Approximation of Function Belonging To The $\operatorname{Lip}(\psi(t), p)$ Class By Matrix-Cesaro Summability Method

U.K.Shrivastava ${ }^{1}$, C.S.Rathore ${ }^{2}$, Shobha Shukla ${ }^{3}$
${ }^{l}$ Department of Mathematics, Faculty of Science, Govt.Bilasa Girls P.G.College, Bilaspur(C.G)
${ }^{2}$ Department of Mathematics, Faculty of Science, jajwalyadev Govt.Girls College, janjgir(C.G)
${ }^{3}$ Department of Mathematics, Faculty of Engineering and Technology, Dr.C.V.Raman University, Kota, Bilaspur(C.G.)

Abstract

In this paper, we have established a theorem on approximation of function belonging to $\operatorname{Lip}(\psi(t), p)$ class by Matrix-Cesaro summability method of Fourier series.

Keywords: Degree of approximation, Lip $(\psi(t), p)$ class of function, Matrix-Cesaro summability method, Fourier series, Lebesgue integral.

I. Introduction

Bernstein[3] used (C,1) means to obtain the degree of approximation function f by Lip1 class. Jackson[6] determined the degree of approximation by using (C, δ) method in Lip α class for $0<\alpha<1$. Alexits[1], Chandra[5], Sahney and Goel[7], Sahney and Rao[8], Alexits and Leindler[2] studied the degree of approximation of function $f \in \operatorname{Lip} \alpha$ and obtained the results which are not satisfied for $\mathrm{n}=0,1$ or $\alpha=1$. Binod Prasad Dhakal[4] studied the degree of approximation of function $f \in$ Lip α considering cases $0<\alpha<1$ and $\alpha=1$ separately using Matrix-Cesaro summability method.
In this paper we have extended this result by obtaining the degree of approximation of function f belonging to a generalized class $\operatorname{Lip}(\alpha)$.

II. Definitions And Notations

Let f be a periodic function with period 2π and integrable in the Lebesgue sense. Let its Fourier series be given by
$f(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)$
The degree of approximation of a function $f: \mathrm{R} \rightarrow \mathrm{R}$ by a trigonometric polynomial t_{n} of order is defined by $\mathrm{E}_{\mathrm{n}}(\mathrm{f})=\left\|t_{n}-f\right\|_{\infty}=\sup \left\{\left|t_{n}(x)-f(x)\right|: x \in \mathrm{R}\right\}$
A function $f \in \operatorname{Lip} \alpha$ if
$|f(x+t)-f(x)|=O\left(|t|^{\alpha}\right)$, for $0<\alpha \leq 1$
Let $\sum_{n=0}^{\infty} u_{n}$ be the infinite series whose $\mathrm{n}^{\text {th }}$ partial sum is given by

$$
s_{n}=\sum_{k=0}^{n} u_{k}
$$

Cesaro means $(\mathrm{C}, 1)$ of sequence $\left\{s_{n}\right\}$ is given by
$\sigma_{n}=\frac{1}{n+1} \sum_{k=0}^{n} s_{k}$.
If $\sigma_{n} \rightarrow \operatorname{sas} n \rightarrow \infty$ then the sequence $\left\{s_{n}\right\}$ or the infinite series $\sum_{n=0}^{\infty} u_{n}$ is said to be summable by Cesaro means ($\mathrm{C}, 1$) to s .
Let $T=\left(a_{n, k}\right)$ be an infinite lower triangular matrix satisfying the Silverman-Toeplitz conditions of regularity i.e. $\sum_{k=0}^{n} \mathrm{a}_{\mathrm{n}, \mathrm{k}} \rightarrow 1$ as $n \rightarrow \infty, \mathrm{a}_{\mathrm{n}, \mathrm{k}}=0$, for $k>n$ and $\sum_{k=0}^{n}\left|\mathrm{a}_{\mathrm{n}, \mathrm{k}}\right| \leq M$, a finite constant.

Matrix-Cesaro means $\mathrm{T}\left(\mathrm{C}_{1}\right)$ of the sequence $\left\{s_{n}\right\}$ is given by
$t_{n}=\sum_{k=0}^{n} a_{n, n-k} \sigma_{n-k}$
$=\sum_{k=0}^{n} a_{n, n-k} \frac{1}{n-k+1} \sum_{r=o}^{n-k} s_{r}$
If $t_{n} \rightarrow \operatorname{sas} n \rightarrow \infty$ then the sequence $\left\{s_{n}\right\}$ or the infinite series $\sum_{n=0}^{\infty} u_{n}$ is said to be summable by MatrixCesaro means $\mathrm{T}\left(\mathrm{C}_{1}\right)$ to s .
Important cases of Matrix-Cesaro means are:
(i) $\quad\left(N, p_{n}\right) \mathrm{C}_{1}$ means when $a_{n, n-k}=p_{k} / P_{n}$, where $P_{n}=\sum_{k=0}^{n} p_{k} \neq 0$
(ii) $\quad\left(N, p_{n}\right) \mathrm{C}_{1}$ means when $a_{n, n-k}=p_{n-k} / P_{n}$
(iii) $\quad(N, p, q) \mathrm{C}_{1}$ means when $a_{n, n-k}=p_{k} q_{n-k} / R_{n}$, where $R_{n}=\sum_{k=0}^{n} p_{k} q_{n-k} \neq 0$

