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Abstract:  

Background: This article aims to analyze the dynamics of growth in Brazilian cities over the past 

century, employing advanced econometric methods and spatial modeling. The research focuses on the 

evolution of population growth in 431 comparable minimal areas in Brazil from 1910 to 2010. 
Materials and Methods The methodological approach includes estimating spatial models for Zipf's Law, 

revealing a divergent trend, albeit attenuated in the last decade. The population distribution is thoroughly 

characterized through non-parametric density function estimations. Additionally, the growth process of 

Brazilian cities is investigated through a first-order Markov Chain analysis, highlighting a stationary pattern.  

Results: The results underscore low inter-class mobility and notable persistence over time. The probability of 

cities remaining in the same class over decades throughout the last century is substantially high.  

Conclusion: These findings provide significant insights into the demographic evolution and urban structure of 

Brazil, contributing to a deeper understanding of city growth patterns in the economic and regional context. 
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I. Introduction 
 All economic activity has a location, although dissimilar activities flourish in different areas. Regional 

and urban economics is concerned with considering the effect of location and distance on economic activity. 

Regional economists seek to identify where certain economic activities will thrive or why certain activities are 

more concentrated in certain areas and why certain households choose to locate in certain areas. Another focus 

of this field of research is to understand what makes people migrate, as this phenomenon affects the growth rates 

of cities. Thus, regional economists combine tools from micro and macroeconomics and international economics 

to analyze patterns and other components of local growth rates.  In this context, concepts such as proximity and 

transportation costs, increasing returns to scale and externalities are employed. These components change the 

face of traditional economic theory. Urban economists, on the other hand, focus on the relationships between 

urban and peripheral areas, as well as the pattern of land use in cities (Edwards, 2007).  

According to Edwards (2007), the economic analysis of the spatial distribution of economic activities 

and, consequently, of population, goes back to Cantilon's treatise in 1755 when he analyzed why cities 

developed close to the most productive areas. Between 1800 and 1950, the German school was at the forefront 

in emphasizing the spatial issue in economic activity.  

The process of economic development is associated with the distribution of population among a 

country's municipalities. In this context, the question arises of how cities of different sizes grow during the 

development process. The distribution of city sizes can occur in the sense that the smallest cities grow faster 

than the largest, or at the opposite extreme, the largest cities could grow more than the smallest, further 

increasing population concentration and benefiting a few localities.  Many factors are involved in the growth 

dynamics of cities. Public policy decisions can make certain municipalities attractive to entrepreneurs. Firms 

bring jobs and increase the purchase of local goods and services, influencing the attraction of more firms and 

people. In this way, attracting companies is one of the key factors in the development process, raising the 

standard of living of residents.  

Firms seek to minimize transport costs by obtaining gains in scale because they are close to large 

markets, contributing to the agglomeration of firms and benefiting from agglomeration economies. Amenities 

can also favor the decision of entrepreneurs to invest in each location. On the other hand, there may be 

diseconomies of agglomeration limiting the undetermined growth of certain locations.  

The existence of clusters of firms in an area can generate agglomeration economies by creating 

centripetal forces that reinforce the agglomeration process. However, clusters can grow too large and create 
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diseconomies of agglomeration. These, in turn, create centrifugal forces that repel economic concentration 

(Edwards, 2007).  

A difficulty for regional economics researchers for a long time was the lack of formalization of 

regional issues, which made it difficult to empirically test their hypotheses. On the other hand, there was a 

regularity that had been observed and tested with various sets of data, but which, on the other hand, lacked 

theoretical explanations, which is the rule of the order of the size of cities (Zipf's Law). This empirical regularity 

shows how the spatial distribution of cities occurs over time. Fujita, Krugman and Venables (2001) and 

Duranton (2006), however, sought to explain this regularity theoretically.  

  The analysis of city growth, in turn, allows us to understand how this growth affects cities of various 

sizes, making it possible to identify the effectiveness of local public policies in solving endemic problems in 

urban areas.  

