A Study of Water Safety Plan (WSP) For Environmental Risk Management of a Modern North Indian City

Harish Kumar Saini^{1,} Dr. R.K. Khitoliya^{2'} Dr. Shakti Kumar^{3,}

¹(*M.E.* 2nd year Student, Civil Engineering Department, PEC University of Technology, Chandigarh, India) ²(Professor and Head, Civil Engineering Department, PEC University of Technology, Chandigarh, India) ³(Associate Professor, Civil Engineering Department, PEC University of Technology, Chandigarh, India)

Abstract: Access to safe drinking water is a basic need for human development, health and well being and because of this it is an internationally accepted human right (WHO, 2011).

There has been encouraging progress with access to safe drinking water & sanitation in both rural and urban areas since the United Nations water decade of the 1980s. However, more than 1 billion people around the world still lack access to safe water supplies. A substantial majority of these people live in Asia.

Water has many constituents. Some of these are of natural origin & some are manmade and present as contaminants. Some give rise to serious health effects and some will give rise to only aesthetic characteristics.

Over the past decade it has become increasingly evident that the delivery of safe & aesthetically acceptable drinking water cannot be assured if it is based on only measurements of water quality parameters & or the performance of a water filtration plant.

In view of the uncertainties and the practical difficulty in monitoring the quality of treated water, a risk based approach to managing the quality of drinking water is required. A key advantage of a risk based approach is in avoiding the costs associated with installing inappropriate systems of delivering water. It has been shown that investments in water supply and sanitation can yield a net economic benefit, as the reductions in adverse health effects and health care costs outweigh the costs of undertaking these interventions.

The guidelines provided in this thesis are an important contribution to environmental risk assessment and the avoidance of the physical, chemical and microbial contamination of drinking water.

The HACCP plan from which this water safety plan extract has been derived is scoped to cover the entire water system from catchment to tap and is dynamic document continually evolving as increased knowledge and experience and present opportunities for improvement.

Water safety management demands a quantitative understanding of how processes & actions effect water quality, which in turn requires an understanding of environmental risk assessment. This study is intended to provide guidance on using environmental risk assessment while developing water safety plan to ensure the production of high quality drinking water in a modern North Indian City like Chandigarh.

I. Introduction

Managing water resources and supplying safe water are the greatest challenges for the present generation. What makes water safe is the care and consideration people have for activities and actions in the catchment and in treatment, storage and distribution of water.

Water suppliers and Municipalities have a public health responsibility to these communities to provide drinking water that is safe to drink. Safe drinking water is a basic need for human development, health & wealth being and because of this is an internationally accepted human right (WHO, 2001).

The most effective means of consistency exercising the safety of a drinking water supply is through the use of comprehensive risk assessment & risk management approach that includes all steps in water supply from catchment to consumers, such approaches are called WATER SAFETY PLANS (WSP).

It is based on the principals of Hazard Analysis and critical control points (HACCP) widely used in Food Industry. In the Food Industry, a HACCP Plan seeks to protect food quality from FARM TO THE FORK. In the water industry, a WSP is a comprehensive approach from CATCHMENT TO CONSUMER.

The WHO has developed guidelines for drinking water quality. The latest edition of the WHO Guidelines for drinking water quality is structured around on overall "Water Safety Framework" used to develop supply specific "Water Safety Plans".

Preparing a water safety plans involves a systematic assessment of every aspect of providing safe drinking water, identifying the events that could cause water to become unsafe to drink & developing plans to manage these.

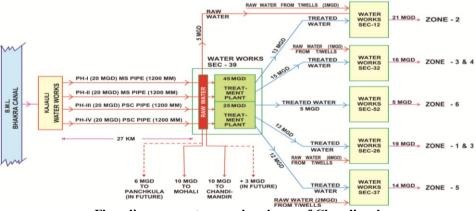
The present research provides processes for identifying potential problems and managing risks to water quality in a developed modern north Indian city like Chandigarh.

II.	Methodology

1. Key Components of WSP	
There are 11 modules involved in the dev	veloping & implementation of Water Safety Plan (WSP).
Preliminary and preparation	Module-1 (Assemble WSP Team)
System Risk Assessment	Module-2 (Describe the system)
Module-3 (Hazard identification & initial	risk assessment)
Module-4 (Control measures and reassess	s risk)
System Upgrade	Module-5 (Improvement Plan)
Quality monitoring & verification	Module-6 (Control measure monitoring)
	Module-7 (Verification)
Supporting WSP Management	
& verification Procedures	Module-8 (Management procedure)
	Module-9 (Supporting programmes)
Feedback/ Reviews	Module-10 (Review)
Module-11 (Incidents)	

Based on the above Modules, the Water Safety Plan has been developed for Chandigarh city, which is a modern city of North India known as "THE CITY BEAUTIFUL".

2. Description of Water Supply System in Chandigarh


Common on to of WCD

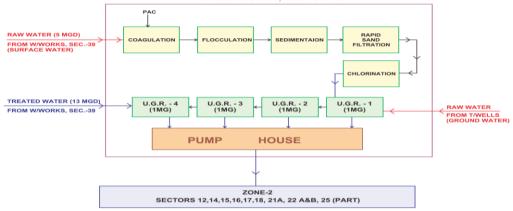
As per Module-2, it is necessary to understand and describe the water supply system of Chandigarh right from catchment, pumping, treatment, distribution and upto the consumer end (Household). There are two sources of raw water supply in city Chandigarh:

1. 80 MGD surface water pumped from Bhakra Canal at a distance of 27 KM from Chandigarh.

2. 20 MGD ground water from deep bore tubewells located across the city.

