Uniqueness of Meromorphic Functions Sharing One Value and a Small Meromorphic Function

Subhas.S.Bhoosnurmath ${ }^{1}$, K.S.L.N.Prasad ${ }^{2}$
${ }^{1}$ Department of Mathematics,Karnatak University,Dharwad-580003-INDIA
${ }^{2}$ Department of Mathematics, Karnatak Arts College, Dharwad-580001-INDIA

Abstract

In this paper we prove a uniqueness theorem for a meromorphic function which is sharing one value and a small meromorphic functionwith its derivatives.

I. Introduction

Let f and g be two non-constant meromorphic functions defined on the complex plane. If f and g have the same a-points with the same multiplicities, we say that f and g share the value a CM (counting multiplicities).
We wish to list few results which are already proved.
Rubel and C. C. Yang have proved the following result.
Theorem A[1]: Let f be a non constant entire function. If f and f ' share two finite, distinct values $C M$, then $f \equiv f$ Later, Mues and Steinmetz improved Theorem A with the following result.
Theorem B [2]: Let f be a non constant entire function. If f and f^{\prime} share two finite distinct values IM, then $f \equiv$ f^{\prime}.
Further, Jank, Mues and Volkmann proved the following two results in [3]
Theorem C: Let f be a non constant meromorphic function and let $\mathrm{a} \neq 0$ be a finite constant. If $\mathrm{f}, \mathrm{f}^{\prime}$ and f " share the value a $C M$, then $f \equiv f^{\prime}$.
Theorem D: Let f be a non constant entire function and let $\mathrm{a} \neq 0$ be a finite constant. If f and f^{\prime} share the value a IM and if $\mathrm{f}^{\prime \prime}(\mathrm{z})=\mathrm{a}$, whenever $\mathrm{f}(\mathrm{z})=\mathrm{a}$ then $\mathrm{f} \equiv \mathrm{f}^{\prime}$.

We wish to consider a slightly different case where a meromorphic
function share one value and a small meromorphic function.
Our main result is the following.
Theorem: Let f be a non constant meromorphic function with $\mathrm{N}(\mathrm{r}, \mathrm{f})+\mathrm{N}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)=\mathrm{S}(\mathrm{r}, \mathrm{f})$. Let χ be a small meromorphic function satisfying $\quad \mathrm{T}(\mathrm{r}, \chi)=\mathrm{o}\{\mathrm{T}(\mathrm{r}, \mathrm{f})\}$.
If f and f ' share ∞ and $\chi \mathrm{CM}$ and satisfies the equation

$$
\begin{equation*}
\mathrm{kf}^{\prime}-\mathrm{f}-(\mathrm{k}-1) \chi=0 \tag{1}
\end{equation*}
$$

for $\mathrm{k} \neq 0$, then $\mathrm{f} \equiv \mathrm{f}^{\prime}$.
Further, if μ and λ are two small meromorphic functions satisfying $\mathrm{T}(\mathrm{r}, \mu)=\mathrm{o}\{\mathrm{T}(\mathrm{r}, \mathrm{f})\}$ and $\mathrm{T}(\mathrm{r}, \lambda)=\mathrm{o}\{\mathrm{T}(\mathrm{r}, \mathrm{f})\}(\chi \neq \mu, \chi \neq \lambda)$ satisfying

$$
\bar{N}\left(r, \frac{1}{f-\mu}\right)+N\left(r, \frac{1}{f-\lambda}\right)+\bar{N}(r, f)=S(r, f) \text {,then, } \frac{f-\mu}{\chi-\mu}=\frac{f^{\prime}-\lambda}{\chi-\lambda} .
$$

We require the following Lemmas to prove our result.
Lemma 1 [4] Let f be a non constant meromorphic function. Then,
for $\mathrm{n} \geq 1$,

$$
\mathrm{N}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{(\mathrm{n})}}\right) \leq 2^{\mathrm{n}-1}\left[\overline{\mathrm{~N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})\right]+\mathrm{N}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\mathrm{S}(\mathrm{r}, \mathrm{f})
$$

Lemma 2 [4]: Let f_{1} and f_{2} be two non constant meromorphic functions and $\alpha_{1} \not \equiv 0, \alpha_{2} \not \equiv 0$ be two small meromorphic functions satisfying $T\left(r, \alpha_{i}\right)=0\{T(r, f)\}(i=1,2)$, where $\mathrm{T}(\mathrm{r}, \mathrm{f})=\operatorname{Max}\left\{\mathrm{T}\left(\mathrm{r}, \mathrm{f}_{1}\right), \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}\right)\right\}$.

If $\alpha_{1} \mathrm{f}_{1}+\alpha_{2} \mathrm{f}_{2} \equiv 1$, then, $\mathrm{T}\left(\mathrm{r}, \mathrm{f}_{1}\right)<\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}_{1}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}_{2}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \mathrm{f}_{1}\right)+\mathrm{o}\{\mathrm{T}(\mathrm{r}, \mathrm{f})\}$

II. Proof of the Theorem

From (1), we have $\mathrm{kf}^{\prime}-\mathrm{f}-(\mathrm{k}-1) \chi=0$
Therefore, $\frac{\mathrm{f}-\chi}{\mathrm{f}^{\prime}-\chi}=\mathrm{k}$, where k is a non zero constant.
Put $\mathrm{f}_{1}=\frac{1}{\chi} \mathrm{f}, \quad \mathrm{f}_{2}=\mathrm{k}, \quad \mathrm{f}_{3}=\frac{-\mathrm{k}}{\chi} \mathrm{f}^{\prime} \quad($ where $\chi \neq 0)$ so that $\mathrm{f}_{1}+\mathrm{f}_{2}+\mathrm{f}_{3} \equiv 1$
If $\mathrm{k} \neq 1$, we get, $\frac{1}{\chi(1-\mathrm{k})} \mathrm{f}-\frac{\mathrm{k}}{\chi(1-\mathrm{k})} \mathrm{f}^{\prime} \equiv 1$
Then, by Lemma 2, we have

$$
\begin{array}{r}
\mathrm{T}(\mathrm{r}, \mathrm{f})<\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{\prime}}\right)+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f}) \\
\text { and } \mathrm{T}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)<\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{\prime}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)+\mathrm{S}(\mathrm{r}, \mathrm{f}) .
\end{array}
$$