In this sense, this work aims to identify the growth dynamics of Brazilian cities in the last century, 

improving knowledge of the urban system in Brazil. More specifically, it will answer the following questions: 

What has been the spatial distribution of Brazilian cities over the last century? Is there any mobility of cities 

within the distribution?  

This work advances the literature by using a database that covers a longer period available for the 

Brazilian economy disaggregated at city level. Another contribution is to incorporate spatial neighborhood 

effects into the analysis of the Pareto coefficient estimation. And finally, by analyzing the growth dynamics of 

cities with Markovian matrices to capture possible movements in the distribution.  

This article is organized as follows. In addition to this introduction, the next section presents the 

models to be estimated. The third section presents and discusses the results. Finally, the last section presents the 

conclusions.  

 

II. Material And Methods 
The data used was obtained from IPEA (Institute for Applied Economic Research). The MCAs 

(Minimum Comparable Areas) were used, made compatible for the last century (19102010). This sample 

comprises 432 observations, including the territory of Fernando de Noronha. In this work, this observation was 

disregarded because it did not have data available for the entire series and because being an island causes some 

problems in the construction of neighborhood matrices. The advantage of this sample for the analysis of Zipf's 

law is that it leaves the arbitrary aspect of the researcher to make an ad hoc choice of the size of the cities to be 

considered, which in the Brazilian case becomes a problem due to the creation of municipalities between one 

decade and another. In the Brazilian case, Justo (2007) and Oliveira (2005) estimated the Pareto coefficient for 

various city sizes and the values obtained varied depending on this choice. Similarly, in the international case, 

this problem was also raised by Lanaspa et al. (2003), who considered cities of 50,000 inhabitants or more for 

the Spanish case, and Mella and Chasco (2006).   

 

The size order rule or Zipf's law   

In estimating the Pareto exponent or size order rule, the original model proposed by Zipf (1949) was 

followed. The author suggested that the distribution of cities followed the rule of (Pareto, 1897) according to the 

following model: 

  -βR = a. S         (1) 

Where R is the ranking of the order of distribution of the population; S is the population of the city; and 

a and   are parameters, the latter being the Pareto exponent and positive by construction.  

 According to Le Gallo and Chasco (2009), the size-order rule initially arose from a finding of 

regularity in the observed data without any foundation in economic theory. Krugman (1996), Eaton and Eckstein 

(1997), Overman and Yoannides (2001), Gabaix and Ibragimov (2006), among others, estimated this model and 

found this regularity for Zipf's Law for cities. Duranton (2006), however, provided a theoretical foundation 

based on the endogenous growth model suggested by Grossman and Helpan (1991) in an urban structure and 

analyzed the effect of R&D investments on city growth rates.   

Formally, in this structure, the size of the distribution of cities depends on the value of the Pareto 

exponent (   ). In the limit, if   tends to infinity, then all the cities will have the same population. When   is 

equal to 1, we have what is known as the size order rule or Zipf's law.  

According to this rule, the population between any group of cities in time is inversely proportional to 

the ranking of their population in the group. The Pareto exponent can be interpreted as an indicator of 

convergence. When the value of the coefficient falls over time, it indicates a greater relative importance for 

large cities. In addition, this causes a tendency towards divergence in the group of cities or greater concentration 
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increases. Thus, an increase in the value of   represents a dynamic of convergence, or in other words, a greater 

dispersion of the population outside the large urban centers and a greater balance in the distribution of the 

population between urban centers of different sizes (Le Gallo and Chasco, 2009).  

 

The empirical model derived from equation (1) can be estimated in the following functional form:  

    ln ln .lnit t t it itR a S               (2)  

According to Gabaix and Ibragimov (2006) the Ordinary Least Squares (OLS) estimation of equation 

(2) is biased for small samples. We therefore followed the authors Le Gallo and Chasco (2009) and corrected for 

the bias by subtracting ½ from the rank and estimated the model: ln(Rank - ½)= α-β ln(size). The estimation 

without this correction was tested and the robustness of the suggested correction was confirmed, thus 

maintaining this correction. 

