Concentrations of Nitrategroundwater in the 17 Wells at the Region of Hasht Bandi of Minab, Iran

Yadolah Fakhri1, Bigard Moradi2, Athena Rafieepour3, Leila rasouli amirhajeloo4, Yahya Zandsalimi5, Saeedeh Jafarzadeh6, Ghazaleh langarizadeh7, Maryam Mirzaei8*

1Social Determinants in Health Promotion Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
2Department of health public, Kermanshah University of Medical Sciences, Kermanshah, Iran
3Student’s research committee, ShahidBeheshti University of Medical sciences, Tehran,Iran
4Department of Environmental Health Engineering, School of Public Health, Qom University of Medical Sciences, Qom, Iran
5Environmental Health Research Center, Kurdistan University of Medical Science, Sanandaj, Iran.
6Research Center for non-communicable disease, Fasa University of Medical Sciences, Fasa, Iran
7Food and Drugs Research Center, Bam University of Medical Sciences, Bam, Iran
8Research Center for non-communicable disease, Msc of critical care nursing, Jahrom University of Medical Sciences, Jahrom, Iran

*Corresponding author, Email: Maryammirzae32@yahoo.com

Abstract: Consumption of drinking water containing high concentrations of nitrate can be cause Methemoglobin in infants, diabetess children and types of cancer. In this cross-sectional study, the concentration of nitrate in 128 water samples collected from 17 wells in Hasht Bandi of Minab was measured by a spectrophotometer Model DR2800 (May to July, 2014). The mean concentrations of nitrate in groundwater is 17.5 ± 6.6 mg/l and ND-41 mg/l, respectively. The lowest and highest concentration of nitrate is equal to well8 and well14, respectively. Mean nitrate concentrations of groundwater is lower than WHO and EPA standard limits.

Keywords: Nitrate, Groundwater, Wells, Hasht Bandi of Minab

I. Introduction

In recent years, surface water and groundwater concentration of nitratehas been increased due to the expansion of agricultural and industrial activities[3-1]. Nitrate ion is one of the mineral nitrogen ingredients that is produced in the last step of ammonia oxidation.[5, 4] Organic substances, municipal and industrial wastewater, natural and chemical fertilizer can cause resources of nitrate inclusion in groundwater and surface water. [7, 6] Studies have shown that consumption of drinking water with high concentrations of nitrates cause methemoglobin in infants, diabetes among children, stomach cancer, bladder and liver[10-8]. When hemoglobin concentration is reached 1.5 g per deciliter of blood, or at least to 10% of adult hemoglobin concentration, the anemia complications and cyanosis will be produced in person. The main symptoms of cyanosis is blue color of the skin, especially around the eyes and mouth.[6] Water has a high concentration of nitrate is potentially harmful for babies and children. Because the bacteria in the digestive tract can revive food and water nitrate to nitrite. Then nitrate will be absorbed into the bloodstream and transforms hemoglobin to Methemoglobin. Although Methemoglobin is not potentially toxic, it reduces the capacity oxygen carrying by the hemoglobin. Also, nitrate resulted from Nitrate revival by bacteria in the digestive tract is combined with the second and third amines and forms nitrous and produces carcinogenic amines [13-11]. According to World Health Organization guidelines and America Environmental Protection Agency, Maximum permissible nitrate (MPC) in drinking water by nitrogen is equal to 10 mg/l and by nitrate is 50 mg/l [14,11]. In many of the studies, concentration of nitrate in groundwater has been measured, such as the study conducted by Wjchoi et.al who evaluated the impact of land use on groundwater concentration of nitrate in rural areas of South Korea. [15] The more the use of chemical nitrogen fertilizers on agricultural land, the higher the groundwater concentration of nitrate increases [17 ,16]. Due to agricultural activities, the use of chemical fertilizers, especially nitrogen fertilizers in Hasht Bandi of Minab city is high. Hence, this study tries to measure concentration of nitrategroundwater in 17 wells in this area and compare with standard limits.
II. Materials And Methods

1.2 Study of Area
Hashtbandiregion, populated with 5 thousand people and 20 km² area is located in northeast of Minab city and in 163 km at Bandar Abbas (the center of Hormozgan Province) and in 27°07’19”Nand 57°27’23” Geographical coordinates (Figure 1)[18]. The region's climate is hot and dry and the original activities of inhabitants of the area is agriculture. The depth of water wells in this area is between 60 to 160 m.