The raw water is treated at water works sector 39 (known as Mother Water Works) & water works Sector 12 is pumped to all other Water Works located in Sector 12, 26, 32, 37 & 52 which act as intermediate pumping stations for supplying the treated water to their localized areas/ zones as illustrated in the following flow diagram:

Flow diagram-water supply scheme of Chandigarh


3. Selection of Pilot Zone (Study area)

Out of 6 zones in which Chandigarh is divided for its water supply distribution, Zone No 2 has been selected as Pilot Zone for initial development & implementation of Water Safety Plan in city Chandigarh. Zone No 2 is being fed through Water Works Sector 12 & supply drinking water to Sector 12 to 18, 21-A, 22 A & B, 25.

- 3.1 Intake of Water in WTP of Pilot Zone No 2
- i. 5 MGD of raw water from Bhakra Canal through the Water Works Sector 39.
- ii. 3 MGD of raw water from 19 No deep bore tubewells (Ground water).
- iii. 13 MGD of treated water from Water Works Sector 39.

5 MGD raw water received at Water Works Sector 12 is being treated in different stages (Coagulation, Flocculation, Sedimentation, Filtration and Post Chlorination).

Water supply treatment process/ distribution in Pilot Zone 2 as illustrated in the following flow diagram:

Flow diagram water supply distribution in pilot zone 2 (From water works sector 12)

4. Summary of Historical Water Quality Data for Pilot Zone

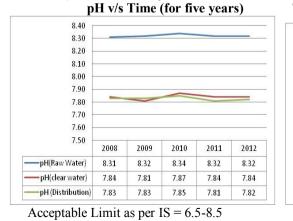
The data for the five years (2008 to 2012) has been analyzed for the samples taken from:

- i. Raw Water.
- ii. Treated water (At outlet of WTP i.e. Water Works Sector 12).
- iii. Distribution system-cum-consumer end.

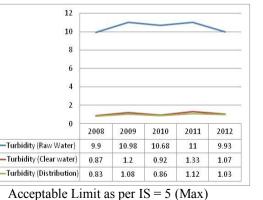
For each year; average, maximum, minimum, standard variation and median values have been calculated for pH, Turbidity, Hardness, Total dissolved solids & for free Residual Chlorine available.

III. Results And Discussion

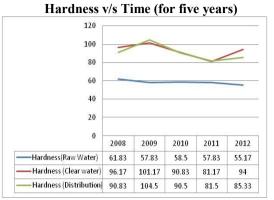
1. Analysis of treated water data at Water Works Sector 12 (Pilot Zone)

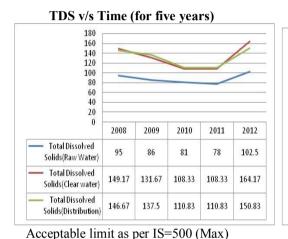

For the year 2013-14, the daily sampling data for treated water at the outlet of WTP Sector 12 has been analyzed and the variation in maximum recorded values and its desirable limits as per IS: 10500:2012 are as under:

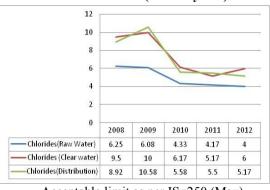
Variations (Actual data Vs acceptable limits) For Treated Water at outlet of Water Works Sector-12


Year	Parameter	Maximum recorded data	Desirable limit as per IS 10500: 2012	Remarks
2014	pН	7.87	6.5 - 8.5	Within 1imits
	Turbidity (NTU)	1.20	5	-do-
	TDS (mg/l)	190	500	-do-
	Hardness (mg/l)	110	300	-do-
	Chlorides (mg/l)	6.0	250	-do-
	FRC (mg/l)	0.3	0.2	-do-
	MPN Coliform Index	0	0	-do-

2. Analysis of water quality historical data in pilot zone

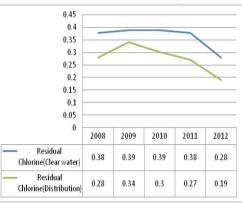

Historical sampling data for the 5 years (2008-2012) has been analyzed for raw water, treated water (at outlet of WTP Sector 12) & distribution system-cum-consumer end & the results are plotted as under:


Turbidity v/s Time (for five years)



www.iosrjournals.org

Acceptable limit as per IS=300 (Max)



Chloride v/s Time (for five years)

Acceptable limit as per IS=250 (Max)

FRC v/s Time (for five years)

Acceptable limit as per IS=0.2 (Min)

3. Preparation of Chandigarh Hazard Analysis Matrix

As per Module No 3 of WSP, all the possible visible & hidden hazards that can contaminate the drinking water supplied to the City Chandigarh in the Pilot Study Zone No 2 have been looked into thoroughly at actual site right from Bhakra Catchment, raw water mains from Kajauli, in different stages of treatment process, treated water rising mains, distribution lines, consumer interface & household storage & handling practices.

The following 3 types of hazards have been looked into:

i. Physical Hazard (Denoted by P in the Matrix)

ii. Chemical Hazard (Denoted by C in the Matrix)

iii. Microbial Hazard (Denoted by M in the matrix)

Any hazardous event can give rise to one, two or to all the three types of hazards.

The risk Matrix has been developed using semi quantitative approach.

The consequence or severity of a particular hazardous event has been rated from 1 to 5 started from the lowest impact to the highest impact.

Insignificant or no impact	:	Rating-1.
Minor impact	:	Rating-2
Moderate impact	:	Rating-3
Major impact	:	Rating-4
Catastrophic impact	:	Rating-5
TT1 111 11 1 0	0	<u> </u>

The likelihood or frequency of occurrence of a particular hazardous event has been rated from 1 to 5 starting from the lowest frequency to the highest frequency.

