Some Generalized Difference Sequence Spaces Defined by Orlicz Functions

B.Sivaraman 1, K.Chandrasekhar Rao 2 and K.Vairamanickam 1

1 Department of Mathematics, Krishnasamy College of Engineering & Technology, Cuddalore – 607 109.
2 Srinivasa Ramanujan Centre SASTRA University, Kumbakonam, India

Abstract: The idea of difference sequence spaces was introduced by Kizmaz [1] and then this subject has been studied and generalized by various mathematicians. In this paper we define some difference sequence spaces by Orlicz space of bounded sequences and establish some inclusion relations. Some properties of these spaces are studied

Keywords: Difference sequence, Bounded sequence, Orlicz function.

Subject Classification: 46A45, 40A05, 40C05, 40D05.

I. Introduction

A complex sequence, whose kth term is x_k is denoted by {x_k} or simply x. Let Φ be the set of all finite sequences. A sequence x = {x_k} is said to be bounded if sup_k |x_k| < ∞. The vector space of all bounded sequences will be denoted by l∞.

Throughout the article (l∞)M denotes the Orlicz space of bounded sequences respectively.

Throughout the article l∞ denotes an arbitrary positive integer. Kizmaz [1] introduced the notation of difference sequence spaces as follows: X(Δ) = {x = (x_k); (Δx_k) ∈ X}; for X = l∞, c, c0, where Δx = (Δx_k) = (x_k - x_{k+1}).

Later on the notion was generalized by Et and Colak [2] as follows: X(Δ^m) = {x = (x_k); (Δ^m x_k) ∈ X} for X = l∞, c, c0, where m ∈ N, Δ^0 x = (x_k) and Δ^m x = (Δ^m-1 x_k - Δ^m-1 x_{k+1}) = ∑_k=0^(m-1) (-1)^k x_{k+p} for all k ∈ N.

Later on difference sequence spaces have been studied by Et [3], Et and Nuray [4], Colak Et al [5], Isik [6], Altin and Et [7] and many others.

Orlicz [8] used the idea of Orlicz function to construct the space (l^M). Lindenstrauss and Tzafriri [9] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space l_M contains a subspace isomorphic to l_p (1 ≤ p < ∞).

An Orlicz function is a function M : [0, ∞) → [0, ∞) which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) → ∞ as x → ∞. If convexity of Orlicz function M is replaced by M(x + y) ≤ M(x) + M(y), then this function is called modulus function, defined and discussed by Ruckle [10] and Maddox [11].

Lindenstrauss and Tzafriri [9], S.D.Parashar [12] used the idea of Orlicz function to construct Orlicz sequence space l_M = {x ∈ w: ∑_k=1^∞ M(|x_k| / p) < ∞, for some p > 0} where w = {all complex sequences}.

The space l_M with the norm ||x|| = inf \{ p > 0: ∑_k=1^∞ M(|x_k| / p) ≤ 1 \}, becomes a Banach space which is called an Orlicz sequence space. For M(t) = t^p, 1 ≤ p < ∞, the spaces l_M coincide with the classical sequence space l_p.

Definition 1.1. The space consisting of all those sequences x in w such that \{Sup_k M(|x_k| / p)\} < ∞ as for some arbitrary fixed p > 0 is denoted by (l_∞)_M. M being an Orlicz function. In other words \{ M(|x_k| / p) \} is a bounded sequence. (l_∞)_M is called the Orlicz space of bounded sequences. The space (l_∞)_M is a metric space with the metric d(x, y) = Sup_k M(|x_k - y_k| / p) for all x = {x_k} and y = {y_k} in (l_∞)_M.

Definition 1.2. If M is a convex function and M(0) = 0, then M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

Definition 1.3. A sequence space E is said to be solid or normal if (α_k x_k) ∈ E whenever (x_k) ∈ E and for all sequences of scalars (α_k) with |α_k| ≤ 1.

Let p = (p_k) be a sequence of positive real numbers with 0 < p_k < sup p_k = G an let D = Max(1, 2^{G-1}). Then for \alpha_k, \beta_k ∈ C, the set of complex numbers for all k ∈ N, we have

|\alpha_k + \beta_k|^p ≤ D(|\alpha_k|^p + |\beta_k|^p)

www.iosrjournals.org
Let M be an Orlicz function, X be locally convex Hausdorff topological linear space whose topology is determined by a set Q of continuous semi norms q. The symbols $l_{m}(X)$ denote the space of all bounded sequences defined over X. We define the following sequence spaces:

$$(l_{m})_{M}(\Delta^{m}, p, q) = \left\{ x \in l_{m}(X): \sup_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^{m}x_{k}}{\rho} \right) \right) \right]^{p_{k}} < \infty, \text{for some } \rho > 0 \right\}$$

II. Main Results

Theorem 2.1 If M is an Orlicz function, then $(l_{m})_{M}(\Delta^{m}, p, q)$ is a linear set over the set of complex numbers C.