Using Lemma 1 and noting that $\mathrm{N}\left(\mathrm{r}, \mathrm{f}^{(\mathrm{k})}\right)=\mathrm{N}(\mathrm{r}, \mathrm{f})+\mathrm{k} \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})$,
we get,

$$
\begin{align*}
& \mathrm{T}(\mathrm{r}, \mathrm{f}) \leq 3 \mathrm{~N}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+2 \mathrm{~N}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f}) \tag{3}\\
& \text { and } \mathrm{T}\left(\mathrm{r}, \mathrm{f}^{\prime}\right) \leq 3 \mathrm{~N}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+3 \mathrm{~N}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f}) \tag{4}
\end{align*}
$$

Adding (3) and (4) we get

$$
\begin{aligned}
T(r, f)+T\left(r, f^{\prime}\right) & \leq 6 N\left(r, \frac{1}{f}\right)+5 N(r, f)+S(r, f) \\
& \leq 6\left[N(r, f)+N\left(r, \frac{1}{f}\right)\right]+S(r, f)
\end{aligned}
$$

This gives $T(r, f)+T\left(r, f^{\prime}\right) \leq S(r, f)$ in view of the hypothesis.

$$
\text { Or } 1 \leq \frac{\mathrm{S}(\mathrm{r}, \mathrm{f})}{\mathrm{T}(\mathrm{r}, \mathrm{f})+\mathrm{T}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)} \rightarrow 0, \text { as } \mathrm{r} \rightarrow \infty
$$

Or $1 \leq 0$, which is a contradiction.
This contradiction proves that $\mathrm{k}=1$.
Therefore, $\frac{\mathrm{f}-\chi}{\mathrm{f}^{\prime}-\chi}=1$

$$
\text { Or } \mathrm{f}-\chi=\mathrm{f}^{\prime}-\chi
$$

Or $\mathrm{f} \equiv \mathrm{f}^{\prime}$.
Further, $\mathrm{f}-\mu=\left(\mathrm{f}^{\prime}-\lambda\right)+(\lambda-\mu)$.

$$
\begin{equation*}
\text { If } \lambda \neq \mu \text { then } \frac{\mathrm{f}-\mu}{\lambda-\mu}-\frac{\mathrm{f}^{\prime}-\mu}{\lambda-\mu}=1 \tag{5}
\end{equation*}
$$

Since $T(r, f) \leq T(r, f-\mu)+o\{T(r, f)\}$.
By Lemma 6, we have

$$
\begin{align*}
& \mathrm{T}(\mathrm{r}, \mathrm{f})<\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}-\mu}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{\prime}-\lambda}\right)+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f}) \tag{6}\\
& \text { and } \mathrm{T}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)<\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}-\mu}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{\prime}-\lambda}\right)+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})
\end{align*}
$$

Now, $\mathrm{f}^{\prime}-\lambda=\mathrm{f}-\lambda$
Hence, zeros of $f^{\prime}-\lambda$ occur only at the zeros of $f-\lambda$.
Therefore, $\mathrm{N}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{\prime}-\lambda}\right)=\mathrm{N}\left(\mathrm{r}, \frac{1}{\mathrm{f}-\lambda}\right)$
Therefore, from (6) and (7), we have

$$
T(r, f)+T\left(r, f^{\prime}\right)<2\left[\bar{N}\left(r, \frac{1}{f-\mu}\right)+N\left(r, \frac{1}{f-\lambda}\right)+\bar{N}(r, f)\right]+S(r, f)
$$

Hence using hypothesis, we have

$$
\begin{aligned}
& \mathrm{T}(\mathrm{r}, \mathrm{f})+\mathrm{T}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)<\mathrm{S}(\mathrm{r}, \mathrm{f}) \\
& \text { or } 1 \leq \frac{\mathrm{S}(\mathrm{r}, \mathrm{f})}{\mathrm{T}(\mathrm{r}, \mathrm{f})+\mathrm{T}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)} \rightarrow 0 \quad \text { as } \quad \mathrm{r} \rightarrow \infty
\end{aligned}
$$

Thus, $1 \leq 0$ which is a contradiction.
This contradiction proves that $\lambda=\mu$.
Therefore, $\frac{f-\mu}{\chi-\mu}=\frac{f^{\prime}-\lambda}{\chi-\lambda}$
Hence the Theorem.

References

[1]. L. RUBEL and C. C. YANG, (1976) : Values shared by an entire function and its derivative in "Complex Analysis, Kentucky" (Proc. Conf.), Lecture notes in Mathematics, Vol. 599, pp. 101-103, Springer Verlag, Berlin 1977.
[2]. E. MUES and N. STEINMETZ (1979) : Mermorphic functionen, die mit ihrer Ableitung wert teilen. Manuscripta Math 29 (1979), 195-206.
[3]. G. JANK, E. MUES and L. VOLKMANN (1986) : Meromorphic functionen, die mit ihrer ersten und zweiten ableitung einen endlichen wert teilen, Complex variables 6, 51-71.
[4]. INDRAJIT LAHIRI (1998) : 'Uniqueness of meromorphic functions sharing the same 1-points'. Bull. Korean Math. Soc. 35, No. 2, pp. 375-385.