Rare/ Once every 5 years	:	Rating-1.
	•	0
Unlikely/ Once a year	:	Rating-2
Moderate/ once a month	:	Rating-3
Likely/Once a week	:	Rating-4
Almost/ certain once a day	:	Rating-5

Depending upon the severity and likelihood score/ rating, the overall risk for that particular hazardous event has been calculated as under:

Risk Score = Severity rating x Likelihood rating

The risk score has been calculated as raw risks completely ignoring all the control measures that actually are in place in the water supply distribution system.

Depending upon the risk score, the risk band range for that particular hazardous event is taken in the following intervals in the hazard analysis matrix:

Low (L): 1-5 (Denoted by Green Colour)

Medium (M) : 6-15 (Denoted by Yellow Colour)

High (H) : 16-25 (Denoted by Red Colour)

As per Module No 4, the risk score is recalculated taking into account all the control measures that exist in the system to keep check on that particular hazardous event. So the severity and frequency of that hazardous event becomes low which ultimately brings down the risk score of that hazardous event.

This reassess risk has been incorporated in the Chandigarh Hazard Analysis Matrix to see whether the raw risk band has come down or not.

The complete Chandigarh Hazard Analysis Matrix as per Module No 3 & 4 has been prepared for all the possible hazardous events and is given in the next pages.

No	Source of Risk/ Process Step	Hazard	Hazardous Event	Likeli hood	Conse quence	Risk Rating or Raw Risk (with no controls)	Risk Band	BASIS (Reasons for selection of likelihood & Consequence Sources)	Control Measures	Likeh hood	Conse quence	Risk Rating or Raw Risk (with no controls)	Risk Band
1.	Bhakra Catchment	М	Sewage overflows from human habitation during monsoon period	2	5	10	М	Human settlement present near BML	Septic tanks are in place	1	5	5	L
		C , P , M	Idol immersion, Religious activities	2	4	8	М	There is no fencing temple present close to river	Provision of separate tanks for immersion	1	4	4	L
		С, Р	Agricultural activities in the river bed	3	4	12	М	Visual inspection during visit	Agricultural activities are restricted in river bed	1	4	4	L
		C , P , M	Contaminants in storm water runoff during monsoon	4	3	12	М	May happen in rainy season due to storm water runoff	No current control measures	4	3	12	м
		М	Unauthorized access for recreation (swimming, fishing)	2	1	2	L	There is no fencing	Security in place	1	1	1	L
		C,P,M	Growth of aquatic weeds increasing nutrients in BML	4	3	12	М	Aquatic weeds are observed near bank	Screens are provided at inlet	1	3	3	L
		C,P	Corrosion of screens, gates and mechanical parts	4	3	12	м	Observed during visit to BML	Periodic repair & maintenance program	1	3	3	L
2.	Raw Water Mains	Р, М	Increased sediments load, weeds and debris	3	3	9	м	This phenomena is observed during monsoon season	No current control measures	3	3	9	м
		P,C	Failure of the sluice gates, valves etc	2	3	6	м	As per information provided by MC officers	Periodic repair and maintenance program	1	3	3	L
		Ρ	Leakage in MS Pipe of Phase I & II	1	5	5	L	As per information provided by MC officers	Immediate repair & Mtc programme (or priority)	1	5	5	L
		Р	Leakage in PSC Pipe of Phase III & IV	3	5	15	М	As per information provided by MC officers	Immediate repair & Mtc programme (or priority)	1	5	5	L
3.	Treatment plant												
3a	Chemical dosing system	C, P	Over/ under dosing	3	3	9	М	Dosing is monitored daily	Chemist determines required dose by Jar test daily.	1	3	3	L
		C,P	Mishandling of chemicals	2	4	8	М	Visual inspection during visit	Standard operating procedures are being followed	1	4	4	L

Chandigarh Hazard Analysis Matrix

A Study of Water Safety Plan (WSP) For Environmental Risk Management of a Modern North

