Uniqueness of Meromorphic Functions Sharing One Value and a Small Meromorphic Function

Subhas.S.Bhoosnurmath¹, K.S.L.N.Prasad²

¹Department of Mathematics, Karnatak University, Dharwad-580003-INDIA ²Department of Mathematics, Karnatak Arts College, Dharwad-580001-INDIA

Abstract: In this paper we prove a uniqueness theorem for a meromorphic function which is sharing one value and a small meromorphic function with its derivatives.

I. Introduction

Let f and g be two non-constant meromorphic functions defined on the complex plane. If f and g have the same a-points with the same multiplicities, we say that f and g share the value a CM (counting multiplicities).

We wish to list few results which are already proved.

Rubel and C. C. Yang have proved the following result.

Theorem A[1]: Let f be a non constant entire function. If f and f share two finite, distinct values CM, then $f \equiv f$ Later, Mues and Steinmetz improved Theorem A with the following result.

Theorem B [2]: Let f be a non constant entire function. If f and f' share two finite distinct values IM, then f = f'.

Further, Jank, Mues and Volkmann proved the following two results in [3]

Theorem C: Let f be a non constant meromorphic function and let $a \neq 0$ be a finite constant. If f, f and f share the value a CM, then $f \equiv f'$.

Theorem D: Let f be a non constant entire function and let $a \neq 0$ be a finite constant. If f and f' share the value a IM and if f''(z) = a, whenever f(z) = a then $f \equiv f'$.

We wish to consider a slightly different case where a meromorphic

function share one value and a small meromorphic function.

Our main result is the following.

Theorem: Let f be a non constant meromorphic function with $N(r, f) + N\left(r, \frac{1}{f}\right) = S(r, f)$. Let χ be a

 $\begin{array}{l} \mbox{small meromorphic function satisfying} & T(r,\,\chi) = o\{T\,(r,\,f)\}. \\ \mbox{If f and f' share ∞ and χ CM and satisfies the equation} \end{array}$

$$kf' - f - (k-1)\chi = 0$$
(1)

= 0 then f = f'

for $k \neq 0$, then $f \equiv f'$.

Further, if μ and λ are two small meromorphic functions satisfying $T(r,\mu) = o\{T(r,f)\}$ and $T(r,\lambda) = o\{T(r,f)\}$ $(\chi \neq \mu, \chi \neq \lambda)$ satisfying

$$\overline{N}\left(r,\frac{1}{f-\mu}\right) + N\left(r,\frac{1}{f-\lambda}\right) + \overline{N}\left(r,f\right) = S\left(r,f\right), \text{then}, \quad \frac{f-\mu}{\chi-\mu} = \frac{f-\lambda}{\chi-\lambda}.$$

We require the following Lemmas to prove our result.

Lemma 1 [4] Let f be a non constant meromorphic function. Then,

for $n \ge 1$,

$$N\left(r,\frac{1}{f^{(n)}}\right) \leq 2^{n-1}\left[\overline{N}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,f\right)\right] + N\left(r,\frac{1}{f}\right) + S\left(r,f\right).$$

Lemma 2 [4]: Let f_1 and f_2 be two non constant meromorphic functions and $\alpha_1 \neq 0$, $\alpha_2 \neq 0$ be two small meromorphic functions satisfying $T(r, \alpha_i) = o\{T(r, f)\}(i = 1, 2)$, where $T(r, f) = Max\{T(r, f_1), T(r, f_2)\}$.

If
$$\alpha_1 f_1 + \alpha_2 f_2 \equiv 1$$
, then, $T(r, f_1) < \overline{N}\left(r, \frac{1}{f_1}\right) + \overline{N}\left(r, \frac{1}{f_2}\right) + \overline{N}\left(r, f_1\right) + o\left\{T(r, f)\right\}$

II. Proof of the Theorem

From (1), we have $kf' - f - (k-1)\chi = 0$

Therefore, $\frac{f-\chi}{f'-\chi} = k$, where k is a non zero constant. Put $f_1 = \frac{1}{\gamma}f$, $f_2 = k$, $f_3 = \frac{-k}{\gamma}f'$ (where $\chi \neq 0$) so that $f_1 + f_2 + f_3 \equiv 1$

If $k \neq 1$, we get, $\frac{1}{\chi(1-k)} f - \frac{k}{\chi(1-k)} f' \equiv 1$

Then, by Lemma 2, we have

$$T(r, f) < \overline{N}\left(r, \frac{1}{f}\right) + \overline{N}\left(r, \frac{1}{f'}\right) + \overline{N}\left(r, f\right) + S(r, f)$$

and
$$T(r, f') < \overline{N}\left(r, \frac{1}{f}\right) + \overline{N}\left(r, \frac{1}{f'}\right) + \overline{N}\left(r, f'\right) + S(r, f).$$

