Topological 3- Rings

K.Suguna Rao¹, P.Koteswara Rao²

¹Dept.of mathematics, Acharya Nagrjuna University, Nagarjuna Nagar, Andhara Pradesh, INDIA-522 510. ²Dept.of.commerce, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh, INDIA-522 510.

Abstract: In this paper we study the 3- rings ,Idempotent of 3-ring and some other theorems .In the second section we introduce Ideals on 3-rings, center of 3-rings and theorems, Topological 3-rings and their properties: the set of open neighbourhoods of 0, its properties in topological 3-rings, Every topological 3- ring is a homogeneous algebra and other theorem.

Key words: Hausdorff space, Ring, p-ring, Topological space.

I. Introduction

D. Van Dantzig firstly introduced the concept of topological ring in his thesis. Later N. Jacobson , L.S. Pontryagin , L.A. Skornjakov Small and S. Warner developed and studied various properties :Connected topological rings, Totally disconnected topological rings, Banach algebras, Ring of P-addict integers, locally compact fields, locally compact division rings and their structure. McCoy and Montgomery introduced the concept of a *p*-ring (*p* prime) as a ring *R* in which x p = x and p x = 0 for all *x* in *R*. Thus, Boolean rings are simply 2-rings (p = 2).,Koteswararao.P in his thesis developed the concept of 3-rings,3-rings generates A*-algebras and their equivalence. With this as motivation ,I introduce the concept of Topological 3-rings.

1. Prelimanaries

1.1 Definition: A commutative ring (R,+,.1) such that $x^3=x$, 3x=0 for all x in R is called a 3-ring.

1.2 Note: (1) x + x= -x for all x in a 3-ring R

(2) Here after R-stands for a 3-ring.

1.3 Example: $3 = \{0, 1, 2\}$. Then (3, +, ., 1) is a 3-ring where

					0	1	
+	0	1	2	•	U	1	
1	0	1	2	0	0	0	
0	0	1	2	1	Δ	1	F
1	1	2	0	1	0	1	L
-	-	-	1	2	0	2	
2	2	10					-

1.4 Example 2: Suppose X is a non empty set .Then (3^x, +, 0,1) is a 3-ring with

(a) (f + g)(x) = f(x) + g(x).

- (b) $(f \cdot g)(x) = f(x) \cdot g(x)$.
- (c) 0(x) = 0.
- (d) 1(x) = 1 for all $x \in X$, f, $g \in 3^x$.
- **1.5 Definition**: Let R be a 3-ring. An element $a \in R$ is called an idempotent if $a^2=a$.

1.6 Lemma: An element $a \in R$ is an idempotent iff 1-a is an idempotent.

Proof: Suppose a is an idempotent Claim : (1-a) is an idempotent $(1-a)^2 = 1+a^2-2a = 1+a-2a$ (: a is idempotent) =1-a \therefore (1-a) is an idempotent

Conversely suppose that (1-a) is an idempotent We have to show that a is an idempotent: : (1-a) is an idempotent

1-(1-a) is an idempotent (By above)

 \Rightarrow a is an idempotent element.

1.7 Lemma: For any element a in a 3-ring R, a^2 is an idempotent.

Proof: Suppose $a \in \mathbb{R}$

 $∴ R is a 3-ring, a^3=a$ $(a^2)^2=a^2 . a^2 = a^3 . a = a. a = a^2.$ $∴ a^2 is an idempotent for every a \in R.$

II. Main Results

2.1 Definition : A non empty subset I of a 3-ring R is said to be ideal if (i) a, b ∈ □I ⇒ □a + b∈ □I, (ii) a∈ □I, r∈R ⇒ □a r □ ra∈ □I. Note: A non empty sub set I of R is said to be a right ideal (left ideal) of R, if (i) a, b∈I⇒ a + b∈I (ii)a∈I, r∈R⇒a r∈ I (r a∈I)

2.2 Note : Suppose a∈R then there is minimal left ideal (right ideal) exists containing a which is called the principal right (left) ideal denoted by (a)l ((a)r) is the set of all ra (ar), r∈R.
i.e, (a)r = {ar / r∈R} and (a)l = {ra / r∈R}.

2.3 Note : The set of all right ideals form a partially ordered set with respect to set theoretical inclusion $I \subseteq J$. This set has a minimum element:

0=(0) and a maximum one : R = (1)r.

