Measure space on Weak Structure

Mohammed M. Khalaf*, Ahmed Elmoasry*
Department of Mathematics, Faculty of Science, Al-Azhar University, Asuiat, Egypt
Department of Mathematics, Aswan Faculty of Science, Aswan University, Aswan, Egypt

Abstract: Császár in [4] introduce a weak structure as generalization of general topology. The aim of this paper is to give basic concepts of the measure theory in weak structure.

Keywords: weak structure, σ-algebra, σ-additive function, Measures

I. Notation and Preliminaries

In mathematical analysis. Measurement theory plays a vital role in the expression completely for some mathematical concepts. In our research, we introduced some of the concepts of measurement in a weak structure. And we study their properties and some applications it. So we shall denote by \(X \) a nonempty set, by \(\omega \) a weak structure [1] and by \(P(X) \) the set of all parts (i.e., subsets) of \(X \), and by \(\emptyset \) the empty set. For any subset \(\lambda \) of \(X \) we shall denote by \(\lambda^c \) its complements, i.e., \(\lambda^c = \{ x \in X | x \notin \lambda \} \). For any \(\lambda, \mu \in P(X) \) we set \(\lambda|\mu = \lambda \cap \mu^c \). Let \((\lambda_n) \) be a sequence in \(P(X) \).

The following Demorgan identity holds \((\bigcup_{n=1}^{\infty} \lambda_n) = \bigcap_{n=1}^{\infty} \lambda_n^c \). We define

\[
\lim_{n \to \infty} \bigvee \lambda_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} \lambda_m, \quad \lim_{n \to \infty} \bigwedge \lambda_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \lambda_m.
\]

If \(L = \lim_{n \to \infty} \bigvee \lambda_n = \lim_{n \to \infty} \bigwedge \lambda_n \), then we set \(L = \lim_{n \to \infty} (\lambda_n) \), and we say that \((\lambda_n) \) converges to \(L \).

As easily checked, \(\lim_{n \to \infty} \bigvee \lambda_n \) (resp., \(\lim_{n \to \infty} \bigwedge \lambda_n \)) consists of those elements of \(X \) that belong to infinite elements of \((\lambda_n) \) (resp., that belong to infinite elements of \((\lambda_n) \)) expect perhaps a finite number. Therefore, \(\lim_{n \to \infty} \bigwedge \lambda_n \subset \lim_{n \to \infty} \bigvee \lambda_n \).

And it easy also to check that, if \((\lambda_n) \) is increasing \((\lambda_n \subset \lambda_{n+1}, n \in N) \), then \(\lim_{n \to \infty} \lambda_n = \bigcup_{n=1}^{\infty} \lambda_n \) where, if \((\lambda_n) \) is decreasing \((\lambda_n \supset \lambda_{n+1}, n \in N) \), then \(\lim_{n \to \infty} \lambda_n = \bigcap_{n=1}^{\infty} \lambda_n \).

In the first case we shall write \(\lambda_n \uparrow L \), and in the second \(\lambda_n \downarrow L \).

II. Algebra and \(\sigma \)-algebra on a weak structure \(\omega \)

Let \(A \) be a nonempty subset of \(\omega \)

Definition 1.1 \(A \) is said to be an algebra in \(\omega \) if

a) \(\phi \in A \)
b) \(\lambda, \mu \in A \Rightarrow \lambda \cup \mu \in A \)
c) \(\lambda \in A \Rightarrow \lambda^c \in A \)

Remark 1.1 It easy to see that, if \(A \) is an algebra and \(\lambda, \mu \in A \), then \(\lambda \cup \mu \) and \(\lambda|\mu \) belong to \(A \). Therfore, the symmetric difference \(\lambda \Delta \mu = (\lambda|\mu) \cup (\mu|\lambda) \) also belong to \(A \). Moreover, \(A \) is stable under finite union and intersection,

that is \(\lambda_1, \ldots, \lambda_n \in A \Rightarrow \lambda_1 \cup \cdots \cup \lambda_n \in A \)

\(\lambda_1 \cap \cdots \cap \lambda_n \in A \).
Definition 1.2 An algebra A in ω is said to be a σ-algebra if, for any sequence (λ_n) of elements of A, we have $\bigcup_{n=1}^{\infty} \lambda_n \in A$. We note that, if A is σ-algebra and $(\lambda_n) \subseteq A$, then $\bigcap_{n=1}^{\infty} \lambda_n \in A$ owing to the De Morgan identity. Moreover, $\lim_{n \to \infty} (\bigwedge \lambda_n) \in A$, $\lim_{n \to \infty} (\bigvee \lambda_n) \in A$.

The following examples explain the difference between algebras and σ-algebras.

Example 1.1 Obviously, $P(X)$ and $\mathcal{E} = \{\phi\}$ are σ-algebras in X. Moreover, ω is the largest σ-algebras in X, and \mathcal{E} is the smallest.

Example 1.2 In $[0,1)$, the class ρ consisting of ϕ and of all finite unions $\beta = \bigcup_{i=1}^{n} [a_i, b_i)$ with $0 \leq a_i \leq b_i \leq a_{i+1} \leq 1$ is an algebra.

Example 1.3 In an infinite set X consider the class $\rho = \{\theta \in \omega | \theta$ is finite, or θ^c is finite $\}$. Then ρ is an algebra.

Example 1.4 In an uncountable set X consider the class $\rho = \{\theta \in \omega | \theta$ is uncountable, or θ^c is uncountable $\}$. Then ρ is a σ-algebra.

Definition 1.3 The intersection of all σ-algebras including $\tau \subseteq \omega$ is called the σ-algebra generated by τ, and will be denoted by $\sigma(\tau)$.