 

The spatial effect  

OLS estimators can be affected by the omission of spatial autocorrelation.  If the process generating the 

spatial autocorrelation of the residuals is autoregressive, the OLS estimators are unbiased, but not efficient. 

Statistical inference is therefore biased in this case. If they are due to the omission of the spatial autocorrelation 

of the variables, the OLS estimators are biased.  

In this way, this work aims to identify and incorporate models that capture the neighborhood effect in 

the estimation of the Pareto exponent, thus making a breakthrough in the national literature on the subject.  

Spatial autocorrelation, also known as spatial dependence, spatial interaction or local interaction, is 

defined as a measure of similarity between two values of an attribute that are spatially close. According to 

Pacheco and Tirrel (2002), spatial autocorrelation can be measured by various indices, the best known of which 

is Moran's I, which measures the degree of linear association between an attribute (y) at a given location and the 

weighted average of the attributes at neighboring locations (Wy) and can be interpreted as the slope of the 

regression of (y) on (Wy). Spatial autocorrelation can be visually illustrated in a graph where (Wy) is plotted on 

the vertical axis and (y) on the horizontal axis.  

This statistic follows the following expression according to Battisti and Vaio (2009): 
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Where, 
ij  is an element of the weight matrix W, xi is a specific variable for observation i, n is the 

number of observations, q is a scaling factor equaling the sum of all the elements of the matrix. In this article, 

we followed Justo et al. (2010) and used the standardized row binary matrix based on the neighborhood 

structure with a fixed number of close neighbors (k-nearest), in which the elements are: 
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Where di is a critical value, defined for each observation i, ensuring that each municipality has the 

same number of neighbors.1 

Spatial heterogeneity (also known as a spatial structure, non-stationarity, large-scale global trend of the 

data) refers to differences in the mean and/or variance, and/or covariance, including autocorrelation in a spatial 

region. Unlike spatial autocorrelation, it requires that the mean and variance of an attribute is constant in space, 

and the spatial autocorrelation of an attribute at any two locations depends on a lag of the distance between two 

locations, but not on the location itself (Justo, et al., 2010).      

 It is not always easy to distinguish spatial heterogeneity from spatial autocorrelation. The presence of 

clusters, for example, can induce spatial autocorrelation between neighbors, but it can also be a sign of different 

possibilities for spatial regimes (Anselin, 2001). Tests to determine spatial autocorrelation or heteroscedasticity 

can generate inconclusive results.  

                                                           
1 In this work, various types of matrices were tested and k-nearest with (k = 6) was chosen because it gave the best results. 3 For more on 

these models, see LeSage and Pace (2009). 
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According to LeSage and Pace (2009), when considering spatial autocorrelation in a data set it is 

necessary to establish the neighborhood structure for each location by specifying which locations are considered 

neighbors. It is necessary to specify a matrix of weights corresponding to the neighborhood structure such that 

the variance-covariance matrix can be expressed as a function of a small number of estimable parameters 

compatible with the sample size (Anselin, 2002). The types of weight matrices used in spatial econometrics 

include, among others, the following types: tower, queen, contiguity matrix, spatial weight matrix by means of a 

limit distance but with a fixed number of close neighbors (k-nearest), distance weight matrix, and the inverse 

distance matrix. The weight matrix is usually defined exogenously and after comparing various types of 

matrices. According to Voss and Chi (2006) several types of weight matrices are created and the one with the 

highest statistical significance is chosen.  

According to Chi and Zhu (2008) there are two problems associated with specifying spatial weights in 

practice. One problem is that the weight structure can be affected by the quality of the georeferenced data. The 

other problem is that the use of some distance weight matrix may require a threshold value, which can be 

difficult to determine, especially when there is strong spatial heterogeneity. A small threshold can produce too 

many islands, while a large threshold creates too many neighbors. One solution to this case proposed by Anselin 

(2002) is to structure the spatial weight matrix using a threshold distance, but with a fixed number of near 

neighbors (k-nearest).  According to Chi and Zhu (2008), the commonly used spatial linear regression model 

includes, in addition to the usual coefficients of the explanatory variables (β) and the variance of the error term 

(σ2), a spatial autoregressive coefficient (ρ), which measures the strength of spatial autocorrelation. It also 

includes a weight matrix (W) corresponding to the neighborhood structure and the weight matrix (D) which are 

pre-specified. 