2.4 Note (1): For any set of ideals I1, I2 ∃□ a maximal ideal
I such that □I ⊆□I1, I2, and I1 ∩ □I2 ∩□.... is the maximal ideal contained in every ideal I1, I2, and it is denoted by glb {I1,I2,}.

(2)For any set of ideals I1, I2, $\exists \Box$ a minimal ideal I such that \Box I $\subseteq \Box$ I1, I2, ... and it is denoted by lub {I1, I2,}.

2.5 Note: For the ideals I1, I2; glb {I1, I2} is denoted by I1 ∧□I2. and lub {I1, I2} is denoted by I1 ∨□I2. Thus the set of right ideals form a lattice with ∧,∨□Zero (0), unit R.

2.6 Definition: The center of a 3-ring R is the set $C = \{a \in R/ax = xa, \forall x \in R\}$. C is a commutative ring with unit 1.

2.7 Theorem: If a,b are the idempotent elements in C,then ab an idempotent and $ab \in C$ and also (a) \land (b) = (ab)

Proof:Let R be a 3-ring .

Suppose $a, b \in \mathbb{R}$ and a, b are idempotents. $(ab)^2 = ab.ab = a^2.b^2 = ab.$ Therefore ab is an idempotent. Let $x \in \mathbb{R} \Rightarrow (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab)$ Therefore (ab)x = x(ab) $\therefore ab \in \mathbb{C}$. $ab=ba \in a$ and also belongs to b $\therefore (ab)*\subseteq (a)*(b)*\Rightarrow(ab)*= (a)*\wedge(b)*$ Let $x \in (a)* \wedge (b)* \Rightarrow ax = bx = x$ $\therefore abx = x \therefore x \in (ab)*$ $\therefore (a)*\wedge(b)*\subseteq (ab)*$ $\therefore (a)*\wedge (b)*= (ab)*$

2.8 Theorem: If a,b are idempotents in C, then a+b-ab \in C, idempotent and also $(a)_* \lor (b)_* = (a+b-ab)_*$ **Proof:** a+b-ab = 1-(1-a)(1-b). Since a,b \in C \Rightarrow (1-a),(1-b) \in C and are idempotent. \Rightarrow 1-(1-a)(1-b) \in C and idempotent. \therefore a + b-a b is an idempotent and belongs to C. $(a)_{*}\vee(b)_{*} = ((a)_{*}^{*}\vee(b)_{*}^{*})^{*} = (1-(1-a)(1-b))_{*} = (a-b-ab)_{*}$ $\therefore (a)_{*}\vee(b)_{*} = (a+b-ab)_{*}$

```
2.9 Theorem: Center of a 3-ring C is a 3-ring
Proof: Let a \in C \implies a \in R
Since R is a 3-ring and a \in R then a^3 = a and 3a = 0
We have
3(a x) = (3a)x
         =0x
                  (since R is a 3-ring)
         =0.
Therefore 3(a x) = 0, \forall a \in \mathbb{R}, x \in \mathbb{R}.
Let z \in R
z. a x = z a. x
      = x.za
      = x a z
      =x a. z
      = a x . z.
         ∴a x∈C
Therefore C is 3-ring.
```

2.10 Definition: A set R is said to be a topological 3- ring if

1. R is a 3- ring.

2. R is a topological space.

3. The operations $+, ., -, (-)^*$ are continuous.

2.11 Note : For any subsets U, $V \subseteq \Box R$, we define

 $U + V = \{u + v/u \in \Box U, v \Box \in V\}$ $U \cdot V = \{uv/u \Box \in U, v \in V\}.$ $-U = \{-u/u \Box \in U\}.$ $U^* = \{u^*/u \in \Box U\}$

2.12 Note : 1) + : $R \times R \rightarrow \Box R$ is continuous means, for every neighbourhood W of a + b, a, b $\in \Box R$ there exist neighbourhoods U of a, V of b such that U + V \subseteq W.

2) \cdot : R × R $\rightarrow \Box \Box R$ is continuous, for every neighbourhood W of ab, a, b $\Box \in R$, there exist neighbourhoods U of a, V of b such that U. V $\subseteq \Box W$.

3) – : $R \rightarrow \Box \Box R$ is continuous, if for every neighbourhood W of –a, there exist a neighbourhood U of a such that – U $\subseteq \Box W$.