Example 1.5 Let E be a metric space. The σ-algebra generated by all open subsets of E is called the Borel σ-algebra of E, and denoted by $B(E)$.

2. Measure

2.1 Additive and σ-additive functions

Let $A \subseteq \omega$ be an algebra.

Definition 2.1 Let $F : A \to [0, +\infty]$ be such that $\mu(\phi) = 0$.

(1) We say that F is additive if, for any family $A_1, \ldots, A_n \in A$ of mutually disjoint sets, we have $F\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} F(A_k)$.

(2) We say that F is σ-additive if, for any sequence $(A_n) \in A$ of mutually disjoint sets such that $\bigcup_{k=1}^{\infty} A_k \in A$, we have $F\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} F(A_k)$.

Remark 2.1 Let $A \subseteq \omega$ be an algebra.

(1) Any σ-additive function on A is also additive.

(2) If F is additive, $\lambda, \mu \in A$, and $\lambda \supseteq \mu$, then $F(\lambda) = F(\mu) + F(\lambda \setminus \mu)$.

Therefore, $F(\lambda) \geq F(\mu)$.
(3) Let \(F \) is additive on \(A \), and let \((A_n) \in A\) be mutually disjoint sets such that \(\bigcup_{k=1}^{\infty} A_k \in A \). Then, \(F(\bigcup_{k=1}^{\infty} A_k) \geq \sum_{k=1}^{\infty} F(A_k) \) for all \(n \in \mathbb{N} \).

Therefore, \(F(\bigcup_{k=1}^{\infty} A_k) \geq \sum_{k=1}^{\infty} F(A_k) \)

(4) Any \(\sigma \)– additive function \(F \) on \(A \) is also countably subadditive, that is, for any sequence \((A_n) \subset A\) such that \(\bigcup_{n=1}^{\infty} A_n = X \), and \(F(A_n) < \infty \) for all \(n \in \mathbb{N} \).

(5) In view of parts 3 and 4 an additive function is \(\sigma \)– additive if and only if it is countably subadditive.

Definition 2.2 A \(\sigma \)– additive function \(F \) on an algebra \(A \subset \omega \) is said to be

(1) finite if \(F(X) < \infty \),

(2) \(\sigma \)– finite if there exists a sequence sequence \((A_n) \subset A\) such that \(\bigcup_{n=1}^{\infty} A_n = X \), and \(F(A_n) < \infty \) for all \(n \in \mathbb{N} \).

Example 2.1 In \(X = N \), consider the algebra \(A = \{ A \in \omega | \text{is finite, or } A^c \text{ finite} \} \). The function \(F : A \rightarrow [0, \infty] \) defined as \(F(A) = \begin{cases} n(A) & \text{if } A \text{ finite} \\ \infty & \text{if } A^c \text{ finite} \end{cases} \) (where \(n(A) \) stands for the number of elements of \(A \) is \(\sigma \)– additive. On the other hand.

The function \(F : A \rightarrow [0, \infty] \) defined as \(F(A) = \begin{cases} \sum_{n \in A} \frac{1}{2^n} & \text{if } A \text{ finite} \\ \infty & \text{if } A^c \text{ finite} \end{cases} \) is additive but not \(\sigma \)– additive.

Theorem 2.1 Let \(\mu \) be additive on \(A \). Then \((i) \Leftrightarrow (ii) \) where:

(i) \(\mu \) is \(\sigma \)– additive,

(ii) \((A_n)\) and \(A \subset A, A_n \uparrow A \Rightarrow \mu(A_n) \uparrow \mu(A) \).

Proof \((i) \Rightarrow (ii)\) Let \((A_n)\), \(A \subset A \), \(A_n \uparrow A \). Then, \(A = A_0 \cup \bigcup_{n=1}^{\infty} (A_{n+1} \setminus A_n) \), the above being disjoint union. Since \(\mu \) is \(\sigma \)– additive, we deduce that \(\mu(A) = \mu(A_0) + \sum_{n=1}^{\infty} (\mu(A_{n+1}) - \mu(A_n)) = \lim_{n \rightarrow \infty} \mu(A_n) \), and (ii) follows.

\[(ii) \Rightarrow (i)\] Let \((A_n) \subset A\) be a sequence of mutually disjoint sets such that \(A = \bigcup_{k=1}^{\infty} A_k \in A \). Define \(B_n = \bigcup_{k=1}^{\infty} A_k \). Then \(B_n \uparrow A \). So, in view of \((ii)\), \(\mu(B_n) = \sum_{n=1}^{\infty} \mu(A_n) \uparrow \mu(A_n) \).

This implies \((i)\)
Definition 2.2 let $\varepsilon = \{\emptyset\}$ are σ - algebras in X.

1. We say that the pair (X, ε) is a measurable space.
2. A σ - additive function $\mu : \varepsilon \to [0, +\infty]$ is called a measure on (X, ε)
3. The triple (X, ε, μ), where μ is a measure on a measurable space (X, ε) is called a measurable space
4. A measure μ is said to be complete if $A \in \varepsilon, B \subset A, \mu(A) = 0 \Rightarrow B \in \varepsilon$ (and so $\mu(B) = 0$).
5. A measure μ is said to be concentrated on a set $A \in \varepsilon$ if $\mu(A^c) = 0$.

In this case we say that A is a support of μ

Example 2.2 Let X be a nonempty set and $x \in X$. Define for every $A \in P(X)$
$$
\delta_x(A) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{if } x \notin A
\end{cases}
$$
Then δ_x is a measure in X.

References