Approximation of Function Belonging To The Lip($\psi(t), p$) Class **By Matrix-Cesaro Summability Method**

U.K.Shrivastava¹, C.S.Rathore², Shobha Shukla³

¹Department of Mathematics, Faculty of Science, Govt.Bilasa Girls P.G.College, Bilaspur(C.G) ²Department of Mathematics, Faculty of Science, jajwalyadev Govt. Girls College, janjgir(C.G) ³Department of Mathematics, Faculty of Engineering and Technology, Dr.C.V.Raman University, Kota, Bilaspur(C.G.)

Abstract: In this paper, we have established a theorem on approximation of function belonging to $Lip(\psi(t), p)$ class by Matrix-Cesaro summability method of Fourier series. **Keywords:** Degree of approximation, $Lip(\psi(t), p)$ class of function, Matrix-Cesaro summability method,

Fourier series, Lebesgue integral.

I. Introduction

Bernstein[3] used (C,1) means to obtain the degree of approximation function f by Lip1 class. Jackson[6] determined the degree of approximation by using (C, δ) method in Lipa class for $0 < \alpha < 1$. Alexits[1], Chandra[5], Sahney and Goel[7], Sahney and Rao[8], Alexits and Leindler[2] studied the degree of approximation of function $f \in Lip\alpha$ and obtained the results which are not satisfied for n=0,1 or α =1. Binod Prasad Dhakal[4] studied the degree of approximation of function $f \in Lip\alpha$ considering cases $0 \le \alpha \le 1$ and $\alpha = 1$ separately using Matrix-Cesaro summability method.

In this paper we have extended this result by obtaining the degree of approximation of function f belonging to a generalized class $Lip(\alpha)$.

II. **Definitions And Notations**

Let f be a periodic function with period 2π and integrable in the Lebesgue sense. Let its Fourier series be given by

 $f(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$

The degree of approximation of a function $f: \mathbb{R} \to \mathbb{R}$ by a trigonometric polynomial t_n of order is defined by $E_{n}(f) = ||t_{n} - f||_{\infty} = \sup\{|t_{n}(x) - f(x)| : x \in \mathbb{R}\}$ A function $f \in \text{Lip}\alpha$ if

 $|f(x+t) - f(x)| = O(|t|^{\alpha}), \text{ for } 0 < \alpha \le 1$

Let $\sum_{n=0}^{\infty} u_n$ be the infinite series whose nth partial sum is given by

$$s_n = \sum_{k=0}^n u_k$$

Cesaro means (C,1) of sequence $\{s_n\}$ is given by $\sigma_n = \frac{1}{n+1} \sum_{k=0}^n s_k.$

If $\sigma_n \to sasn \to \infty$ then the sequence $\{s_n\}$ or the infinite series $\sum_{n=0}^{\infty} u_n$ is said to be summable by Cesaro means (C,1) to s.

Let $T = (a_{n,k})$ be an infinite lower triangular matrix satisfying the Silverman-Toeplitz conditions of regularity i.e. $\sum_{k=0}^{n} a_{n,k} \to 1$ as $n \to \infty$, $a_{n,k} = 0$, for k > n and $\sum_{k=0}^{n} |a_{n,k}| \le M$, a finite constant.

Matrix-Cesaro means $T(C_1)$ of the sequence $\{s_n\}$ is given by

$$t_n = \sum_{k=0}^n a_{n,n-k} \sigma_{n-k} \\ = \sum_{k=0}^n a_{n,n-k} \frac{1}{\sum_{k=0}^{n-k} a_{n-k}}$$

 $\sum_{k=0}^{n} a_{n,n-k} \frac{1}{n-k+1} \sum_{r=0}^{n} S_r$

If $t_n \to sasn \to \infty$ then the sequence $\{s_n\}$ or the infinite series $\sum_{n=0}^{\infty} u_n$ is said to be summable by Matrix-Cesaro means $T(C_1)$ to s.