4) (-)* : $R \rightarrow \Box \square R^*$ is continuous means, for every neighbourhood W of a*, there exist a neighbourhood U of a such that U* \subseteq W.

2.13 Lemma : Suppose R is a topological 3- ring. If $c \in \Box R$, then

i) The map $x \rightarrow \Box \Box c + x$, is homeomorphism.

ii) The maps $x \rightarrow \Box \Box cx, x \rightarrow \Box \Box xc$ are continuous.

Proof : The subspace $\{c\} \times R$ of $R \times R$ is clearly homeomorphic to R via $(c, b) \rightarrow \Box b$ and the restriction of + to $\{c\} \times R$ to R is continuous and clearly bijection.

 \square \square \square \square \square \square \square \square $x \rightarrow \square c + x$ is continuous and bijective. And its inverse $x \rightarrow \square - c + x$ is continuous and bijective. $\square x \rightarrow \square c + x$ is homeomorphism.

The subspace $\{c\} \times R$ of $R \times R$ is clearly homeomorphic to R via $(c, b) \rightarrow \Box b$ and the restriction of $c\} \times R \rightarrow \Box R$ is continuous. Similarly $x \rightarrow \Box xc$ is continuous.

2.14 Note : 1) R is a topological 3- ring. Since $-: R \rightarrow \Box R$ is clearly

homeomorphism. So U is open, – U is also open.

2) Since $x \to x + c$ is homeomorphic, then for any open $U \subseteq \Box R$, $c \in \Box R$, then $U + c = \{u + c/u \in \Box \cup U\}$ is open. If U, V are open, then U + V is open.

3) If U is open neighbourhood of c iff U - c is an open neighbourhood of 0. So, the topology of R is completely determined by the open neighbourhoods of 0.

2.15 Definition : Let X be a topological space. If $x \in \Box \ \Box X$, then a fundamental system of neighbourhoods of x is a non-empty set M of open neighbourhoods of x with the property that, if U is open and $x \in \Box \ \Box U$, then there is $V \in \Box \ \Box M$ with $V \subseteq \Box U$.

2.16 Definition : Let R be a 3- ring. A non-empty set N of subsets of R is

fundamental if it satisfies the following conditions.

(a) Every element of N contain 0.

(b) If U, $V \in \Box N$, then there is $W \in \Box N$ with $W \subseteq \Box U \Box V$.

(0). For $U \in \Box N$ and $c \in \Box U$, there exist $V \in \Box N$ such that $c + V \subseteq \Box U$.

(1). For each $U \in \Box N$ there exist $V \in \Box N$ such that $V + V \subseteq \Box U$.

(2). $U \in \Box N$ then $-U \in \Box N$.

(3). If $U \in \Box N$ there exist $V \in \Box N$ such that $V^* \subseteq \Box U$.

(4). For $c \in \Box R$ and $U \in \Box N$ there is $V \in \Box N$ such that $c V \subseteq \Box U$ and $V c \subseteq \Box U$.

(5). For each $U \in \square N$ there is $V \in \square N$ such that $V \cdot V \subseteq \square U$.

2.17 Theorem : Suppose R is a topological 3- ring. Then the set N of open

neighbourhoods of 0 satisfies.

(0). For $U \in \Box N$ and $c \in \Box U$, $\exists \Box \Box V \in \Box N$ such that $c + V \subseteq \Box U$.

(1). For each $U \in \Box N$, there exist $V \in \Box N$ such that $V + V \subseteq \Box U$.

(2). If $U \in \Box N$, then $-U \in \Box N$.

(3). If $U \in \Box N$, then $\exists \Box \Box V \in \Box N \ni \Box V^* \subseteq \Box U$.

(4). For $c \in \Box R$ and $U \in \Box N$, there is $V \in \Box N$ such that $c V \subseteq \Box U$ and $V c \subseteq \Box U$.

(5). For each $U \in \Box N$ there is $V \in \Box N$ such that $V \cdot V \subseteq \Box U$.

Conversely, if R is a regular ring and N a non-empty set of subsets of R

which satisfies N0, N1, N2, N3, N4 and N5 has the property that (a) every element of N contains 0 and (b) if U, $V \in \Box N$, then there is $W \in \Box N$ such that $W \subseteq \Box U \cap \Box V$, then there is a unique topology on R making R into a topological3-ring in such away that N is a fundamental system of neighbourhoods of 0. **Proof :**

N0 . Let $U \in \Box N$ and $c \in \Box U$, then U - c is a neighbourhood of 0.