We shall use following notation:

$$
\begin{gathered}
\phi(t)=f(x+t)+f(x-t)-f(x) \\
K(n, t)=\frac{1}{2 \pi} \sum_{k=0}^{n} \frac{a_{n, n-k}}{n-k+1} \frac{\sin ^{2}(n-k+1) t / 2}{\sin ^{2}(t / 2)}
\end{gathered}
$$

III. Main Theorem

Let f is a 2π-periodic function, Lebesgue integrable on $[-\pi, \pi]$ and $f \in \operatorname{Lip}(\psi(t), p)$ class and if
$\left\{\int_{0}^{1 / n+1}\left(\frac{\psi(t)}{t^{1 \backslash p}}\right)^{p} d t\right\}^{1 / p}=O\left(\psi\left(\frac{1}{n+1}\right)\right)$
And
$\left\{\int_{1 / n+1}^{\pi}\left(\frac{\psi(t)}{t^{1 \backslash p+2}}\right)^{q} d t\right\}^{1 / q}=O\left((n+1)^{2} \psi\left(\frac{1}{n+1}\right)\right)$
Then the degree of approximation of f by the Matrix-Cesaro $T\left(C_{1}\right)$ summability method of its Fourier series is given by

$$
\left\|t_{n}-f\right\|_{\infty}=O\left((n+1)^{1 / p} \psi\left(\frac{1}{n+1}\right)\right)
$$

For the proof of our theorem following lemmas are required:
Lemma: 1 For $0<t<(n+1)^{-1}$ and $\frac{1}{\sin t} \leq \frac{\pi}{2 t}$ for $0<t<\frac{\pi}{2}$

$$
K(n, t)=O(n+1)^{s}
$$

Proof: $K(n, t)=\frac{1}{2 \pi} \sum_{k=0}^{n} \frac{a_{n, n-k}}{n-k+1} \frac{\sin ^{2}(n-k+1) t / 2}{\sin ^{2}(t / 2)}$

$$
\begin{aligned}
& =\frac{1}{2 \pi} \sum_{k=0}^{n} a_{n, n-k}(n-k+1) \\
& \leq \frac{\mathrm{n}+1}{2 \pi} \sum_{k=0}^{n} a_{n, n-k} \\
& =\frac{\mathrm{n}+1}{2 \pi} \\
& =O(n+1)
\end{aligned}
$$

Lemma: 2For $(n+1)^{-1}<t<\pi$

$$
K(n, t)=O\left(\frac{1}{(n+1) t^{2}}\right)
$$

Proof: $K(n, t)=\frac{1}{2 \pi} \sum_{k=0}^{n} \frac{a_{n, n-k}}{n-k+1} \frac{\sin ^{2}(n-k+1) t / 2}{\sin ^{2}(t / 2)}$

$$
\begin{aligned}
& \leq \frac{1}{2 \pi} \sum_{k=0}^{n} \frac{a_{n, n-k}}{n-k+1} \frac{\pi^{2}}{t^{2}} \\
& =\frac{\pi}{2 \mathrm{t}^{2}} \sum_{k=0}^{n} \frac{a_{n, n-k}}{n-k+1} \\
& =\frac{\pi}{2 \mathrm{t}^{2}} O\left(\frac{1}{(n+1)}\right) \\
& =O\left(\frac{1}{(n+1) t^{2}}\right)
\end{aligned}
$$

IV. Proof Of Main Theorem

The $\mathrm{n}^{\text {th }}$ partial sum of series $s_{n}(x)$ of the series (2.1) is given by

$$
s_{n}(x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(t) \frac{\sin (n+1 / 2) t}{\sin (t / 2)} \mathrm{dt}
$$

The (C,1) transform σ_{n} of s_{n} is given by

$$
\begin{gathered}
\frac{1}{n+1} \sum_{k=o}^{n} s_{n}(x)-f(x)=\frac{1}{2(\mathrm{n}+1) \pi} \int_{0}^{\pi} \frac{\phi(t)}{\sin (t / 2)} \sum_{\mathrm{k}=0}^{\mathrm{n}} \sin (k+1 / 2) \mathrm{tdt} \\
\sigma_{n}(x)-f(x)=\frac{1}{2(\mathrm{n}+1) \pi} \int_{0}^{\pi} \phi(t) \frac{\sin ^{2}(n+1) t / 2}{\sin ^{2}(t / 2)} d t
\end{gathered}
$$

The matrix means of the sequence $\left\{\sigma_{n}\right\}$ is given by

$$
\sum_{k=0}^{n} a_{n, k}\left(\sigma_{n}(x)-f(x)\right)=\int_{0}^{\pi} \phi(t) \frac{1}{2 \pi} \sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{1}{(\mathrm{k}+1)} \frac{\sin ^{2}(k+1) t / 2}{\sin ^{2}(t / 2)} d t
$$