Using Lemma 1 and noting that $N(r, f^{(k)}) = N(r, f) + k\overline{N}(r, f)$, we get,

$$T(\mathbf{r}, \mathbf{f}) \le 3N\left(\mathbf{r}, \frac{1}{\mathbf{f}}\right) + 2N(\mathbf{r}, \mathbf{f}) + S(\mathbf{r}, \mathbf{f})$$

$$\Gamma(\mathbf{r}, \mathbf{f}') \le 3N\left(\mathbf{r}, \frac{1}{\mathbf{f}}\right) + 3N(\mathbf{r}, \mathbf{f}) + S(\mathbf{r}, \mathbf{f})$$
(4)

Adding (3) and (4) we get

and [

$$T(\mathbf{r}, \mathbf{f}) + T(\mathbf{r}, \mathbf{f}') \le 6N\left(\mathbf{r}, \frac{1}{\mathbf{f}}\right) + 5N\left(\mathbf{r}, \mathbf{f}\right) + S\left(\mathbf{r}, \mathbf{f}\right)$$
$$\le 6\left[N\left(\mathbf{r}, \mathbf{f}\right) + N\left(\mathbf{r}, \frac{1}{\mathbf{f}}\right)\right] + S\left(\mathbf{r}, \mathbf{f}\right)$$

This gives $T(r, f) + T(r, f') \le S(r, f)$ in view of the hypothesis.

Or
$$1 \le \frac{S(r, f)}{T(r, f) + T(r, f')} \to 0$$
, as $r \to \infty$

Or $1 \le 0$, which is a contradiction. This contradiction proves that k = 1.

Therefore,
$$\frac{f-\chi}{f'-\chi} = 1$$

Or $f-\chi = f'-\chi$
Or $f \equiv f'$.
Further, $f-\mu = (f'-\lambda) + (\lambda - \mu)$.
If $\lambda \neq \mu$ then $\frac{f-\mu}{\lambda - \mu} - \frac{f'-\mu}{\lambda - \mu} = 1$
Since $T(r, f) \leq T(r, f - \mu) + o\{T(r, f)\}$.
By Lemma 6, we have

(5)

(2)

Uniqueness of Meromorphic Functions Sharing One Value and a Small Meromorphic Function

$$T(\mathbf{r}, \mathbf{f}) < \overline{N}\left(\mathbf{r}, \frac{1}{\mathbf{f} - \mu}\right) + \overline{N}\left(\mathbf{r}, \frac{1}{\mathbf{f}' - \lambda}\right) + \overline{N}\left(\mathbf{r}, \mathbf{f}\right) + \mathbf{S}(\mathbf{r}, \mathbf{f})$$
(6)

and
$$T(\mathbf{r}, \mathbf{f}') < \overline{N}\left(\mathbf{r}, \frac{1}{\mathbf{f} - \mu}\right) + \overline{N}\left(\mathbf{r}, \frac{1}{\mathbf{f}' - \lambda}\right) + \overline{N}\left(\mathbf{r}, \mathbf{f}\right) + S(\mathbf{r}, \mathbf{f}).$$
 (7)

Now, $f' - \lambda = f - \lambda$

Hence, zeros of $f' - \lambda$ occur only at the zeros of $f - \lambda$.

Therefore, $N\left(r, \frac{1}{f' - \lambda}\right) = N\left(r, \frac{1}{f - \lambda}\right)$

Therefore, from (6) and (7), we have

$$T(r, f) + T(r, f') < 2\left[\overline{N}\left(r, \frac{1}{f - \mu}\right) + N\left(r, \frac{1}{f - \lambda}\right) + \overline{N}(r, f)\right] + S(r, f)$$

Hence using hypothesis, we have

$$T(\mathbf{r}, \mathbf{f}) + T(\mathbf{r}, \mathbf{f}') < S(\mathbf{r}, \mathbf{f})$$

or $1 \le \frac{S(\mathbf{r}, \mathbf{f})}{T(\mathbf{r}, \mathbf{f}) + T(\mathbf{r}, \mathbf{f}')} \to 0$ as $\mathbf{r} \to \infty$

Thus, $1 \le 0$ which is a contradiction. This contradiction proves that $\lambda = \mu$.

Therefore, $\frac{f - \mu}{\chi - \mu} = \frac{f' - \lambda}{\chi - \lambda}$ Hence the Theorem.

References

- L. RUBEL and C. C. YANG, (1976) : Values shared by an entire function and its derivative in "Complex Analysis, Kentucky" (Proc. Conf.), Lecture notes in Mathematics, Vol. 599, pp. 101-103, Springer Verlag, Berlin 1977.
- [2]. E. MUES and N. STEINMETZ (1979) : Mermorphic functionen, die mit ihrer Ableitung wert teilen. Manuscripta Math 29 (1979), 195-206.
- [3]. G. JANK, E. MUES and L. VOLKMANN (1986) : Meromorphic functionen, die mit ihrer ersten und zweiten ableitung einen endlichen wert teilen, Complex variables 6, 51-71.
- [4]. INDRAJIT LAHIRI (1998) : 'Uniqueness of meromorphic functions sharing the same 1-points'. Bull. Korean Math. Soc. 35, No. 2, pp. 375-385.