Proof. Let $x, y \in (l_{m})_{M}(\Delta^{m}, p, q)$ and $\alpha, \beta \in C$.

In order to prove the result, we need to find some ρ_{3} such that

$$\sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^{m}x_{k} + \beta y_{k}}{\rho_{3}} \right) \right) \right]^{p_{k}} < \infty \quad (1.1)$$

Since $x, y \in (l_{m})_{M}(\Delta^{m}, p, q)$, there exists some positive ρ_{1} and ρ_{2} such that

$$\sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^{m}x_{k}}{\rho_{1}} \right) \right) \right]^{p_{k}} < \infty \quad (1.2)$$

$$\sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^{m}y_{k}}{\rho_{2}} \right) \right) \right]^{p_{k}} < \infty \quad (1.3)$$

Define $\rho_{3} = \max \{ 2|\alpha|\rho_{1}, 2|\beta|\rho_{2} \}$.

Since M is a non-decreasing and convex function, q seminorm and Δ^{m} is linear then

$$\sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^{m}x_{k} + \beta y_{k}}{\rho_{3}} \right) \right) \right]^{p_{k}} \leq \sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^{m}x_{k}}{\rho_{1}} \right) \right) + q \left(\frac{\Delta^{m}y_{k}}{\rho_{2}} \right) \right]^{p_{k}} \leq \sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^{m}x_{k}}{\rho_{1}} \right) \right) \right]^{p_{k}} + D \sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^{m}y_{k}}{\rho_{2}} \right) \right) \right]^{p_{k}} \leq \infty$$

By (1.2) and (1.3)

$$\sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^{m}x_{k} + \beta y_{k}}{\rho_{3}} \right) \right) \right]^{p_{k}} \leq \infty \quad \text{So } (ax + \beta y) \in (l_{m})_{M}(\Delta^{m}, p, q).$$

Therefore $(l_{m})_{M}(\Delta^{m}, p, q)$ is a linear space.

Theorem 2.2 Let M_{1} and M_{2} be two Orlicz functions.

Then $(l_{m})_{M_{1}}(\Delta^{m}, p, q) \cap (l_{m})_{M_{2}}(\Delta^{m}, p, q) \subseteq (l_{m})_{M_{1} + M_{2}}(\Delta^{m}, p, q)$.

Proof.

Let $x \in (l_{m})_{M_{1}}(\Delta^{m}, p, q) \cap (l_{m})_{M_{2}}(\Delta^{m}, p, q)$.

Then there exists ρ_{1} and ρ_{2} such that

$$\sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^{m}x_{k}}{\rho_{1}} \right) \right) \right]^{p_{k}} \leq \infty \quad \text{and } \sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^{m}x_{k}}{\rho_{2}} \right) \right) \right]^{p_{k}} \leq \infty$$

Let $\rho = \min \left(\frac{1}{\rho_{1}}, \frac{1}{\rho_{2}} \right)$, then we have

$$\sum_{n=1}^{\infty} \left[(l_{m})_{M_{1} + M_{2}} \left(q \left(\frac{\Delta^{m}x_{k}}{\rho} \right) \right) \right]^{p_{k}} \leq D \left[\sum_{n=1}^{\infty} \left[(l_{m})_{M_{1}} \left(q \left(\frac{\Delta^{m}x_{k}}{\rho_{1}} \right) \right) \right]^{p_{k}} \right] + D \sum_{n=1}^{\infty} \left[(l_{m})_{M_{2}} \left(q \left(\frac{\Delta^{m}x_{k}}{\rho_{2}} \right) \right) \right]^{p_{k}} \leq \infty$$

Therefore \(\sum_{n=1}^{\infty} \left[(l_{m})_{M_{1} + M_{2}} \left(q \left(\frac{\Delta^{m}x_{k}}{\rho} \right) \right) \right]^{p_{k}} \leq \infty \).

