+1\} \in \mathrm{N}^{>1}$, let W be the graph with $V(W)=\{v(t+1,1), v(t+1,2), . ., v(t+1, n\{t+1\})\}$ and $E(W)=\{(v(t+1,1),(v(t+1, n\{t+1\})\}$. we can construct a new graph $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{n}\{\mathrm{t}+1\}>)$ as follows: The graph $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{n}\{\mathrm{t}+1\}>)$ has $\mathrm{n} 1+\mathrm{n} 2+\ldots+\mathrm{nt}+\mathrm{n}\{\mathrm{t}+1\}$ vertices. $\mathrm{V}(\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{n}\{\mathrm{t}+1\}>))=\mathrm{V}(\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{nt}>)) \mathrm{U}\{\mathrm{v}(\mathrm{t}+1,1), \ldots, \mathrm{v}(\mathrm{t}+1, \mathrm{n}\{\mathrm{t}+1\})\}$. We arrange the vertices of $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{n}\{\mathrm{t}+1\}>)$ layer by layer and from left to right as follows:
a) the top most layer is $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}\rangle)$,
b) the second layer has vertices $v(t+1,1), \ldots, v(t+1, n\{t+1\})$,

The graph $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{n}\{\mathrm{t}+1\}>)$ has edges of the form :
1). If $n\{t+1\} \leq n t$, then $E(H(<n 1, n 2, \ldots, n\{t+1\}>))=E(H(<n 1, n 2, \ldots, n t>)) \cup E(W) \cup$
$\{(\mathrm{v}(\mathrm{t}, \mathrm{i}), \mathrm{v}(\mathrm{t}+1, \mathrm{i})),(\mathrm{v}(\mathrm{t}, \mathrm{i}+1), \mathrm{v}(\mathrm{t}+1, \mathrm{i})): \mathrm{i}=1,2, . ., \mathrm{n}\{\mathrm{t}+1\}\} \cup\{\mathrm{v}(\mathrm{t}, \mathrm{i}+1), \mathrm{v}(\mathrm{t}+1, \mathrm{n}\{\mathrm{t}+1\})): \mathrm{n}\{\mathrm{t}+1\}<\mathrm{i} \leq \mathrm{nt}-1\}$.
2). If $n t<n\{t+1\}$, then $E(H(<n 1, n 2, . ., n\{t+1\}>))=E(H(<n 1, n 2, . ., n t>)) \cup E(W) \cup$
$\{\mathrm{v}(\mathrm{t}, \mathrm{i}), \mathrm{v}(\mathrm{t}+1, \mathrm{i})),(\mathrm{v}(\mathrm{t}, \mathrm{i}), \mathrm{v}(\mathrm{t}+1, \mathrm{i}+1)): \mathrm{i}=1,2, \ldots, \mathrm{nt}\} \cup\{\mathrm{v}(\mathrm{t}, \mathrm{nt}), \mathrm{v}(\mathrm{t}+1, \mathrm{i}+1): \mathrm{nt}<\mathrm{i} \leq \mathrm{n}\{\mathrm{t}+1\}-1\}$. We can extend the labeling of f in $\mathrm{G}=\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}>)$ to $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{n}\{\mathrm{t}+1\}>)$ by defining $\mathrm{f}(\mathrm{v}(\mathrm{t}+1, \mathrm{i}))=\mathrm{n} 1+\mathrm{n} 2+\ldots+\mathrm{nt}+\mathrm{i}-1$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}\{\mathrm{t}+1\}$.