2.2 Sample collection
In this cross-sectional descriptive study, sample collection was performed in three stages from May to the July 2014 (one stage per month). In each stage, two water samples were collected from each well. Hence, 102 water samples were collected from 17 wells in the study in total of three stages (Figure 1). After 10 minutes of existing water out of the pump tube, the sample was transferred into the 1.5 liter polyethylene bottle. The samples was transferred at the temperature of 4°C to the Chemical Laboratory Faculty of Health in the Bandar Abbas[19].

2.3 Measurement concentration of nitrate
Concentration of Nitratein the samples was measured by spectrophotometry device model DR28000 (hack Company). 8153 Ferrous Sulfate Method Powder Pillows for determining the concentration of nitrate was used. According to this method, the measurement range is 2-250 mg/l NO₃⁻ in the 585 nm wavelength [20].

2.4 Statistical Analysis
The difference in mean concentration of nitrate by standard limit is done using T test by SPSS16 software with 5% statistical error (α=5) as significant level.

III. Results
The mean concentration of nitrates in the months of May, June and July 2014 is 17.9±10.1, 16. ± 310.6 and 16.2 ± 9.4 mg/l, respectively. Mean and range concentration of nitrate is 17.5±6.6 mg/l and ND¹-41 mg/l (Table 1). Mean concentration of nitrate in the well 1, Well 2, Well 3, Well 4, Well 5, Well 6, Well 7, Well 8, Well 9, Well 10, Well 11, Well 12, Well 13, Well 14, Well 15, Well 16, Well 17, Well 17’s 13.5,15.3,23.5,15.0,14.0,13.5, 33.5,17.0,10.3,25.0,22.3,13.6,0,15.7,19.3 and 17.5 mg/l, respectively.

¹Not detected (less than 2 mg/l)

DOI: 10.9790/2402-093XXXXX www.iosrjournals.org 60 | Page
Table 1. Mean concentrations of nitrate in groundwater in 17 wells Hasht Bandi of Minab (mg/l)

<table>
<thead>
<tr>
<th>Well</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>11</td>
<td>6</td>
<td>9</td>
<td>8.7</td>
</tr>
<tr>
<td>Well 2</td>
<td>ND</td>
<td>8</td>
<td>19</td>
<td>13.5</td>
</tr>
<tr>
<td>Well 3</td>
<td>16</td>
<td>11</td>
<td>19</td>
<td>15.3</td>
</tr>
<tr>
<td>Well 4</td>
<td>32</td>
<td>15</td>
<td>ND</td>
<td>23.5</td>
</tr>
<tr>
<td>Well 5</td>
<td>11</td>
<td>19</td>
<td>ND</td>
<td>15.0</td>
</tr>
<tr>
<td>Well 6</td>
<td>ND</td>
<td>16</td>
<td>12</td>
<td>14.0</td>
</tr>
<tr>
<td>Well 7</td>
<td>21</td>
<td>ND</td>
<td>6</td>
<td>13.55</td>
</tr>
<tr>
<td>Well 8</td>
<td>26</td>
<td>ND</td>
<td>41</td>
<td>33.5</td>
</tr>
<tr>
<td>Well 9</td>
<td>15</td>
<td>ND</td>
<td>19</td>
<td>17.0</td>
</tr>
<tr>
<td>Well 10</td>
<td>5</td>
<td>9</td>
<td>17</td>
<td>10.3</td>
</tr>
<tr>
<td>Well 11</td>
<td>19</td>
<td>31</td>
<td>ND</td>
<td>25.0</td>
</tr>
<tr>
<td>Well 12</td>
<td>35</td>
<td>12</td>
<td>20</td>
<td>22.3</td>
</tr>
<tr>
<td>Well 13</td>
<td>ND</td>
<td>ND</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Well 14</td>
<td>6</td>
<td>ND</td>
<td>ND</td>
<td>6.0</td>
</tr>
<tr>
<td>Well 15</td>
<td>14</td>
<td>28</td>
<td>5</td>
<td>15.7</td>
</tr>
<tr>
<td>Well 16</td>
<td>7</td>
<td>37</td>
<td>14</td>
<td>19.3</td>
</tr>
<tr>
<td>Well 17</td>
<td>32</td>
<td>3</td>
<td>ND</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Mean | 17.9 | 16.3 | 16.2 | 16.3 |
SD | 10.1 | 10.6 | 9.4 | 6.6 |