N1. Let $U \in \square N \Longrightarrow \square 0 \in \square U \Longrightarrow \square (0, 0) \in \square +^{-1} (U)$

: + is continuous, so +⁻¹ (U) is open and (0, 0) ∈ □+⁻¹ (U), ∃□ □ open sets, V1, V2 with (0, 0) ∈ □V1 × V2⊆ □+⁻¹ (U).

Let $V = V1 \cap V2 \Longrightarrow \Box(0, 0) \in \Box V \times V \subseteq \Box + \neg (U) \Longrightarrow \Box V + V \subseteq \Box U$.

N2. Let $U \in \Box N \Rightarrow \Box U$ neighbourhood of 0.

 $-: R \rightarrow \Box R$ is homeomorphic and U is open $\Rightarrow \Box -U$ is open.

 $: 0 \in \Box U \Longrightarrow \Box 0 \in \Box - U . : \Box - U \in \Box N.$

N3. $: : R \to \Box R$ is continuous and U is a neighbourhood of 0, then *⁻¹ (U) is open and $0 \in \Box^{*-1}$ (U). $\Rightarrow \Box \exists \Box a$ neighbourhood V of 0 such that $V \subseteq \Box^{*-1}$ (U) $\Rightarrow \Box V^* \subseteq \Box U$.

```
N4.
            Let U \in \mathbb{N} and c \in \mathbb{R} \implies \mathbb{U} is neighbourhood of 0. x \subseteq \mathbb{C}x is continuous and U is neighbourhood of
0, then \exists \Box a neighbourhood V
of 0 such that cV \subseteq \Box U (By taking x = 0). Similarly Vc \subseteq \Box U.
            Let U \in \mathbb{N} \implies \mathbb{U} is a neighbourhood of 0.
N5.
 : multiplication . is continuous, \overline{\Box}^{-1}(U) is open and contains (0, 0).
\Box \Rightarrow \Box \exists \Box \text{ neighbour hoods V1, V2 of 0 such that } (0, 0) \in \Box V1 \times V2 \subseteq \Box^{-1}(U).
Let V = V1 \cap \Box V2 \Longrightarrow \Box (0, 0) \in \Box V \times V \subseteq \Box \Box^{-1} (U) \Longrightarrow \Box V.V \subseteq \Box U.
Conversely suppose R is a regular ring and N be a non-empty set of
 subsets of R with the given properties. We define a subset U of R to be open if for every x \in U, \exists W \in U
\Box x + W \subseteq \Box U.
Clearly this is a topology.
For : Clearly Ø, R are open.
Suppose \{U\alpha \Box / \alpha \Box \in \Box \Delta\} is a family of open sets.
Let U = \cup U
\square \alpha \in \Delta
Let x \in \Box U \Longrightarrow \Box x \in \cup U
                              \alpha \in \Delta
\Rightarrow \Box x \in \Box U \alpha \Box \text{ for some } \alpha \Box \in \Box \Delta \Box \Rightarrow \Box \exists \Box \Box \Box V \in \Box N \exists \Box V + x \subseteq \Box U \alpha
\Rightarrow \Box V + x \subseteq \Box \cup \Box U
\Rightarrow \Box V + x \subseteq \Box U.
\therefore \Box \Box U is an open set.
Let U1, U2 be two open sets. Let U = U1 \cap \Box U2.
Let x \in \bigcup \bigcup \Rightarrow x \in \bigcup \bigcup 1 and x \in \bigcup \bigcup 2 \Rightarrow \exists \bigcup V_1, V_2 \in \bigcup N \ni \bigcup V_1 + x \subseteq \bigcup \bigcup, V_2 + x \subseteq \bigcup U_2. Then \exists \bigcup V \in \bigcup V_2.
\square N \ni \square V \subseteq \square V1 \cap \square V2. Then V + x \subseteq \square U1, V + x \subseteq \square U2.
\therefore U + x \subseteq U1 \cap U2. \therefore U1 \cap U2 is open.
Let U \in \square N and x \in \square R. Then \exists \square \square V \in \square N \ni \square V + x \subseteq \square U (By N0)
\therefore \Box \Box The sets in N are also open sets containing 0.
Claim : If U is open, then for c \in \Box R, c + U is open.
Let b \in \Box c + U \Longrightarrow \Box b - c \in \Box U.
\therefore \square \exists \square \forall V \in \square N \ni \square b - c + V \subseteq \square U (By (N0) \Longrightarrow \square b + V \subseteq \square c + U.
\therefore \Box c + U is open set.
Claim : + : R \times R \rightarrow \Box R is continuous.
Let U be an open set. Let (c, d) \in \Box^{+1}(U) \Longrightarrow \Box c + d \in \Box U.
\therefore \square \exists \square W \in \square N \exists \square c + d + W \subseteq \square U \therefore W \in \square N, by N1, \exists \square \square Q \in \square N \exists \square Q + Q \subseteq \square W.
\therefore \Box c + d + Q + Q \subseteq \Box c + d + W \subseteq \Box U \Longrightarrow \Box (c, d) \in \Box (c + Q) \times (d + Q) \subseteq \Box +^{-1} (U).
\therefore \square +^{-1} (U) is open. \therefore \square + is continuous.
Claim : -: R \rightarrow \Box R is continuous.
Let U be an open set. Let b \in \Box - U \Longrightarrow \Box - b \in \Box U.
From N0, \exists \Box \Box V \in \Box N \exists \Box -b + V \subseteq \Box U \Longrightarrow \Box b - V \subseteq \Box - U.
\therefore \Box = - U is open. (: V \in \Box N \Rightarrow \Box - V \in \Box N by N2). \therefore \Box = - is continuous
.Claim : The map \theta \square: R \rightarrow \square R by x \rightarrow cx is continuous.
Let U be an open set. Let x \in \theta^{-1} \square (U) \Longrightarrow \theta \square (x) \in \square U \Longrightarrow \square cx \square \in U
Then x + V \subseteq \Box \theta^{-1}(U). \therefore \Box \Box \theta^{-1}(U) is open
\therefore \Box = \theta \Box i.e., x \rightarrow \Box c x is continuous. Similarly x \rightarrow \Box x c is continuous.
Claim : m : R \times R \longrightarrow \square R is continuous, where m(a, b) = a \cdot b
Let U be an open set and (c, d) \in \Box m^{-1}(U).
The maps \theta \square: R \rightarrow \square R and \Psi \square: R \rightarrow \square R where \theta(x) = c x, \Psi(x) = x c are
continuous.
:: (c, d) \in \Box m^{-1} (U) \Longrightarrow \Box m(c, d) \in \Box U \Longrightarrow \Box c d \in \Box U
\implies \square \exists \square \square W \in \square N \exists \square c d + W \subseteq \square U (By N0).
: W \in [N, \exists \Box \Box Q \in \Box N \ni \Box Q + Q \subseteq \Box W (By N1)]
\therefore Q \in [N, \exists \Box \Box V \in [N \ni \Box V.V \subseteq \Box Q (By N5)].
: Q \in \Box N, \exists \Box \Box P \in \Box N \ni \Box P + P \subseteq \Box Q (By N1).
```