Theorem 2.1
The graph $\mathrm{H}(\langle\mathrm{n} 1, \mathrm{n} 2, ., \mathrm{n}\{\mathrm{t}+1\}>)$ is square sum.
Proof
In fact $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{n}\{\mathrm{t}+1\}\rangle)$ is $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}\rangle) \cup \ell \cup \mathrm{W}$, where

1. $\ell=\{(\mathrm{v}\{(\mathrm{t}, \mathrm{i})\}, \mathrm{v}\{(\mathrm{t}+1, \mathrm{i})\}),(\mathrm{v}\{(\mathrm{t}, \mathrm{i}+1)\}, \mathrm{v}\{(\mathrm{t}+1, \mathrm{i})\}): \mathrm{i}=1,2, . ., \mathrm{n}\{\mathrm{t}+1\}\} \cup\{(\mathrm{v}\{(\mathrm{t}, \mathrm{i}+1)\}, \mathrm{v}\{(\mathrm{t}+1, \mathrm{n}\{\mathrm{t}+1\})\}): \mathrm{n}\{\mathrm{t}+1\}<\mathrm{i} \leq$ nt-1 1$\}$, if $\mathrm{n}\{\mathrm{t}+1\} \leq \mathrm{n} _\mathrm{t}$.
2. $\quad \ell=\{(\mathrm{v}\{(\mathrm{t}, \mathrm{i})\}, \mathrm{v}\{(\mathrm{t}+1, \mathrm{i})\}),(\mathrm{v}\{(\mathrm{t}, \mathrm{i})\}, \mathrm{v}\{(\mathrm{t}+1, \mathrm{i}+1)\}): \mathrm{i}=1,2, . ., \mathrm{nt}\} \cup\{(\mathrm{v}\{(\mathrm{t}, \mathrm{nt})\}, \mathrm{v}\{(\mathrm{t}+1, \mathrm{i}+1)\}): \mathrm{nt}<\mathrm{i} \leq \mathrm{n}\{\mathrm{t}+1\}-1\}$, if $\mathrm{nt}<\mathrm{n}\{\mathrm{t}+1\}$.
Since labels of $\mathrm{v}\{(\mathrm{t}, \mathrm{i})\}, 1 \leq \mathrm{i} \leq \mathrm{nt}$ are in increasing order and strictly less than the labels of $\mathrm{v}\{(\mathrm{t}+1, \mathrm{i})\}, 1 \leq \mathrm{i} \leq$ $\mathrm{n}\{\mathrm{t}+1\}, \mathrm{E}(\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}>)) \cup \ell \cup \mathrm{E}(\mathrm{W})$ can be arranged in strictly increasing order. Hence no two of the edge labels are same.
Remark 2.2
In the sequence <n1,n2,..,nt>, ,ni $\geq 2, \mathrm{i}=1,2, \ldots, \mathrm{t}$ of $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}>)$, if we change the order of the sequence, then the graphs are isomorphic.The only nonisomorphic classes of graph is one with at least one of these ni=1.

Now we consider the sequence σ on $\mathrm{N}=\{1,2, .$.$\} with the following property. \sigma=(\langle 1, \mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{nt}\rangle)$ where $\mathrm{n} 1, \mathrm{n} 2, \ldots \mathrm{nt}$ in $\mathrm{N}^{>1}$. We construct a new graph $\mathrm{H}^{*}(\langle\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}\rangle)$ as follows. The graph $\mathrm{H}(\langle\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}\rangle)$ has $\mathrm{n} 1+\mathrm{n} 2+\ldots+\mathrm{nt}$ vertices in G .
$\left.\left.\mathrm{V}\left(\mathrm{H}^{*}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{nt}\rangle\right)\right)=\mathrm{V}(\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, ., \mathrm{nt}\rangle)\right) \mathrm{U}\{\mathrm{z}\}$.
We arrange the vertices of $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{nt}>)$ layer by layer and from left to right and label the vertices as before.
The lower layer has vertex z . The graph $\mathrm{H}^{*}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{nt}>)$ has edges in the form:
$\left.\mathrm{E}\left(\mathrm{H}^{*}(\langle\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{nt}\rangle)\right)=\mathrm{E}(\mathrm{H}(\langle\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}\rangle)) \mathrm{U}\{(\mathrm{v}(\mathrm{t}, \mathrm{i}), \mathrm{z})): \mathrm{i}=1,2, . ., \mathrm{nt}\right\}$. We can extend the labeling of f in $\mathrm{G}=\mathrm{H}(\langle\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{nt}\rangle)$ to $\mathrm{H}^{*}(\langle\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}>)$ by defining $\mathrm{f}(\mathrm{z})=\mathrm{n} 1+\mathrm{n} 2+\ldots+\mathrm{nt}$.
With the above labeling, no two of the edge labels are same as the edge labels are in strictly increasing order.
Fig. 5 depicts $\mathrm{H}^{*}(<5,3>)$