A spatial linear regression model will now be specified when the error terms are specified. Two of the 

most used models will be presented: the Spatial Lag Model whose structure is modeled in this way:  

 Y = Xβ + ρWY + εi               (4)  

Where Y is the vector of dependent variables, X the matrix of explanatory variables, W the matrix of 

spatial weights, andε the vector of error terms that are independent but not necessarily identically distributed. 

The other model is the spatial error model specified as follows:  

 Y = Xβ + u, u = ρWu + εi              (5)  

Where the terms are defined as in the previous model.  

In the spatial Lag model, spatial autocorrelation is modeled by a linear relationship between the 

dependent variable (y) and a spatially lagged variable (Wy). In the case of the spatial error model, spatial 

autocorrelation is modeled by a term (u) and the spatially lagged error term (Wu). In either model, the 

interpretation of a significant spatial autoregressive coefficient is not always straightforward. A significant 

spatial error term indicates spatial autocorrelation in the errors that may be due to important explanatory 

variables that were not included in the model (Anselin, 1995).  

According to Chi and Zhu (2008) several regression models can be specified for a given data set. If the 

models are nested, a likelihood ratio (LR) test can be used to compare the models. If the models are not nested, 

AIC (Akaike's Information Criterion) and BIC (Schwartz's Bayesian Information Criterion) can be used. Models 

with lower BIC and AIC are considered better.   

 

Mobility in the Brazilian Urban System  

The density function and Zipf's Law allow us to characterize the evolution of the overall distribution, 

but they don't provide any information about the movement of cities in the distribution. For example, it is not 

known whether the municipalities in the lower tail of the distribution in 1910 are the same as those in 2010. Le 

Gallo and Chasco (2009) based themselves on the work of Kemeny and Snell (1976) and suggest that one way 

to deal with this issue is to check the evolution of the relative position of each city over the period analyzed by 

estimating the matrix of transition probabilities with Markov chains. Black and Hendesrson (2003) used this 

procedure for the American urban system.  

The analysis of the evolution over time of the cross-section distribution, or in other words, the analysis 

of dynamics, is a methodology whose objective is to describe the Markovian stochastic process. In this sense, 

working with state-space has several advantages according to Bulli (2001). 

Discrete probability distributions and transition matrices are easier to interpret than a Kernel stochastic 

process. Another advantage is that descriptive indices and the long-term ergodic distribution are easier to 

calculate. However, there is a problem with this methodology: stratification, i.e. the results can be conditioned 

on the choice of classes that divide the distribution.  

Following Le Gallo and Chasco (2009), the formulation of the cross-section distribution of the 

population size of Brazilian cities at time t will be denoted by Ft. A set of K different class sizes is defined, 

which provide a discrete approximation of the population distribution. It is assumed that the frequency 

distribution follows a first-order Markovian process. In this case, the evolution of the city size distribution is 
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represented by the probability transition matrix, M, in which each element (i, j) indicates the probability that a 

city that is in one class in period t will move to a higher class in period t+1. The vector Ft (K, 1) indicates the 

frequency of cities in each class at time t. It is then described by the following equation:  

 Ft+1  = M Ft                 (6)  

Where M is the probability transition matrix (K,K) representing the two distributions as follows: 
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K

ij ijj
p p


  . The stationary probability transition matrix pij captures 

the probability that each city in class t-1 will move to class j in t.  

The elements of the M matrix can be estimated from the observed frequency of class changes from one 

period to the next. According to Amemiya (1985) and Hamilton (1994), the maximum likelihood estimator of p ij 

is: 

 /ij ij ip n n          (8) 

Where nij is the total number of cities moving from class i in decade t-1 to class j in the immediately following 

decade t in the ten transition matrices and ni is the sum of cities in i in the ten transition matrices.    