Or

$$
\begin{align*}
& \sum_{k=0}^{n} a_{n, n-k}\left(\sigma_{n-k}(x)-f(x)\right)=\int_{0}^{\pi} \phi(t) \frac{1}{2 \pi} \sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{1}{(\mathrm{n}-\mathrm{k}+1)} \frac{\sin ^{2}(n-k+1) t / 2}{\sin ^{2}(t / 2)} d t \\
& t_{n}(x)-f(x)=\int_{0}^{\pi} \phi(t) K(n, t) d t \\
&=\int_{0}^{\frac{1}{n+1}} \phi(t) K(n, t) d t+\int_{\frac{1}{n+1}}^{\pi} \phi(t) K(n, t) d t \\
&=I_{1}+I_{2} \tag{4.1}
\end{align*}
$$

Now $I_{1}=\int_{0}^{\frac{1}{n+1}} \phi(t) K(n, t) d t$

$$
\begin{align*}
\left|I_{1}\right| & \leq \int_{0}^{\frac{1}{n+1} \frac{\psi(t)}{t^{1 / p}} K(n, t) d t} \\
= & \left\{\int_{0}^{1 / n+1}\left(\frac{\psi(t)}{t^{11 p}}\right)^{p} d t\right\}^{1 / p}\left\{\int_{0}^{1 / n+1}(K(n, t))^{q} d t\right\}^{1 / q} \\
= & O\left(\psi\left(\frac{1}{n+1}\right)\right) O(n+1)\left\{\int_{0}^{1 / n+1} d t\right\}^{1 / q} \\
= & O\left(\psi\left(\frac{1}{n+1}\right)\right) O\left((n+1)^{1-\frac{1}{q}}\right) \\
= & O\left((n+1)^{1 / p} \psi\left(\frac{1}{n+1}\right)\right) \tag{4.2}\\
\text { And } I_{2} & =\int_{\frac{1}{n+1}}^{\pi} \phi(t) K(n, t) d t \\
\left|I_{2}\right| & \leq \int_{\frac{1}{n+1}}^{\pi} \frac{\psi(t)}{t^{1 / p}} K(n, t) d t \\
& =\left\{\int_{\frac{1}{n+1}}^{\pi}\left(\frac{\psi(t)}{t^{1 / p}}\right)^{p} d t\right\}^{1 / p}\left\{\int_{\frac{1}{n+1}}^{\pi}(K(n, t))^{q} d t\right\}^{1 / q} \\
& =\left\{\int_{1 / n+1}^{\pi}\left(\frac{\psi(t)}{t^{\frac{1}{p}+2}}\right)^{p} d t\right\}^{1 / p} O\left(\frac{1}{n+1}\right) \\
& =O\left(\frac{1}{n+1}\right) O\left((n+1)^{2} \psi\left(\frac{1}{n+1}\right)\right) O\left(\frac{1}{(n+1)^{\frac{1}{q}}}\right) \\
& =O\left(\left(\frac{1}{(n+1)^{\frac{1}{q}}}\right) \psi\left(\frac{1}{n+1}\right)\right) \\
& =O\left((n+1)^{1 / p} \psi\left(\frac{1}{n+1}\right)\right) \tag{4.3}
\end{align*}
$$

Now combining (4.1),(4.2) and (4.3), we get

$$
\begin{aligned}
& \left\|t_{n}-f\right\|_{\infty}=\sup \left|(C E)_{n}^{q}(x)-f(x)\right| \\
& \quad=O\left((n+1)^{1 / p} \psi\left(\frac{1}{n+1}\right)\right)
\end{aligned}
$$

Acknowledgement

The third Author is thankful to this work is dedicated to my parents and my husband and I also very grateful to my guide and co-guide without their help couldn't complete my work.

References

[1]. Chandra P., On the degree of approximation of function belonging to the Lipschitz class, Nanta Math. 8 (1975), No.1, 88-91.
[2]. Chui C.K. and Holland A.S.B., On the order of Approximation by Euler and Taylor means, J. Appro. Theory 39(1983), 24-38.
[3]. Khan H.H., On the degree of approximation of functions belonging to the class Lip (\propto, p), Indian J. Pure Appl. Math.5(1974), No.2, 132-136.
[4]. Nigam H.K., Degree of approximation of a class of function by product summability means, IAENG Int. J. of Appl. Math., 41:2, IJAM 41_2_07.
[5]. Qureshi K., On the degree of approximation of functions belonging to the Lipschitz class by means of a conjugate series, Indian J. Pure Appl. Math.12-(1981), No. 9, 1120-1123.
[6]. Qureshi K., On the degree of approximation of functions belonging to the class Lip(α, p), Indian J. Pure Appl. Math. 13(1982), No. 4, 466-470.
[7]. Sahney B.N. and Goel D.S., On the degree of approximation of continuous functions, Ranchi University Math. J. 4(1973), 50-53.
[8]. Sahney D.S. and Rao V., Error bounds in the approximation on of functions, Bull.Austral.Math. Soc. 6(1972), 11-18.
[9]. Zygmund A., Trignometrical Series, Cambridge University Press (1960).