Figure 5
Hence we have the following theorem.
Theorem 2.3
The graph $\left.\mathrm{H}^{*}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}\rangle\right)$ is square sum.
Dually we can construct a new graph $* \mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{nt}\rangle)$ as follows.
$\mathrm{V}(* \mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}\rangle))=\{\mathrm{u}\} \cup \mathrm{V}(\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}>))$. The upper layer has vertex u . We arrange the vertices of $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{nt}>)$ layer by layer and from left to right and label the vertices as before. The graph * $\mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{n}\rangle>)$ has edges in the form :
$\mathrm{E}(* \mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nt}\rangle))=\{(\mathrm{u}, \mathrm{v}(1, \mathrm{i})): \mathrm{i}=1,2, . ., \mathrm{n} 1\} \cup \mathrm{E}(\mathrm{H}(\langle\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{nt}>))$. With the above labeling, no two of the edge labels are same as the edge labels are in increasing order. We illustrate ${ }^{*} \mathrm{H}(<3,3>),{ }^{*} \mathrm{H}(<4,4>)$ in Fig. 6.

Figure 6
In fact, we have the following theorem.
Theorem 2.4
The graph $* \mathrm{H}(<\mathrm{n} 1, \mathrm{n} 2, . ., \mathrm{nt}>)$ is square sum.
We illustrate $* \mathrm{H}(<2,3,2\rangle), \mathrm{H}(<2,3,4,3>)$ in Fig. 7.

Figure 7

Definition 2.5

Level joined planar grids [5]: Let u be a vertex of $\mathrm{Pm} \times \mathrm{Pn}$ such that $\operatorname{deg}(\mathrm{u})=2$. Introduce an edge between every pair of distinct vertices v, w with $\operatorname{deg}(v), \operatorname{deg}(w) \neq 4$, if $d(u, v)=d(u, w)$, where $d(u, v)$ is the distance between u and v. The graph so obtained is defined as level joined planar grid and is denoted by $L J_{m, n}$. An example of $\mathrm{LJ}_{4,5}$ is illustrated in Fig 8.

Figure 8

We observe that $L J_{m, n}$ is the graph $* H^{*}<2,3, \ldots, m, . .(n-m)$ times $m, m-1, m-2, . ., 2>$. In Figure $8, m=4$ and $n=5$, and it is $* \mathrm{H}^{*}<2,3,4,4,3,2>$. Hence by theorem 2.3 we have the following.
Corollary 2.6
The graph $\mathrm{LJ}_{\mathrm{m}, \mathrm{n}}$ is square sum.

III. Conclusion

Square sum graphs were studied in [4,6,7]. Our paper produces infinitely many square sum graphs.

References

[1]. J.A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics (DS6),2005
[2]. F. Harary, \textbf\{Graph Theory\}, Addison-Wesley Pub. Comp., Reading, Massachusetts, 1969.
[3]. B.D.Acharya, \newblock \{lem Personal Communication\}, \newblock September 2011.
[4]. Ajitha V, lemph\{Studies in Graph Theory-Labeling of Graphs \}, Ph D thesis (2007), Kannur Univeristy, Kannur.
[5]. B.D.Acharya and Hegde, lemph\{Strongly Multiplicative graphs\}, Discrete Mathematics 93(1991),123-129.
[6]. Germina K.A and Reena Sebastian,(2013). Further results on square sum graphs, International Mathematical Forum,(8) 47-57.
[7]. .Reena Sebastian and Germina K.A, Maximal square sum subgraph of a complete graph, accepted.