If the transition probabilities are stationary, i.e. if the probability between two classes does not vary 

over time, then: 

 S

t s tF M F           (9) 

 In this structure, the ergodic distribution (also called steady state distribution) of Ft is characterized 

when s tends to infinity in equation (9). Since the changes represented by the Mmatrix are repeated an arbitrary 

number of times. The distribution exists if the Markov Chain is regular, i.e. only if, for one m, Mm has no 

entries with zero values. In this case, according to Le Gallo and Chasco (2009) the transition probability matrix 

converges in the limit to a matrix M* of rank equal to 1. The existence of the ergodic distribution, F*, is denoted 

by:  

  F* M= F*                  (10)  

 This vector F* describes the future distribution of cities if the movements observed in the sample 

period are repeated infinitely. According to equation (10), the limit of the distribution is given by the 

eigenvector associated with the eigenvalue of M.  

 The assumption that the Markov Chain 
ijp process is stationary requires the probability matrix, pij, to 

be of first order. If the Markovian matrices are of a higher order, they will contain only part of the information 

needed to describe the true evolution of the population distribution. In addition, the Markovian matrix property 

implicitly assumes that the transition probabilities, pij, , are not of order zero (Le Gallo and Chasco, 2009). 

In this case, Bickenbach and Bode (2003) suggest testing this property, i.e. temporal independence.  

First, test order 0 against order 1; then order 1 against order 2 and so on. If the hypothesis of order 0 against the 

hypothesis of order 1 is rejected and if the hypothesis of order 1 against order 2 is not rejected, then the process 

is of order 1.  

            To test the order 0, following Le Gallo and Chasco (2009), the null hypothesis 

: : ( 1,..., )o i ij jH p p i K   , is tested again following the alternative : \a i ij jH p p  . The likelihood 

ratio (LR) test then follows: 
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Assuming that
i

ˆ ˆ   0, ( 1,..., ). A { :  0}j ijp j K j p      is the set of non-zero transition 

probabilities under the null hypothesis.  

To test order 1 against order 2, the second-order Markov Chain is defined by considering the size of the 

population in class k (k=1, ..., K) in which the cities were at time t-2 and if the pair of successive classes k form 

a class. So, the probability of a city moving into a class j at time t, given that it was in k at time t-2 and in i at 
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time t-1, is pkij . The corresponding absolute number of transitions is nij (t), with the marginal frequency being 

nki ( 1) ( 1)ki kijj
n t n t   . 

To test : : ( 1,..., )o kij ijH k p p k K   against the alternative hypothesis : :a kij ijH k p p  , the 

the probabilities pkij are estimated as 
2 2

ˆ / ,  onde ( ) e ( 1) 
T T

kij kij ki kij kij ki kit t
p n n n n t n n t

 
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The likelihood ratio (LR) test is estimated as follows: 
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Similarly  for  higher  orders 

i
ˆ ˆ{ : 0}, # , ( : 0} e d #{ : 0}.i ij i i ki kij i kiC j p c C C j p D k n         

If it rejects that the Markov chain is of order 0 and 1, it proceeds to test for higher orders. However, 

since the number of parameters to be estimated grows exponentially with the number of lags and the number of 

observations decreases linearly for a given data set, the power of the test decreases rapidly. That said, an order 

to be tested must be defined a priori. 

 

III. Result and Discussion 
Table 1 shows the descriptive statistics for the distribution of Brazilian cities in the period 1910-2010. 

The accelerated growth of the means and medians over the hundred years analyzed indicates the rapid expansion 

of the Brazilian population in this period. Between 1910 and 2000 there is a monotonically increasing dispersion 

measured by the coefficient of variation, but the trend reverses in the last decade.  

 

Table no 1 Descriptive Analysis 
Year  Average  Standard deviation  Median  Coefficient of Variation 

1910  54009.71  94149.76   26977  1.74 

1920  70688.29  130965.9   33369  1.85 

1940  95335.39  219925   41091  2.31 

1950  120245.3  298493.8   51745  2.48 

1960  163481.0  441705.1   61635  2.71 

1970  215578.1  630807.8   73813  2.93 

1980  275425.8  834924.9   87347  3.03 

1991  339689.3  1014843   104553  2.97 

2000  392667.3  1167194   120611  2.97 

2010  439823.0  1296059   131271  2.95 

Source: Based on IPEADATA data. 