Let $Pd = \Psi^{-1}(P) \cap \Box Q \cap \Box V$, $Pc = \theta^{-1}(P) \cap \Box Q \cap \Box V$.

Then $(c, d) \in \Box(c + Pd) \times (d + Pc) \subseteq \Box m - 1(U)$. $\therefore \Box \Box m$ is continuous.

Claim : $* : \mathbb{R} \to \Box \mathbb{R}$ is continuous. Let U be an open set.

Let $x \in \Box^{*-1}(U) \Longrightarrow \Box x^* \in \Box U \Longrightarrow \Box U - x^*$ is a neighbourhood of 0

 $\therefore \square \exists \square \forall V \in \square N \ni \square V^* \subseteq \square U - x^* \Longrightarrow \square x^* + V^* \subseteq \square U.$

Suppose $\Box \Box$ is another topology on R for which N is a fundamental system

of neighbourhoods of 0 in this topology. Then the topology \Box \Box and the topology

defined above have same open base.

 \therefore The topology \Box \Box must agree with the topology we have defined above.

 \therefore \Box \Box The topology is unique.

 $\therefore \square \square N$ generates a unique topology on R for which N is a fundamental system of neighbourhoods of 0.

2.18 Note : If R is a 3- ring then R has no non-zero nilpotent elements, every prime ideal is maximal and Jacobson radical of R is $\{0\}$.