IV. Discussion

The order of wells based on mean concentration of nitrate is well 8 > well 11 > well 4 > well 12 > well 16 > well 17 > well 9 > well 15 > well 3 > well 6 > well 13 > well 7 > well 2 > well 10 > well 1 > well 14. All samples (100%) are lower than WHO and EPA standard levels. The highest and lowest concentrations of nitrate relates to well 8 and well 14, respectively (Figure 2). The higher concentration of nitrate in groundwater in well 8 can result from contamination of soil to chemical nitrogenous fertilizers or higher soil permeability [23-21].

Figure 2. Comparing the concentration of nitrate in 17 water wells at Hasht Bandi with WHO and EPA standard limits

2 Mean of 2 samples
3 Standard Deviation

DOI: 10.9790/2402-093XXXXX www.iosrjournals.org 61 | Page
Concentrations of Nitrate in groundwater in the 17 wells at the region of Hasht Bandi of Minab, Iran

Concentration of nitrate groundwater is 35% of standard limits of WHO and EPA [14, 11] (Figure 3). Statistical analysis showed that there is a significant difference between the groundwater concentration of nitrate in this study by WHO and EPA standard limits (p value <0.05).

Table 2. Comparing the mean concentration of nitrate of groundwater in different regions of Iran with Hasht Bandi Minab

<table>
<thead>
<tr>
<th>Source</th>
<th>Max</th>
<th>Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isfahan</td>
<td>248.3</td>
<td>Groundwater</td>
<td>[24]</td>
</tr>
<tr>
<td>Behshahr</td>
<td>45</td>
<td>Groundwater</td>
<td>[25]</td>
</tr>
<tr>
<td>Karaj</td>
<td>85.49</td>
<td>Groundwater</td>
<td>[26]</td>
</tr>
<tr>
<td>Malayer</td>
<td>74.4</td>
<td>Groundwater</td>
<td>[27]</td>
</tr>
<tr>
<td>Hamedan</td>
<td>17.6</td>
<td>Groundwater</td>
<td>[27]</td>
</tr>
<tr>
<td>Kermanshah</td>
<td>84</td>
<td>Groundwater</td>
<td>[28]</td>
</tr>
<tr>
<td>Minab (Hashtbandi)</td>
<td>41</td>
<td>Groundwater</td>
<td>This study</td>
</tr>
</tbody>
</table>

The maximum concentration of nitrate in this study is less than the maximum concentration of nitrate in Isfahan, Behshahr, Karaj, Malayer, Hamedan and Kermanshah (Table 2). The range concentrations of nitrate in the study conducted by Mondal et al. (2008) in well waters of Krishna delta in India is 10-135 mg/l [29]. Mean concentration of nitrate in Amman (Jordan) groundwater in the study of Obeidat et al. (2008) is 33 mg/l [30]. Mean groundwater concentration of nitrate in Tikrit and Samarra, Iraq in the study of Hameed Lateef (2010) is 43.35 mg/l [31].

Figure 3. Comparing the mean and standard deviation concentration of nitrate in the groundwater at Hashtbandi with EPA and WHO standard limits

V. Conclusion

The highest and lowest concentrations of nitrate is related to well 8 (33.5 mg/l) and well 14 (6). Mean groundwater concentration of nitrate in 17 wells in the study area of Minab Hasht Bandi is significantly lower than the WHO and EPA standard levels.

Acknowledgment

The authors of this study warmly acknowledges the Chemical Laboratory Staff, Faculty of Health, Hormozgan University of Medical Sciences.

Reference

Concentrations of Nitrategroundwater in the 17 wells at the region of Hasht Bandi of Minab, Iran