No	Source of Risk/ Process Step	Hazard	Hazardous Event	Likeli hood	Conse quence	Risk Rating or Raw Risk (with no controls)	Risk Band	BASIS (Reasons for selection of likelihood & Consequence Sources)	Control Measures	Likeli hood	Conse quence	Risk Rating or Raw Risk (with no controls)	Risk Band
3b	Flash mixing	P,C	Electrical failure	1	4	4	L	Power failure from electricity board not frequent	Plant will shut down automatically since water cannot be pumped.	1	2	2	L
		C,P,M	Improper settling	3	4	12	М	If settler is overloaded, or short detention time	Testing of Turbidity after every 2 hours and maintaining the flow rate at inlet	1	4	4	L
3d	Rapid Sand Filtration	C,P,M	Improper filtration	4	4	16	н	Online monitors for all filters were found to be not working	Backwashing is done depending on head loss at each filter. turbidity of filtered water is tested once in 2 hours	1	4	4	L
		C,P,M	Loss of efficiency of filter media	2	4	8	М	Information given by Plant Operator	SOP's are developed for Op & Mtc of filters	1	4	4	L
		C,P,M	Sand loss during back wash resulting in reduction of efficiency	3	3	9	М	Reduced efficiency may lead to improper filtration	Filter media is top up on its loss	1	3	3	L
3e	Post- <u>chlori</u> - nation	С	Overdosing (formation of DBP's, can exceed health limits- 5mg/l)	3	4	12	М	Based on water testing records for residual chlorine	Online monitors are present. Residual chlorine is tested in laboratory daily every 2 hours	1	4	4	L
		М	Under dosing	3	5	15	М	Based on water testing records for residual chlorine and bacteriological analysis No such incident has	Online monitors are present	1	5	5	L
		М	Unavailability of gas cylinders	1	4	4	L	occurred in the experience of the Plant operator Power failure from	Gas cylinders are always present in spare	1	4	4	L
		М	Electrical failure	4	4	16	н	Elecy board not frequent	Plant will shut down.	2	2	4	L
4	Treated Water Rising Mains	C,P,M	Microbial re growth, Taste and Odour complaints due to stripping of Bio-films	3	5	15	М	Post chlorination at treatment plants reduces the consequences	Periodic cleaning and maintenance program	1	5	5	L
No	Source of Risk/ Process Step	Hazard	Hazardous Event	Likeli hood	Couse quence	Risk Rating or Raw Risk (with no controls)	Risk Band	BASIS (Reasons for selection of likelihood & Consequence Sources)	Control Measures	Likeli hood	Couse queuce	Risk Rating or Raw Risk (with no	Risk Band
												controls)	
		C,P,M	Contamination from pipe bursts	2	4	8	м	There is continuous supply with high pressure	Leak repair program on priority basis	1	4	controls) 4	L
		C,P,M		2	4	8 10	м м	There is continuous supply with high		1	4		L L
			bursts Contamination from drains during Mtc of pipes or fittings Chemical contamination due to internal corrosion					There is continuous supply with high pressure As per difficulties faced by MC officials Good quality materials are used.	on priority basis Super chlorination is			4	
5		C,P,M	bursts Contamination from drains during Mtc of pipes or fittings Chemical contamination due to internal corrosion High Fe levels in water due to internal corrosion of unlined Cast fron mains	2	5	10	м	There is continuous supply with high pressure As per difficulties faced by MC officials Good quality materials	on priority basis Super chlorination is done after repair Periodic repair and maintenance	1	5	4	L
5		C,P,M C,P	bursts Contamination from drains during Mit of pipes or fittings Chemical contamination due to internal corrosion High Fe levels in water due to internal corrosion of	2	5	10 8	M M	There is continuous supply with high pressure As per difficulties faced by MC officials Good quality materials are used. Due to oxidation of Fe by chlorine in unlined	on priority basis Super chlorination is done after repair Periodic repair and maintenance activities are done No current control	1	5	4	L
5		C,P,M C,P C	bursts Contamination from drains during Mtc of pipes or fittings Chemical contamination due to internal corrosion High Fe levels in water due to internal corrosion of unlined Cast from mains Ingress of contaminants due to leakage from hydrants, fittings &	2 2 4	5 4 2	10 8 8	м м м	There is continuous supply with high pressure As per difficulties faced by MC officials Good quality materials are used. Due to oxidation of Fe by chlorine in unlined CI pipe network	on priority basis Super chlorination is done after repair Periodic repair and maintenance activities are done No current control measures Leakage repair	1 1 4	5 4 2	4 5 4 8	L L M
5	Distri- bution mains (MS, DI, CI)	C,P,M C,P C P,M	bursts Contamination from drains during Mtc of pipes or fittings Chemical contamination due to internal corrosion of unlined Cast Iron mains due to internal corrosion of unlined Cast Iron mains due to leakage from hydrants, fittings & perforations Ingress of contaminants from crossing of natural drains'uallab's Contamination due to ingress of foreign matter from perforations in corroded pipes	2 2 4 2	5 4 2 4	10 8 8 8	M M M M	There is continuous supply with high pressure As per difficulties faced by MC officials Good quality materials are used. Due to oxidation of Fe by chlorine in unlined CI pipe network Intermittent supply Control measures in place, this problem occurs only in moneoon season when drains are full Public Health department records	on priority basis Super chlorination is done after repair Periodic repair and maintenance activities are done No current control measures Leakage repair program Pipes are laid on piers to avoid contact	1 1 4 1	5 4 2 4	4 5 4 8 4 4	L L M L
	bution mains (MS,	C,P,M C,P C P,M P,M	bursts Contamination from drains during Mtc of pipes or fittings Chemical contamination due to internal corrosion High Fe levels in water due to internal corrosion of unlined Cast Iron mains Ingress of contaminants from crossing of natural drains gallabits Contamination due to ingress of foreign matter from perforations in corroded pipes High Fe levels in water due to internal corrosion of unlined CI mains	2 2 4 2 3	5 4 2 4 5	10 8 8 8 15	M M M M	There is continuous supply with high pressure As per difficulties faced by MC officials Good quality materials are used. Due to oxidation of Fe by chlorine in unlined CI pipe network Intermittent supply Control measures in place, this problem occurs only in monsoon season when drains are full Public Health department records Due to oxidation of Fe by chlorine in unlined CI pipe network	on priority basis Super chlorination is done after repair Periodic repair and maintenance activities are done No current control measures Leakage repair program Pipes are laid on piers to avoid contact with drains. Existing visual detection and repair of leaks. No current control measures	1 1 4 1 2	5 4 2 4 5	4 5 4 8 4 10	L L M L M
	bution mains (MS,	C,P,M C,P C P,M P,M C,P,M	bursts Contamination from drains during Mit of pipes or fittings Chemical contamination due to internal corrosion of unlined Cast Iron mains Ingress of contaminants due to itexta from hydrants, fittings & perforations Ingress of contaminants from crossing of natural drains' unlights Contamination due to ingress of foreign matter from perforations in corroded pipes High Fe levels in water due to internal corrosion of	2 2 4 2 3 3	5 4 2 4 5 5	10 8 8 15 15	M M M M M	There is continuous supply with high pressure As per difficulties faced by MC officials Good quality materials are used. Due to oxidation of Fe by chlorine in unlined CI pipe network Intermittent supply Control measures in place, this problem occurs only in monsoon season when drains are full Public Health department records Due to oxidation of Fe by chlorine in unlined	on priority basis Super chlorination is done after repair Periodic repair and maintenance activities are done No current control measures Leakage repair program Pipes are laid on piers to avoid contact with drains. Existing visual detection and repair of leaks. No current control	1 1 4 1 2 2	5 4 2 4 5 5	4 5 4 8 4 10 10	L L M L M M
	bution mains (MS,	C,P,M C,P C P,M P,M C,P,M C,P,M	bursts Contamination from drains during Mtc of pipes or fittings Chemical contamination due to internal corrosion of High Fe levels in water due to internal corrosion of unlined Cast Iron mains Ingress of contaminants from crossing of natural drains/uallab/s Contamination due to ingress of foreign matter from parforations in corroded pipes High Fe levels in water due to internal corrosion of unlined CI mains Potential of corrosion in in	2 2 4 2 3 3 4	5 4 2 4 5 5 5 2	10 8 8 15 15 8	м м м м м м м	There is continuous supply with high pressure As per difficulties faced by MC officials Good quality materials are used. Due to oxidation of Fe by chlorine in unlined CI pipe network Intermittent supply Control measures in place, this problem occurs only in monison season when drains are full Public Health department records Due to oxidation of Fe by chlorine in unlined CI pipe network Due to oxidation of Fe	on priority basis Super chlorination is done after repair Periodic repair and maintenance activities are done No current control measures Leakage repair program Pipes are laid on piers to avoid contact with drains. Existing visual detection and repair of leaks. No current control measures No current control	1 1 4 1 2 2 4	5 4 2 4 5 5 2	4 5 4 8 4 10 10 8	L L M L M M M
	bution mains (MS,	C,P,M C,P C P,M C,P,M C,P,M C C C	bursts Contamination from drains during Mit of pipes or fittings Chemical contamination due to internal corrosion High Fe levels in water due to internal corrosion of unlined Cast Iron mains Ingress of contaminants from crossing of natural drains' uallable. Contamination due to ingress of foreign matter from perforations Ingress of foreign matter from perforations in corroded pipes High Fe levels in water due to internal corrosion of unlined CI mains Potential of corrosion in fittings Ingress of contaminants due to internal corrosion of unlined of corrosion of unlined of corrosion in fittings Ingress of contaminants due to internal corrosion of	2 2 4 2 3 3 3 4 3	5 4 2 4 5 5 2 2 2	10 8 8 15 15 8 6	M M M M M M M M	There is continuous supply with high pressure As per difficulties faced by MC officials Good quality materials are used. Due to oxidation of Fe by chlorine in unlined CI pipe network Intermittent supply Control measures in place, this problem occurs only in monsoon season when drains are full Public Health department records Due to oxidation of Fe by chlorine in unlined CI pipe network Due to oxidation of Fe by chlorine in mined Some cases experienced by	on priority basis Super chlorination is done after repair Periodic repair and maintenance activities are done No current control measures Leakage repair program Pipes are laid on piers to avoid contact with drains. Existing visual detection and repair of leaks. No current control measures No current control measures Periodic inspection	1 1 4 1 2 2 4 3	5 4 2 4 5 5 2 2	4 5 4 8 4 10 10 8 6	L L M L M M M M