Important cases of Matrix-Cesaro means are:

- $(N, p_n)C_1$ means when $a_{n,n-k} = p_k/P_n$, where $P_n = \sum_{k=0}^n p_k \neq 0$ (i)
- $(N, p_n)C_1$ means when $a_{n,n-k} = p_{n-k}/P_n$ (ii)
- $(N, p, q)C_1$ means when $a_{n,n-k} = p_k q_{n-k}/R_n$, where $R_n = \sum_{k=0}^n p_k q_{n-k} \neq 0$ (iii)

(2.1)

We shall use following notation:

$$\phi(t) = f(x+t) + f(x-t) - f(x)$$

$$K(n,t) = \frac{1}{2\pi} \sum_{k=0}^{n} \frac{a_{n,n-k}}{n-k+1} \frac{\sin^2(n-k+1)t/2}{\sin^2(t/2)}$$

III. **Main Theorem**

Let f is a 2π -periodic function, Lebesgue integrable on $[-\pi, \pi]$ and $f \in \text{Lip}(\psi(t), p)$ class and if $\left\{\int_{0}^{1/n+1} \left(\frac{\psi(t)}{t^{1/p}}\right)^{p} dt\right\}^{1/p} = O\left(\psi\left(\frac{1}{n+1}\right)\right)$ And (3.1) $\left\{\int_{1/n+1}^{\pi} \left(\frac{\psi(t)}{t^{1/p+2}}\right)^{q} dt\right\}^{1/q} = O\left((n+1)^{2}\psi\left(\frac{1}{n+1}\right)\right)$ (3.2)

Then the degree of approximation of f by the Matrix-Cesaro $T(C_1)$ summability method of its Fourier series is given by

$$\|t_n - f\|_{\infty} = O\left((n+1)^{1/p}\psi\left(\frac{1}{n+1}\right)\right)$$

For the proof of our theorem following lemmas are required: Lemma:1 For $0 < t < (n + 1)^{-1}$ and $\frac{1}{sint} \le \frac{\pi}{2t}$ for $0 < t < \frac{\pi}{2}$

Lemma:1 For
$$0 < t < (n + 1)^{-1}$$
 and $\frac{1}{sint} \le \frac{n}{2t}$ for
 $K(n,t) = O(n + 1)$
Proof: $K(n,t) = \frac{1}{2\pi} \sum_{k=0}^{n} \frac{a_{n,n-k}}{n-k+1} \frac{\sin^2(n-k+1)t/2}{\sin^2(t/2)}$
 $= \frac{1}{2\pi} \sum_{k=0}^{n} a_{n,n-k} (n - k + 1)$
 $\le \frac{n+1}{2\pi} \sum_{k=0}^{n} a_{n,n-k}$
 $= \frac{n+1}{2\pi}$
 $= O(n + 1)$

Lemma: 2For $(n + 1)^{-1} < t < \pi$

$$K(n,t) = O\left(\frac{1}{(n+1)t^2}\right)$$
Proof: $K(n,t) = \frac{1}{2\pi} \sum_{k=0}^{n} \frac{a_{n,n-k}}{n-k+1} \frac{\sin^2(n-k+1)t/2}{\sin^2(t/2)}$

$$\leq \frac{1}{2\pi} \sum_{k=0}^{n} \frac{a_{n,n-k}}{n-k+1} \frac{\pi^2}{t^2}$$

$$= \frac{\pi}{2t^2} \sum_{k=0}^{n} \frac{a_{n,n-k}}{n-k+1}$$

$$= \frac{\pi}{2t^2} O\left(\frac{1}{(n+1)t^2}\right)$$

Proof Of Main Theorem IV.

The nth partial sum of series $s_n(x)$ of the series (2.1) is given by lt

$$s_n(x) - f(x) = \frac{1}{2\pi} \int_0^{\pi} \phi(t) \frac{\sin(n+1/2)t}{\sin(t/2)} dt$$

The (C,1) transform σ_n of s_n is given by

$$\frac{1}{n+1} \sum_{k=0}^{n} s_n(x) - f(x) = \frac{1}{2(n+1)\pi} \int_0^{\pi} \frac{\phi(t)}{\sin(t/2)} \sum_{k=0}^{n} \sin(k+1/2) t \, dt$$
$$\sigma_n(x) - f(x) = \frac{1}{2(n+1)\pi} \int_0^{\pi} \phi(t) \frac{\sin^2(n+1)t/2}{\sin^2(t/2)} dt$$

The matrix means of the sequence $\{\sigma_n\}$ is given by

$$\sum_{k=0}^{n} a_{n,k} \left(\sigma_n(x) - f(x) \right) = \int_0^{\pi} \phi(t) \frac{1}{2\pi} \sum_{k=0}^{n} \frac{1}{(k+1)} \frac{\sin^2(k+1) t/2}{\sin^2(t/2)} dt$$

$$\sum_{k=0}^{n} a_{n,n-k} \left(\sigma_{n-k}(x) - f(x) \right) = \int_0^{\pi} \phi(t) \frac{1}{2\pi} \sum_{k=0}^{n} \frac{1}{(n-k+1)} \frac{\sin^2(n-k+1)t/2}{\sin^2(t/2)} dt$$

$$t_n(x) - f(x) = \int_0^{\pi} \phi(t) K(n, t) dt$$

$$= \int_0^{\frac{1}{n+1}} \phi(t) K(n, t) dt + \int_{\frac{1}{n+1}}^{\pi} \phi(t) K(n, t) dt$$

