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Abstract: The idea of difference sequence spaces was introduced by Kizmaz [1] and then this subject has been 
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I. Introduction 
            A complex sequence, whose k

th
 term is    is denoted by *  + or simply  . Let Φ be the set of all finite 

sequences. A sequence   *  + is said to be bounded if     |  |   . The vector space of all bounded 

sequences will be denoted by    . 

Throughout the article (  )  denote the Orlicz space of bounded sequences respectively. 

Throughout  m denotes an arbitrary positive integer. Kizmaz [1] introduced the notation of difference sequence 

spaces as follows:   ( )  *  (  )  (   )   +  for              where     (   )  (       ).  
Later on the notion was generalized by Et and Colak [2] as follows:                                                            

 (  )   *  (  )  ( 
   )   + for              where          (  ) and                                             

     (    )   ( 
        

       )  

= ∑ (  )  
    ( 

 
)      for all     

     Later on difference sequence spaces have been studied by Et [3], Et and Nuray [4], Colak Et al [5], Isik [6], 

Altin and Et [7] and  many others. 

           Orlicz [8] used the idea of Orlicz function to construct the space (  ). Lindenstrauss and Tzafriri [9] 

investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space     

contains a subspace isomorphic to     (        ).  

     An Orlicz  function is a function M : [0,  )  ,   ) which is continuous, non-decreasing and convex with 

M(0) = 0, M(x) > 0, for x > 0 and  ( )                If convexity of Orlicz function M is replaced by 

 (   )   ( )   ( )  then this function is called modulus function, defined and discussed by Ruckle [10] 

and Maddox [11]. 

Lindenstrauss and Tzafriri [9], S.D.Parashar [12] used the idea of Orlicz function to construct  Orlicz sequence 

space 

    ,     ∑  (
|  |

 
) 

                  -  where   *                     +  

The space    with the norm ‖ ‖     ,     ∑  (
|  |

 
) 

     -  becomes a Banach space which is called an 

Orlicz sequence space. For  ( )             the spaces     coincide with the classical sequence space     

Definition 1.1.      The space consisting of all those sequences    in   such that ,    * (
|  |

 
)+-    as for 

some arbitrary fixed     is denoted by (  )  , M being an Orlicz function. In other words , (
|  |

 
)- is a 

bounded sequence. (  )  is called the Orlicz space of bounded sequences. The space (  )  is a metric space 

with the metric  (   )       *
|      |

 
+  for all   *  + and   *  + in (  )   

Definition 1.2.  If M is a convex  function and M(0) = 0, then M(λ )   M( ) for all λ with        
Definition 1.3. A sequence space E is said to be solid or normal if (    )    whenever (  )    and for all 

sequences of scalars (  ) with |  |     
 Let   (  ) be a sequence of positive real numbers with               an  let D = Max( 1, 2

G-1
). Then 

for        , the set of complex numbers for all    , we have                                      

                   |     |
    *|  |

   |  |
  + 
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Let M be an Orlicz function, X be locally convex Hausdorff  topological linear space whose topology is 

determined by a set Q of continuous semi norms q. The symbols   ( )  denote the space of all bounded 

sequences defined over X. We define the following sequence spaces: 

(  ) ( 
     )  {    ( )     ∑[ ( (

    
 
))]

   

   

               } 

 

II. Main Results 
Theorem 2.1 If M is an Orlicz function, then (  ) ( 

     ) is a linear set over the set of complex numbers C. 

Proof.   Let       (  ) ( 
     ) and        

In order to prove the result, we need to find some    such that 

∑ 0 . (
  (       )

  
)/1

  

   
                                                                                (1.1) 

Since     (  ) ( 
     ), there exists some positive    and    such that 

  ∑ 0 . (
    

  
)/1

  
 
                                                                                                             (1.2) 

   ∑ 0 . (
    

  
)/1

  
 
                                                                                                            (1.3) 

Define       ( | |     | |  ) 
Since M is a non-decreasing and convex function, q seminorm and    is linear then 

∑[ ( .
  (       )

  
/)]

  

 

 

   

∑ [ ( (
     
  

)   (
     
  

))]

  

   
 

   
 

                                                                  

                                                         ∑ 0 . (
    

  
)/   . (

    

  
)/1

  

    
    

                                                         ∑ 0 . (
    

  
)/1

  
 
   + D ∑ 0 . (

    

  
)/1

  
 
    

                                                          

By (1.2) and (1.3)  

∑[ ( .
  (       )

  
/)]

  

  

 

   

 

So (      )   (  ) ( 
     ).  