A Study of Water Safety Plan (WSP) For Environmental Risk Management of a Modern North

No	Source of Risk/ Process Step	Hazard	Hazardous Event	Likeli hood	Conse quence	Risk Rating or Raw Risk (with no controls)	Risk Band	BASIS (Reasons for selection of likelihood & Consequence Sources)	Control Measures	Likeli hood	Couse quence	Risk Rating or Raw Risk (with no controls)	Risk Band
		C,P	Use of substandard material for pipes	3	4	12	м	Lead joints are used in old network, pipes are prone to breakage	Hydraulic testing is done, check for ISI mark, certificate from manufacturer	2	4	8	м
7	Consumer interface	M,P	Backflow from domestic properties due to absence of check valves	4	5	20	н	Customer complaints for contaminated water	Periodic inspection and control	3	5	15	м
		P,M	Internal cross contamination from sewer lines	4	5	20	н	Customer complaints and visual inspection	No current control measures	4	5	20	н
		C	Corrosion of GI house service connection	3	5	15	м	Maximum customer complaints for contaminated water due to corroded service connections	No current control measures only pipe from ferrule to meter is charged on consumer's expense.	2	5	10	м
		P,M	Contamination in sump'deep pits and overhead tanks within the property	5	5	25	н	Studies have shown the prevalence of water-borne diseases	Only after an event, advise customers. There is no current control measure to manage this, existing regulation-sump should be 0.6m above ground level.	5	5	25	н
		P,M,C	Contamination due to illegal pumps causing pressure loss downstream	3	4	12	м	Insufficient data	Periodic checking and control	2	4	8	м
	House-hold Storage	P,M	Storage vessel is designed for dipping	5	5	25	н	Visual inspection during sanitary surveillance	Use of storage vessel with tap	4	5	20	н
		P,M	Using dipper with short or no handle	5	5	25	н	Visual inspection during sanitary surveillance	Use of ladle with long handle to access water	4	5	20	н
		P,M	Vessel accessible to children	4	4	16	н	Discussion with consumers during sanitary surveillance	Keep vessels at appropriate height	3	4	12	м
		М	Use pour back excess water into the storage vessel	3	4	12	м	Discussion with consumers during sanitary surveillance	In some households, excess water was not poured back into storage vessel but was used for other purposes	3	4	12	м

4. WSP Improvement Plans

As per Module No 5, the improvement plans for the hazardous events which still remain on the higher side even after the control measures installed (as observed from the Chandigarh Hazard Analysis matrix) are being suggested in the proper format as per WSP Module. The improvement plans are also suggested to further lower the risk band even if already in control. The improvement plans clearly pin point the agencies responsible to execute that improvement in a clearly mentioned time frame.