  

The evolution of population distribution in Brazilian cities  

Using the observations available for the period 1910-2010 of the population of Brazilian cities, the 

shape of the distribution of city size was analyzed.  Figure 1 shows the estimates of the non-parametric Kernel 

density functions of the population of Brazilian cities for 1910, 1940, 1980 and 2010. There is a unimodality 

characteristic at the beginning of the century, until the 80s. This result suggests a divergence in the size of cities. 

In 2010, however, there is a slight indication of the formation of another mode among the cities located in the 

upper tail of the distribution, comprising the largest cities. In this way, density begins to capture a possible effect 

of population redistribution of Brazilian cities among the group of largest cities, which in the Brazilian case is 

mostly made up of state capitals. Justo et al. (2010) show, for example, that some northeastern cities, not just the 

capitals, but above all medium-sized cities, already have a larger inflow of migrants than outflows. When 

analyzing return migration, this behavior is even more evident. It is known, however, that migration is an 

important factor in the growth of cities in Brazil.  

The shift in the density function shows the high population growth rates of Brazilian cities between 

1910 and 2010. Le Gallo and Chasco (2010) in a similar study for the Spanish urban system found unimodal 

distribution until the 1980s and multimodality in recent decades.  
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Figure1 Kernel density function for the population of Brazilian cities: 1910-2010. 

Source: Prepared with data from IPEADATA. 

  

The size order rule: Zipf's law  

Continuing to explore Brazil's urban evolution in the 1910-2010 century, Zipf's law is explored here. 

As previously mentioned, this paper works with MCAs which comprise 431 observations for the period 

analyzed. This is a departure from the random choice made by researchers to define a size of cities a priori. The 

literature shows that the results are conditioned by this choice. The works by Justo (2007), Oliveira (2005), 

Bowen et al. (2022) and De Marzo et al. (2023) highlight this problem.  

Figure 2 shows the population distribution of Brazilian cities in 1910 (left) and 2010 (right).  After a 

century there is a spatial concentration of the population of Brazilian cities and a tendency towards 

agglomeration in cities in the Southeast and the coast and interior of the Northeast. This result is in line with 

those indicated by the estimation of the Kernel density functions presented earlier.  

  On the other hand, this dynamic spatial distribution of the population of Brazilian cities makes it 

necessary to test and incorporate the neighborhood effect into econometric models, if the tests indicate it, to 

understand the growth trajectory of Brazilian cities between 1910 and 2010.  

 

Figure 2 Spatial distribution of the population of Brazilian cities: 1910-2010. 

 
Source: Based on IPEADATA data. 

 

Having said this, we move on to test the spatial effect using Moran's I statistic. Figure 3 shows the 

results of the Moran's I statistic test for equation 3 for 1910 and 2010. The value of the statistic confirms the 

need to incorporate the neighborhood effect when estimating models that seek to explain the growth dynamics 

of Brazilian cities.2 

 

 

 

                                                           
2 Tests were carried out for all the decades. Only the first and last decades are presented due to lack of space. Other tests 

were also estimated to indicate the spatial effect, such as Moran's tests under the assumption of randomness, among others. 
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Figure 3 Moran 's Scatter Plot: 1910 and 2010 

 
Source: Based on IPEADATA data. 

 

Table 2 shows the results of the estimations of the model that tests the order of the size of Brazilian 

cities in each decade in the period 1910-2010. The results of the estimations of the equation by (OLS) of 

equation (2) indicate the non-normality of the residuals and exhibit heteroscedasticity as shown by the Jarque-

Bera, Koenker-Basset tests, respectively. Thus, it can be inferred that both effects are present in the 10 

estimations.   

We then move on to estimating the spatial models. The results in the (SEM) and (SLM) columns are 

the estimates of equation (2) modified by equations (4) and (5). That is, the Spatial Error Model and the Spatial 

Lag Model.  