Theorem 2.3 Let $m \geq 1$. Then we have the following inclusion

$$(l_{m})_{M}(\Delta^{m-1}, p, q) \subseteq (l_{m})_{M}(\Delta^{m}, p, q).$$
Proof.

x ∈ \((l_∞)_M(Δ^{m-1}, p, q)\). Then we have
\[\sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m-1}x_k}{ρ} \right) \right)^{p_k} < ∞ \text{, for some } ρ > 0 \]
Since M is non-decreasing convex function and q is seminorm, we have
\[
\sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m-1}x_k}{ρ} \right) \right)^{p_k} \leq \sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m-1}x_k - Δ^{m-1}x_{k+1}}{ρ} \right) \right)^{p_k}
\]
\[\leq D \left\{ \sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m-1}x_k}{ρ} \right) \right)^{p_k} - \sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m-1}x_{k+1}}{ρ} \right) \right)^{p_k} \right\} \]
\[\leq \infty \]
Therefore \(\sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}x_k}{ρ} \right) \right)^{p_k} \leq ∞. \)

Hence \(x ∈ (l_∞)_M(Δ^{m}, p, q) \).
Thus \((l_∞)_M(Δ^{m-1}, p, q) ⊆ (l_∞)_M(Δ^{m}, p, q) \).

Theorem 2.4
a) If \(p_k ≤ 1 \) for all \(k ∈ N \) then \((l_∞)_M(Δ^{m}, p, q) ⊆ (l_∞)_M(Δ^{m}, q) \).
b) If \(p_k ≥ 1 \) for all \(k ∈ N \) then \((l_∞)_M(Δ^{m}, q) ⊆ (l_∞)_M(Δ^{m}, p, q) \).

Proof.

For (a) \(x ∈ (l_∞)_M(Δ^{m}, p, q) \). Then
\[\sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}x_k}{ρ} \right) \right)^{p_k} < ∞ \quad (4.1) \]
since \(p_k ≤ 1. \)
\[\sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}x_k}{ρ} \right) \right)^{p_k} ≤ \sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}x_k}{ρ} \right) \right)^{p_k} < ∞ \quad (4.2) \]
From (4.1) and (4.2) it follows that \(x ∈ (l_∞)_M(Δ^{m}, q). \) Thus \((l_∞)_M(Δ^{m}, p, q) ⊆ (l_∞)_M(Δ^{m}, q). \)

Proof for (b) Let \(p_k ≥ 1 \) for all \(k \) and
Let \(x ∈ (l_∞)_M(Δ^{m}, q). \) Then
\[\sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}x_k}{ρ} \right) \right)^{p_k} < ∞ \quad (4.3) \]
Since \(1 ≤ p_k ≤ \sup p_k < ∞ \), we have
\[\sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}x_k}{ρ} \right) \right)^{p_k} ≤ \sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}x_k}{ρ} \right) \right)^{p_k} < ∞ \] using (4.3)

Therefore \(x ∈ (l_∞)_M(Δ^{m}, p, q). \)
Thus \((l_∞)_M(Δ^{m}, q) ⊆ (l_∞)_M(Δ^{m}, p, q). \)

Theorem 2.5
\(l_∞ ⊆ (l_∞)_M(Δ^{m}, p, q), \) with the hypothesis that \(\sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}x_k}{ρ} \right) \right)^{p_k} ≤ |x_k|. \)

Proof: Let \(x ∈ l_∞. \) Then we have the following implication \(|x_k| < ∞ \)
But \(\sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}x_k}{ρ} \right) \right)^{p_k} ≤ |x_k|. \)
By our assumption, implies that
\[\sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}x_k}{ρ} \right) \right)^{p_k} < ∞. \]
Then \(x ∈ (l_∞)_M(Δ^{m}, p, q) \) and \(l_∞ ⊆ (l_∞)_M(Δ^{m}, p, q). \)

Theorem 2.6 \((l_∞)_M(Δ^{m}, p, q) \) is solid.

Proof: Let \(|x_k| ≤ |y_k| \) and Let \(y = (y_k) ∈ (l_∞)_M(Δ^{m}, p, q) \)
Because M is non-decreasing
\[\sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}x_k}{ρ} \right) \right)^{p_k} ≤ \sum_{k=1}^{∞} M \left(q \left(\frac{Δ^{m}y_k}{ρ} \right) \right)^{p_k} \]
And because \(y ∈ (l_∞)_M(Δ^{m}, p, q) \)
Some Generalized Difference Sequence Spaces Defined by Orlicz Functions

\[
\sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^m x_k}{\rho} \right) \right) \right]^{p_k} \in l_{\infty}
\]

That is \(\sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^m y_k}{\rho} \right) \right) \right]^{p_k} < \infty\) and

\[
\sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^m y_k}{\rho} \right) \right) \right]^{p_k} < \infty
\]

Therefore \(x = (x_k) \in (l_{\infty})_M(\Delta^m, p, q)\) is solid.

References