		VSP Improvement Plan (C	handigarh City)		
Process Step	Issue Identified	Improvements Required	Responsibility	Time Frame	Remarks
		BHAKRA CATCH	MENT		
	Sewage Over – flow from human habitation during monsoon period	 Proper sewage collection, treatment & disposal in catchment. No approval to habitations without proper sewage management. 	 Public Health Department of MC Chandigarh Local NGOs 	3 years	As catchment area is not under MC Chd & correspondence will be done with authorities of nearby habitations
	Human Defection	 Strictly prohibiting. Unauthorized access. Awareness programs to educate people about proper sanitary practices. 	1. Public Health Department of MC Chandigarh 2. Local NGOs	Uncertain	Awareness programs will be carried out
	Contamination due to idol immersion and other religious activities.	 Protect streams connected to reservoir in catchment. Prohibit idol immersion along with other religious activities in these streams. Awareness programs to educate people about possible Water contamination & their health effects. Provide separate dedicated pond for idol immersion. 	 Public Health Department of MC Chandigarh Local NGOs 	Uncertain	Awareness programs will be carried out
	Agricultural activities in the river bed	Agricultural activities in the river bed should be restricted	 Health & Sanitation Deptt. D.C. Morinda 	1 year	Major agricultural activities in the river bed are already restricted

WSP Improvement Plan (Chandigarh City)

www.iosrjournals.org

	Contaminants in storm water runoff during monsoon	Ensure plant cover around the reservoir	Forest Deptt.	Uncertain	
	Corrosion of screens, gates and mechanical parts	Screens, gates, & valves should be replaced &their proper cleaning & Mtc should be ensured	Public Health Deptt of MC Chd	1 year	
		RAW WATER MA			
	Increased sediment load, weeds and debris	Screens should be installed at intake & these should be properly cleaned & maintained	Public health Deptt of M.C. Chandigarh	1 year	
	Growth of Bio film	Periodic cleaning of mains should be done	Public health Deptt of M.C. Chandigarh	1 year	
	WATE	CR TREATMENT PLANT WAT	<u> </u>	2	
Inlet	Floating debris,	Inlet screens should be	Public health Deptt of		
	grass in raw water	installed to prevent debris & grass from entering at inlet	M.C. Chandigarh		
	Hydraulic overloading at Inlet chamber	New flow measuring devices should be installed and properly calibrated	Public health Deptt of M.C. Chandigarh		
	Leakage in inlet valve	Leak repair programme is needed	Public health Deptt of M.C. Chandigarh		
Pre- chlorination	Leakage in chlorine pipe leading to ineffective pre- treatment	Pipe should be repaired and chemical dosing should be monitored	Public health Deptt of M.C. Chandigarh		
PAC dosing	Under/ over dosing	Regular inspection should be done, automatic dosing system should be installed	Public health Deptt of M.C. Chandigarh		
	Mishandling of chemicals	SOP's should be followed for storage & handling of coagulant	Public health Deptt of M.C. Chandigarh		
	Algal growth in open channel	Adequate pre-chlorination should be done	Public health Deptt of M.C. Chandigarh		
Flash mixing	Mechanical failure results in improper mixing	Motor and agitator blades should be replaced	Public health Deptt of M.C. Chandigarh		
	Electrical failure	Electricity Board should ensure uninterrupted power supply to treatment plants	Public health Deptt of M.C. Chandigarh		
Sedimentation	Improper settling	Settling tank should be cleaned periodically, growth of aquatic weeds and plants should be checked	Public health Deptt of M.C. Chandigarh		
	Improper de- sludging	Periodic de-sludging should be done	Public health Deptt of M.C. Chandigarh		
Rapid sand filters	Loss of efficiency of filter media	Complete over hauling of all 12 filters & replacement of filter media	M.C. Chandigarh		
P	Inefficient backwash cycle	Well-defined pressure drop/ head loss & continuous online monitoring of pressure differential should be done. Standard operating procedures for back washing should be followed. Shut down of filters when pressure drop is less than 1.5m & turbidity standards are exceeded	M.C. Chandigarh		
Post Chlorination	Under dosing	Chlorine demand should be checked daily and flow rate should be maintained	Public health Deptt of M.C. Chandigarh		
	Electrical failure	Plant should be shut down Provision for closing inlet valves within seconds should be made	Public health Deptt of M.C. Chandigarh		
	Contamination due	U.G.R./s Daily inspection by responsible	Public health Deptt of		
	to inspection chambers not	person should be done; strict instructions to the valve	M.C. Chandigarh	6 month	
	properly covered Corrosion of ladder due to contact with	operator should be given Non-corrosive for e.g. plastic coated ladders should be used	Public health Deptt of M.C. Chandigarh	6 month	

www.iosrjournals.org

chlorine				
Security breach W/W Sec 12		Public health Deptt of M.C. Chandigarh	3 month	
	DISTRIBUTION M		-	
Contamination to ingress of for matter from perforations corroded pipe	eign limited number of joins	Public health Deptt of M.C. Chandigarh	2 years	The rehabilitation program for improvement of water distribution is in the process
Potential backf from tappings mains due to absence of back prevention dev	nto installed. flow ces	Public health Deptt of M.C. Chandigarh	3 years	
Potential backf from illegal tap into mains	aliminata illagal tannings into	M.C. Chandigarh	3 years	
Biofilm format due to lack o chlorine	monitoring of chlorine should	M.C. Chandigarh	1 year	
	CONSUMER INTE	RFACE		
Contamination open sump/deep within the prop	pits tanks by MC.	M.C. Chandigarh	3 years	
Backflow fro domestic prope due to absence check valve	m Installation of non-returning rties valves	Water Works Department M.C. Chandigarh	5 years	
Internal cros contamination f sewer lines	be as per norms & Non return valves should be fitted	Water Works Department, MC & Sanitation Deptt, M.C. Chandigarh	2 year	
Corrosion of house servic connection	evisting (i) nines by non-	1.WaterWorksDepartment,M.C.Chandigarh2. Consumers	Uncertain	As it depends on the financial status as well as willing of consumers
Digging pit out the house during pressure	low done and 24x7 supply will prevent low pressure	Water Works Department M.C. Chandigarh	6 years	
Contamination to illegal pum causing press loss downstrea	ps against those who install illegal pumps	Water Works Department M.C. Chandigarh	2 year	
Over flow of st water drain ne consumer connection	ar overflow in sewer.	1.WaterWorksDepartment,MC andHealth & SanitationDepartmentM.C.Chandigarh2.Consumer	Uncertain	As it depends on the financial status as well as willing of consumers.
	HOUSEHOLD STO			
Storage vesse designed for dip	ping using vessels with a narrow mouth and a tap	1. M.C. Chandigarh 2. Local NGOs 3. Local Media	1 Year	
Using dipper w short or no han		1. M.C. Chandigarh 2. Local NGOs 3. Local Media	1 year	
Vessel accessib children	aware of risks associated with lack of hygiene. Children should be discouraged from accessing the storage vessels.	1. M.C. Chandigarh 2. Local NGOs 3. Local Media	1 year	
Users pour ba excess water int storage vesse	o the aware about the risks of	1. M.C. Chandigarh 2. Local NGOs 3. Local Media	1 year	