 $= I_1 + I_2$ Now $I_1 = \int_0^{\frac{1}{n+1}} \phi(t) K(n, t) dt$

Or

(4.1)

$$\begin{split} |I_{1}| &\leq \int_{0}^{\frac{1}{n+1}} \frac{\psi(t)}{t^{1/p}} K(n,t) dt \\ &= \left\{ \int_{0}^{1/n+1} \left(\frac{\psi(t)}{t^{1/p}} \right)^{p} dt \right\}^{1/p} \left\{ \int_{0}^{1/n+1} (K(n,t))^{q} dt \right\}^{1/q} \\ &= O\left(\psi\left(\frac{1}{n+1} \right) \right) O\left(n+1\right) \left\{ \int_{0}^{1/n+1} dt \right\}^{1/q} \\ &= O\left(\psi\left(\frac{1}{n+1} \right) \right) O\left(n+1\right)^{1-\frac{1}{q}} \right) \\ &= O\left((n+1)^{1/p} \psi\left(\frac{1}{n+1} \right) \right) \\ \end{split}$$
(4.2)
And $I_{2} &= \int_{\frac{1}{n+1}}^{\pi} \phi(t) K(n,t) dt \\ |I_{2}| &\leq \int_{\frac{1}{n+1}}^{\pi} \frac{\psi(t)}{t^{1/p}} dt \right\}^{1/p} \left\{ \int_{\frac{1}{n+1}}^{\pi} (K(n,t))^{q} dt \right\}^{1/q} \\ &= \left\{ \int_{1/n+1}^{\pi} \left(\frac{\psi(t)}{t^{1/p}} \right)^{p} dt \right\}^{1/p} \left\{ \int_{\frac{1}{n+1}}^{\pi} (K(n,t))^{q} dt \right\}^{1/q} \\ &= \left\{ \int_{1/n+1}^{\pi} \left(\frac{\psi(t)}{t^{1/p}} \right)^{p} dt \right\}^{1/p} O\left(\frac{1}{n+1} \right) \\ &= O\left(\left(1 + 1 \right)^{2} \psi\left(\frac{1}{n+1} \right) \right) O\left(\frac{1}{(n+1)^{\frac{1}{q}}} \right) \\ &= O\left((n+1)^{1/p} \psi\left(\frac{1}{n+1} \right) \right) \\ &= O\left((n+1)^{1/p} \psi\left(\frac{1}{n+1} \right) \right) \end{aligned}$ (4.3)

Now combining (4.1),(4.2) and (4.3), we get

$$\begin{aligned} \|t_n - f\|_{\infty} &= \sup \left| (CE)_n^q(x) - f(x) \right| \\ &= O\left((n+1)^{1/p} \psi\left(\frac{1}{n+1}\right) \right) \end{aligned}$$

Acknowledgement

The third Author is thankful to this work is dedicated to my parents and my husband and I also very grateful to my guide and co-guide without their help couldn't complete my work.

References

- [1]. Chandra P., On the degree of approximation of function belonging to the Lipschitz class, Nanta Math. 8 (1975), No.1, 88-91.
- [2]. Chui C.K. and Holland A.S.B., On the order of Approximation by Euler and Taylor means, J. Appro. Theory 39(1983), 24-38.
- [3]. Khan H.H., On the degree of approximation of functions belonging to the class Lip(∝, p), Indian J. Pure Appl. Math.5(1974), No.2, 132-136.
- [4]. Nigam H.K., Degree of approximation of a class of function by product summability means, IAENG Int. J. of Appl. Math., 41:2, IJAM_41_2_07.
- [5]. Qureshi K., On the degree of approximation of functions belonging to the Lipschitz class by means of a conjugate series, Indian J. Pure Appl. Math.12-(1981), No. 9, 1120-1123.
- [6]. Qureshi K., On the degree of approximation of functions belonging to the class $Lip(\propto, p)$, Indian J. Pure Appl. Math. 13(1982), No. 4, 466-470.
- [7]. Sahney B.N. and Goel D.S., On the degree of approximation of continuous functions, Ranchi University Math. J. 4(1973), 50-53.
- [8]. Sahney D.S. and Rao V., Error bounds in the approximation on of functions, Bull.Austral.Math. Soc. 6(1972), 11-18.
- [9]. Zygmund A., Trignometrical Series, Cambridge University Press (1960).