Therefore (  ) ( 
     ) is a linear space. 

Theorem 2.2  Let M1 and M2 be two Orlicz functions.  

Then (  )  ( 
     )  (  )  ( 

     )  (  )     (( 
     )). 

Proof. 

Let    (  )  ( 
     )  (  )  ( 

     )  

Then there exists    and    such that 

∑ 0 . (
    

  
)/1

  
 
          and  ∑ 0 . (

    

  
)/1

  
 
      

Let      (
 

  
 
 

  
). Then we have 

∑ 0(  )     . (
    

 
)/1

  

  
                        

                                             0∑ 0(  )  . (
    

  
)/1

  
 
   1   0∑ 0(  )  . (

    

  
)/1

  
 
   1 

                                                        

Therefore  ∑ 0(  )     . (
    

 
)/1

  

  
    . 

Hence   (  )     (( 
     )). 

Thus  (  )  ( 
     )  (  )  ( 

     )  (  )     (( 
     )). 

Theorem 2.3 Let    . Then we have the following inclusion                                           

                    (  ) ( 
       )  (  ) ( 

     ). 
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Proof. 

  (  ) ( 
       )  Then we have 

∑[ ( .
      
 

/)]

   

   

                 

Since M is non-decreasing convex function and q is seminorm, we have 

∑[ ( (
    
 
))]

   

   

 ∑[ ( .
        

       
 

/)]

   

   

 

                                        2∑ 0 . (
      

 
)/1

  
 
    ∑ 0 . (

        

 
)/1

  
 
   3 

                                         

Therefore ∑ 0 . (
    

 
)/1

  
 
       

Hence   (  ) ( 
     ). 

Thus  (  ) ( 
       )  (  ) ( 

     ). 
 

Theorem 2.4 

a) If      for all     then (  ) ( 
     )  (  ) ( 

   )  
b)  If      for all     then (  ) ( 

   )  (  ) ( 
     )  

Proof. 

Proof for (a)      (  ) ( 
     ). Then 

∑ 0 . (
    

 
)/1

  
 
                                                                                        (4.1) 

since     , 

∑ 0 . (
    

 
)/1 

    ∑ 0 . (
    

 
)/1

  
 
                                                              (4.2) 

From (4.1) and (4.2) it follows that 

   (  ) ( 
   ). Thus (  ) ( 

     )  (  ) ( 
   )  

Proof for (b) Let       for all    and  

Let   (  ) ( 
   ). Then  

∑ 0 . (
    

 
)/1 

                                                                                                          (4.3) 

Since              , we have 

∑[ ( (
    
 
))]

   

   

 ∑[ ( (
    
 
))]

 

   

 

                                                 using (4.3) 

Therefore   (  ) ( 
     ). 

Thus (  ) ( 
   )  (  ) ( 

     )   

Theorem 2.5     (  ) ( 
     ), with the hypothesis that ∑ 0 . (

    

 
)/1

  
 
    |  |. 

Proof:  Let     . Then we have the following implication |  |    

But   ∑ 0 . (
    

 
)/1

  
 
    |  | . 

 By our assumption, implies that 

∑ 0 . (
    

 
)/1

  
 
     .  

Then    (  ) ( 
     ) and    (  ) ( 

     ).  
Theorem 2. 6 (  ) ( 

     ) is solid. 

Proof: Let |  |  |  | and Let   (  )  (  ) ( 
     )  

Because M is non-decreasing 

∑[ ( (
    
 
))]

   

   

 ∑[ ( (
    
 
))]

   

   

 

And because    (  ) ( 
     ) 
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∑ 0 . (
    

 
)/1

  
 
        

That is ∑ 0 . (
    

 
)/1

  
 
      and  

∑[ ( (
    
 
))]

   

   

   

Therefore    (  )  (  ) ( 
     )  is solid. 
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