www.iosrjournals.org

	practices			
Vessel is made on non-durable material	Consumers should be encouraged to use steel or plastic vessels	 M.C. Chandigarh Local NGOs Local Media 	1 year	
Handling of drinking water without washing hands	Consumers should be made aware about risks of unsanitary drinking water practices & importance of personal & domestic hygiene	1. M.C. Chandigarh 2. Local NGOs 3. Local Media	1 year	

5. Monitoring of Control Measures

As per Module No 6, the monitoring requirement and corrective actions have been described for the raw water, treatment plant, UGR and consumer interface in the prescribed format under the Module.

All the critical limits for the different parameters at designated points have been described in the format. When it will be monitored, how it will be monitored and who will monitor it has been clearly stated in the said format. What corrective actions need to be taken in case the critical limit for that particular parameter is exceeded is also shown in the format.

			RAW W	ATER		
What	Critical Limit	Where	When	How	Who	Corrective Actions in case critical limit is exceeded
pН						
,	6.0 to 9.0	At intake well of raw water body	Daily	pH meter	Chemist/Water Quality Officer	Adjust buffer dose in treatment scheme & regulate effluent discharge into water body
Total Suspended Solids (mg/L)						
	<500	At intake well of raw water body	Daily	Turbidity Analyzer	Water Quality Officer	Regular coagulant dose
		,	TREATMEN	T PLANT		
рН						
	6.0 to 9.0	Inlet	Online	pH meter	Chemist	pH adjustment
	6.5 to 7.5	At entry point to distribution system	Online	pH meter	Chemist	pH adjustment
Turbidity						
	<1000 NTU	Inlet	Batch Sample	Turbidity Analyzer	Chemist	Regulate Coagulant dose
	<10 NTU	After settler	Online	Turbidity Analyzer	Chemist	Regulate Coagulant dose
	<1 NTU	After Filter	Online	Turbidity Analyzer	Chemist	Proper filtration cycle
Chlorine						
	1.5-2.0 mg/l	At entry point to distribution system	Online	Chlorine Analyzer	Chemist	Regulate Chlorine dose
Coliform (MNP/100 ml)						
	NIL	At entry point to distribution system	Daily	MPN test	Chemist	Regulate Chlorine dose
		1	UGI	R		
Turbidity	- 10 MONTO 100 M					
	<1 NTU	At outlet of UGR	Daily	Turbidity Analyser	Water Quality Officer	Inform to treatment plant operator immediately
Residual Chlorine						
	0.5-1.0 mg/L	AT outlet of UGR	Online	Chlorine analyser	Water Quality Officer	Regulate Chlorine dose
рН	6.5 to 7.5	AT outlet of	Online	pH meter	Water Quality	pH adjustment
E LO MA		UGR			Officer	
Fecal Coliform	NIL	At outlet of UGR	Daily	MPN/ MFT test	Water Quality Officer	Regulate Chlorine dose

Monitoring Requirements & Corrective Actions

A Study of Water Safety Plan (WSP) For Environmental Risk Management of a Modern North

CONSUMER INTERFACE										
Turbidity										
	<1 NTU	At randomly selected representative consumer taps	Daily	Turbidity Analyzer	Water Quality Officer	Inform to Service Engineer at ESR immediately				
Residual										
Chlorine										
	0.2-0.5 mg/L	At randomly selected representative consumer taps	Daily	Chlorine Analyzer	Water Quality Officer	Regulate Chlorine dose				
Fecal Coliform										
	NIL	At randomly selected representative consumer taps	Daily	MPN/ MFT test	Water Quality Officer	Regulate Chlorine dose				
рН										
	6.5 to 7.5	At randomly selected representative consumer taps	Daily	pH meter	Water Quality Officer	pH adjustment				

IV. Conclusion

In the present study, the semi-quantitative risk matrix approach has been used for the development of Chandigarh Hazard analysis matrix considering the raw risks without any control measures and re-assessed risks with control measures in place. In case the re-assessed risk is still on a higher side, improvement and modification plans have also been suggested. Standard operating procedures in case critical limits of various parameters go out of control have also been developed.

The study area taken in the scope of this thesis is one of the six zones in which whole of the Chandigarh city has been divided for water supply distribution. In the present thesis, WSP has been developed for 1 zone only i.e. Pilot zone No. 2. This concept is applicable to any model city like Chandigarh. At the start, it is advisable to develop and implement the WSP in a Pilot area of the city and then depending upon its outcome / success, it can be extended to whole of the city.

The present study will also certainly be helpful in giving guidance to the WSP team selected for developing and implementing water safety plan for any other modern north Indian city like Chandigarh.