2.19 Theorem : Suppose R is a topological 3- ring. S, T are subsets of R

.Then a) ST, S + T are compact whenever S, T are compact.

b) – S, S* are compact whenever S is compact.

c) ST, S + T are connected sets whenever S, T are connected sets.

d) –S, S* are connected whenever S is connected.

Proof:

a) Since continuous image of a compact set is compact.

+, $: \mathbf{R} \times \mathbf{R} \rightarrow \Box \mathbf{R}$ are continuous, S, T are compact sets, then

 $(S \times T) = ST,$

 $+(S \times T) = S + T$ are compact.

b) $:= -: R \rightarrow \Box R$ and $*: R \rightarrow \Box R$ are continuous and S in compact, then -S, S* are compact.

c) :: continuous image of a connected set in connected, $: R \times R \rightarrow \Box R$ and $+ : R \times R \rightarrow \Box R$ are continuous,

 $(S \times T) = ST, +(S \times T) = S + T$ are connected sets.

d) :: $-: R \rightarrow \Box R$, $*: R \rightarrow \Box R$ are continuous and S is connected, so -S, S^* are connected.

2.20 Theorem : The union of all connected subsets contain 0 is a topological Sub 3- ring.

Proof : Suppose $\{Si | i \in \Box I\}$ is a class of all connected sets containing 0.

Let $S = \bigcup Si$ contain 0 $i \in \Box I$.

 $: 0 \in \mathbb{S} \implies 0 \in \mathbb{S}i \text{ for some } i \in \mathbb{I} \implies 1 - 0 = -Si \implies 1 \in -Si$

 \therefore Si is connected, – Si is also connected.

 $\square : \square \square \square \models \square S. Let a \in \square S \Longrightarrow \square a \in \square K i \text{ for some } i \Longrightarrow \square - a \in \square - K i \Longrightarrow \square - a \in \square S.$

 $\therefore \square \square \square a \in \square S \Longrightarrow \square - a \in \square S$

Suppose a, $b \in \Box S \Longrightarrow \Box a \in \Box Si, b \in \Box Sj \Longrightarrow \Box a + b \in \Box Si + Sj$

 $\therefore \Box a + b \in \Box S (:: Si + Sj \text{ is connected})$

 $\therefore \Box S$ is a topological sub 3- ring of R.

2.21 Theorem : Suppose R is a topological 3- ring and I is ideal of R. Then

 \overline{I} is also an ideal of R.

Proof : Suppose I is an ideal of R. $\overline{I} = \{a \in \Box R / every neighbourhood of a intersects I\}$ Claim : \overline{I} is an ideal. Let a, $b \in \Box \overline{I}$

 \Rightarrow Every neighbourhood of a, every neighbourhood of b intersects I.

Suppose W is a neighbourhood of a + b.

 $\Rightarrow \Box \exists \Box$ neighbour hood U of a, neighbourhood V of b such that $U + V \subseteq \Box W$.

: U intersects I, V intersects I so U + V intersects I, then W intersects I.

 $\therefore \Box a + b \in \Box I$. Let $a \in \Box I$, $b \in R$.

Claim : $a b \in \Box \overline{I} : : a \in \Box \overline{I} \implies \Box$ Every neighbourhood of a intersects I.

Let W be a neighbourhood of ab. then $\exists \Box$ neighbourhood U of a, neighbourhood V of $b \exists \Box UV \subseteq \Box W$.

 $\because U \cap \Box I \Box \neq \Box \exists \Box a \in \Box U \exists \Box a \in \Box I. \text{ Let } a b \in \Box UV \Longrightarrow \Box a b \in \Box I (\because a \in \Box I)$

 $\therefore \Box UV \cap \Box I \neq \Box \therefore \Box UV \text{ intersects I.}$

 $: UV \subseteq \Box W$, so W intersects I. $:\Box a b \in \Box \overline{I}$

Similarly ba $\in \Box \overline{I} : :: \Box \overline{I}$ is an ideal of R.

2.22 Theorem : Every maximal ideal M of a topological 3- ring R is closed. **Proof :** Clearly $M \subseteq \square \overline{M} \square$:: $\overline{M} \square$ is ideal, so $M = \overline{M} \square$:: $\square M$ is closed.