The LM-Error and LM-Lag statistics are used to choose the spatial model best suited to the data set. In 

this case, the results indicate that the spatial error model is the most appropriate. The higher value of the LM test 

statistic confirms the superiority of the Spatial Error Model. The value of the AIC and BIC statistics also 

confirms this choice.  The corrected Pareto exponents in the spatial model are smaller than those estimated by 

MQO. In other words, the divergence in the distribution of Brazilian cities over the last century is even more 

intense after the spatial correction. Le Gallo and Chasco (2009) found similar results, but with different 

magnitudes for the Spanish urban system. There the Pareto exponents are smaller and showed a significant 

spatial effect for Spanish cities. 

 

Table 2 Regressions of the rank of the size of Brazilian cities: 1910-2010 
Ano MQO SEM SLM 

1̂  2̂  
KB JB 2R  

1̂  2̂  ̂  
1̂  2̂  ̂  

1910 14.21 0.93 25 904 0.91 13.76 0.89 0.25 16.2 0.98 0.32 

1920 14.04 0.90 24 828 0.90 13.61 0.86 0.26 16.08 0.95 0.31 

1940 13.70 0.85 20 572 0.90 13.34 0.82 0.27 15.59 0.89 0.31 

1950 13.54 0.82 19 623 0.91 13.11 0.79 0.27 15.57 0.87 0.34 

1960 13.42 0.80 18 726 0.91 12.98 0.76 0.26 15.31 0.84 0.31 

1970 13.24 0.77 17 704 0.92 12.79 0.73 0.26 15.10 0.81 0.30 

1980 13.16 0.75 16 1146 0.91 12.69 0.71 0.24 15.02 0.78 0.32 

1991 13.12 0.73 15 1636 0.92 12.61 0.69 0.24 15.00 0.77 0.31 

2000 13.15 0.73 14 1843 0.92 12.63 0.68 0.25 15.03 0.76 0.30 

2010 13.16 0.72 12 2024 0.91 12.62 0.67 0.24 15.09 0.75 0.31 

LR      23.691   10.118   

AIC      132   147   

BIC      140   159   

  
Source: Based on IPEADATA data. Prepared by the author. 

* All coefficients are significant at 1%. OLS (Ordinary Least Squares estimation).JB - Jarque-Bera tests for normality of residuals. KB - 
Koenjer-Basset test for heteroscedasticity. AIC and BIC - (Akaike Information Criterion and Schwarz Bayesian Information Criterion). 

 

Graph 1 shows the evolution over time of the three estimates of the Pareto exponent over the last 100 

years. The largest estimates are found by the Spatial Lag Model, followed in order by the Ordinary Least 

Squares estimates and the Spatial Error Model. There is also a monotonically decreasing trend in the estimates 
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of the three models. However, there has been a slowdown in recent decades. This last result indicates a possible 

population deconcentration in Brazil's large metropolises, either due to a reduction in the growth rate of the 

largest cities and/or an increase in the growth rates of medium-sized cities, which have been attracting more 

migrants, as shown by Justo (2010). These results are corroborated by the estimates of the Kernel density 

functions presented above.  

Le Gallo and Chasco (2009) also analyzed the behavior of population distribution over the last 100 

years among municipalities in Spain and found a result in this direction, with an inflection at the end of the 

period.   

An analysis of Zipf 's Law shows that until the 1980s, the increase in urban concentration in the largest 

cities was more rapid and then lost momentum. The values of the coefficients of variation already indicated this 

behavior.  

  

Graph 1Evolution of the estimates of the Pareto exponent (N= 431). Estimation by OLS (Ordinary Least 

Squares), Spatial Error Model (SEM) and Spatial Lag Model (SLM). 

 
Source: Based on the data in table 1. 

  

Mobility in the Brazilian Urban System: 1910-2010.  

The results obtained so far by estimating the Kernel density functions and analyzing Zipf's Law, 

although considering the spatial effect, do not provide any information about the possibility of movements in the 

distribution over time. We therefore moved on to the analysis of the Markovian stochastic process.  

Using the methodology explored in the previous section, however, can lead to some inaccuracies 

depending on the division of the distribution into a given set of classes used to find the probability transition 

matrix. We therefore tested various possibilities and opted for the discrete distribution that was closest to the 

continuous distribution.  

The results of the probability transition matrix are shown in table 33. The probabilities on the diagonal 

show low inter-class mobility, i.e. high persistence of cities remaining in their own class between one decade 

and another over the last hundred years. If the elements of the main diagonal were all equal to 1, they could be 

interpreted as parallel growth, as suggested by Eaton and Eckstein (1997)4. However, as they are not exactly 

equal to 1, it is interpreted as the propensity of each city to move to another cell. In particular, the results show 

that the largest and smallest cities (class 6 and 1) show greater persistence, while medium-sized cities are likely 

to move n the distribution (classes 3, 4 and 5). However, in addition to the low mobility found in the results, 

when there is movement between classes it is only to the next class.5 

 

 

 

 

 

 

 

 

                                                           
3 The matrix comparison test using equation 11 indicates that the process is of order 1. The value of the LR statistic = 15.000 and Prob = 

0.0000. 
4 The authors' idea is that the cities would start out with different sizes but would grow at a similar rate. 
5 Le Gallo and Chasco (2009) also found low mobility and high persistence for Spanish cities, but in different magnitudes. There, there is 

mobility in the intermediate classes beyond the immediate upper class and also to lower classes. However, in the dynamics of Spanish urban 

growth at the end of the last century, the behavior of the Pareto exponent reverses the trend. 



A Century of Growth in Brazilian Cities: a spatial approach (1910-2010) 

DOI:10.9790/0837-2901026069                             www.iosrjournals.org                                                  69 |Page 

Table no 4 Initial distribution versus ergodic distribution of the population of Brazilian cities: 19102010 

  1  

<20%  

2  

<50%  

3  

<80%  

4  

<135%  

5  

<185%  

6  

>185%  

Initial distribution  0.47.48  0.3846  0.0626  0.0510  0.0244  0.0476  

Ergotic  

Distribution  

0.4567  0.3834  0.0615  0.0499  0.0232  0.0476  

 
 

Source: Prepared from IPEADATA data. 

 

As previously mentioned, the ergodic distribution can be affected by the way the distribution is divided 

into classes. Other types of stratification and different numbers of city distribution classes were tested. The 

results of slight convergence, however, were robust to these choices. 

 

IV. Conclusion  
Throughout the past century, the growth process of Brazilian cities has been propelled by 

industrialization and the expansion of the agricultural frontier. Industrialization exhibited a significant initial 

concentration in the Southeast region, with recent indications of deconcentration. The agricultural frontier, in 

turn, spans the North and Midwest regions, encompassing the occupation of the cerrado, and more recently 

extending into areas of the Northeast. In this study, we employed IPEA's AMC data to analyze the dynamics of 

Brazilian city growth from 1910 to 2010. The advantage of this database lies in its coverage over the longest 

available period for Brazil at this level of aggregation, mitigating issues associated with the arbitrary selection of 

city sizes by researchers. 

The density function of the distribution of Brazilian cities over the last century reveals divergence, with 

a slight indication of the formation of a bimodal distribution in the last decade. Zipf's Law supports this 

divergence process but exhibits a loss of intensity in the last analyzed decade. In other words, larger cities were 

growing more rapidly than smaller ones, but in the last decade, medium-sized cities show signs of accelerated 

growth. 

Neighborhood effects prove to be crucial in the analysis of the distribution of Brazilian cities, as tests 

indicate spatial dependence in the distribution. Therefore, Zipf's Law was analyzed incorporating spatial effects, 

thereby contributing to the literature in this area. 

Finally, the Markov Chain analysis reveals low mobility and high persistence. In other words, the 

probability of a city transitioning between size classes in successive decades is very low. Conversely, the 

probability of cities remaining within the same size class is high throughout the period from 1910 to 2010. Only 

cities positioned in the middle of the distribution show the ability to advance to higher classes. These results 

remained robust across different methods used to divide the distribution into classes. 
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