2.23 Theorem : If a topological 3- ring is T2 space then it is a Hausdorff space.

Proof : Suppose R is a T2 space and a, $b \in \square R$ and $a \neq \square b$. \therefore R is a T2 space $\exists \square$ neighbourhood U of a and neighbourhood V of $b \ni \square a \notin \notin \square V$, $b \notin \notin \square U$. Suppose $U \cap \square V \neq \square$ Let $W = U \cap \square V$. Let $c \in \square W \Longrightarrow \square W - c$ is neighbourhood of 0. Let $K = W - c \Longrightarrow \square K$ is neighbourhood of 0. $\Longrightarrow \square K + a$ and K + b are neighbourhoods of a and b respectively and $(K + a) \cap \cap \square (K + b) = \square$. $\therefore \square R$ is Hausdorff space.

2.24 Theorem : Every topological 3- ring is a homogeneous algebra. ie., for every p, q ($p \neq q$) there is a continuous map f : R $\rightarrow \Box$ R such that f(p)=q. **Proof :** R is a topological 3- ring. Let c = q - p, then the function f : R $\rightarrow \Box$ R by f(x) = c + x is continuous and f(p) = c + p = q - p + p = q.

2.25 Theorem : Suppose R is a topological 3- ring and X = spec R. R* is a complete Boolean algebra. Suppose M is a subset of Spec R = X. Denote QM ,the set of elements $e \in \mathbb{R}^*$ for which M $\subseteq \mathbb{R}$ X. Then X $\land \mathbb{Q}$ M $\subseteq \mathbb{M}$. In particular if M is nowhere dense in Spec R, then $\land \mathbb{Q}$ M = 0.

Proof: Let $x \in \Box X \land \Box QM$.

Suppose $x \notin \notin \overline{M}$. $\Rightarrow \Box \exists \Box a$ neighbourhood X e of the point $\exists \Box X e \cap \Box M = \emptyset$.

 $\Longrightarrow \Box M \subseteq \Box X e' (e' = 1 - e) \Longrightarrow \Box e' \in \Box QM$

 $\therefore \square e \land \square \square (\land \square QM) \subseteq \square e \land \square e1 = 0$

i.e., $e \land \Box (\land \Box QM) = 0 \Longrightarrow \Box X e \land \Box (\land \Box QM) = \emptyset \Box \Longrightarrow \Box X e \land \Box X \land \Box QM = \emptyset$

It is a contradiction (Q $x \in \Box X \land \Box QM$ and $x \in \Box X$ e). $\therefore \Box x \in \Box \overline{M}$.

 $\Box \therefore X \land \Box \Box QM \subseteq \Box \overline{M}$. Suppose M is nowhere dense.

 $\Rightarrow \overline{M} \square$ contains no non-empty open subset.

But $X \land QM \subseteq \overline{M} \Longrightarrow X \land QM = \emptyset$ $\Longrightarrow \land QM = 0$.

Reference

- [1]. A.L.Foster, The theory of Boolean like rings, Trans. Amer. Math. Soc., 59 (1946), pp:166-187.
- [2]. Jacobson. N, Basic algebra-2, Hindustan Publishing Corporation, 1994.
- [3]. Jacobson. N; Totally disconnected locally compact rings, Amer. J. Math. 58 (1936), 433-449.
- [4]. Koteswara Rao, P: A*-Algebra an If-Then-Else structures (Doctoral Thesis) 1994, Nagarjuna University, A.P., India.
- [5]. M.H. McCoy, and Montgomery, A representation of generalized Boolean
- [6]. rings. Duke Math. J. 3 (1937), 455–459. 6.M,H.Stone, The theory of representation of Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), pp:37-111.
- [7]. Pontryagin. L.S., Topological groups, English transl., 2nd Russian ed; Gordan and Breach, Newyork, 1966.
- [8]. Pontryagin. L.S., Uberstetige algebraische Korper, Ann. of Math. 33 (1932), 163-174.
- [9]. Skornjakov. L.A., Einfachelokal bikompakte Ringe, Math. Z. 87 (1965), 241-75.
- [10]. Small. L., Reviews in Ring theory, 1940-1970, Amer, Math. Soc. Providence, RI, 1981.
- [11]. Van Dantzig. D., Studien Over Topologische algebra, Paris. H.J., Amsterdam, 1931 (Dutch).
- [12]. Warner. S; Topological fields, North. Holland Mathematical studies, Vol. 157, North-Holland, Amsterdam / New York (1989).
- [13]. Warner. S, Topological Rings, North–Holland Mathematics studies, Vol. 178, Elsevier, Amsterdam / London / New York /Tokyo 1993.