References

- Adam M. Finkel & John S. Evans (1987). Evaluating the Benefits of Uncertainty Reduction in Environmental Health Risk Management. JAPCA, Vol. 37, Issue 10, 1987, Pages 1164-1171
- [2]. Ainswarth R. ed (2004). Safe piped water: Managing microbial water quality in piped distribution systems. World Health Organization, Geneva.
- [3]. Arora H (1998). Application of particle counting to enhance water treatment operations. Voorhees, NJ, American water works service company, Inc.
- [4]. Au K-K et al. (2002). The role of oxidants on particle removal. Proceedings of the American Water Works Association Annual Conference.
- [5]. Au K-K, Le Chavallier MW (2000). Effects of oxidation on particle removal: The role of natural organic matter. Proceedings of the American Water Works Association Water Quality Technology Conference.
- [6]. AUSAID (2005). Safe water guide for the Australian and Programme 2005, A frame work and guidance for managing water quality. Published by the Australian Agency for International Development (AUSAID), Canberra.
- [7]. AWWA (1979). Committee report: Viruses in drinking water. Journal of the American water works Association.
- [8]. Bartram J, Balance R, eds. (1996). Water quality monitoring: a practical guide to the design & implementation of fresh water quality standards & monitoring programme, published on behalf of UNESCO, WHO & UNEP by E&FN Spon London.
- [9]. Bartram J et al., eds. (2003), Heterotrophic plate count measurement and drinking water safety: The significance of HPCs for water quality and human health. World Health Organization, Geneva, IWA Publishing.
- [10]. Bartram J, Corrales L, Davison A, Deere D, Drury D, Gordon B, Howard G, Reinhold A, Stevens M. (2009). Water Safety Plan Manual: step-by-step risk management for drinking-water suppliers, World Health Organization, Geneva, <u>http://www.wsportal.org/ibis/water-safety-portal/eng/ home</u>.
- [11]. Bellamy WD et al. (1993), Assessing treatment plant performance. Journal of the American water works Association.
- [12]. BGS (British Geological Survey) (2001), Assessing risk to groundwater from on-site sanitation, <u>http://bgs.uk/hydrogeology/argoss</u>.
- [13]. Black, M. (1998) Learning what works: a 20 year retrospective view on international water and sanitation cooperation, 1978-1998, UNDP-World Bank Water and Sanitation Programme, Washington.
- [14]. BPSU (2011) Bangladesh Local Government Division, National Guidelines on water safety framework in Bangladesh published by policy supply unit of Local Government Division, Ministry of Local Government, Rural Development Cooperates.
- [15]. Brinduşa Mihaela Robu, Florentina Anca Căliman, Camelia Bețianu, Maria Gavrilescu (2007), Methods & procedures for Environmental Risk Assessment, Environmental Engineering and Management Journal, Vol 6, No 6, Nov/ Dec 2007, Pages 573-592.
- [16]. Bryan JJ (1993). Hazard analysis and critical control points and their applications to the drinking water process. American water works Association water quality technology Conference. Denver, CO, American water works Association.

- Bourbigot MM, Dodin A, Lheritier R (1984), Bacteria in distribution systems, Water Research, [17]
- Cairneross (1992), S. Sanitation and water supply practical lessons from the decade, UMDA-World Bank Water & Sanitation [18]. Programme, Washington.
- [19]. Camper AK et al. (1991). Growth kinetics of Coliform under conditions relevant to drinking water distribution system. Applied and Environmental Microbiology,
- [20] Chang SL (1982), The safety of water disinfection. Annual Review of Public Health.
- [21]. Charles Vlek, Gideon Keren (1992). Behavioral decision theory & environmental risk management: Assessment & resolution of four 'survival' dilemmas. Acta Psychlogica, Vol. 80, Issues 1-3, August 1992, Pages 249-278.
- Davison A et al (2005), Water safety plans, managing drinking water quality from catchment to consumers, water sanitation and [22]. health, World Health Organization, Geneva (WHO/SDE/WSH/05.06).
- [23]. Davis EM, Casserly DM, Moore JD (1977). Bacterial relationships in storm waters, Water Resources Bulletin.
- [24]. Deb AK (2004). Guidance for management of distribution system operation and maintenance. Denver, CO, American water works Association Research Foundation and American water works Association.
- Dufour eds. (2003). Assessing Microbial safety of drinking water: Improving approaches and methods. World Health Organization [25]. and organization for Economic Cooperation and Development, IWA Publishing.
- Gerber. F (2010) An Economic Assessment of Drinking Water Safety Planning, Koror-Airai, Palau, SOPAC Technical Report 440, [26]. Published by Ocean & Icelands Programme of SOPAC (Pacific Islands Applied Aeoscienc Commission), Fiji.
- [27]. G.H. Huang, J. Xia (2001). Barriers to sustainable water-quality management, Journal of Environmental Engineering, Vol. 67, Issue 1, Jan. 2001, Page 1-23.
- [28] Goldriech EE (1996). Microbial quality of water supply in distribution systems. Boca Raton, FL, Lewis Publishers.
- [29]. Goldriech EE, Lechevallier MW (1999). Microbial water quality in distribution systems, In: Letterman RD, ed. Water quality & treatment 5th ed. Newyork, McGraw-Hill.
- Gregory R, Zabel TF, Edzwald JK (1999). Sedimentation and flotation, In: Letterman RD, ed. Water quality and treatment, [30]. Newyork, McGraw-Hill, Inc.
- Gunnarsdottir M.J., Gararsson S, M., Elliot Sigmundsdottir, G, and Bartram J (2012), Benefits of water safety plans: Microbiology, [31]. Compliance and Public Health, Environmental Science & Technology Vol 46.
- Hall T, Watts M, Egerton A (2000). SPC and risk assessment techniques to optimize water treatment for cryptosporidium removal. [32]. Proceedings of the American water works Association water quality technology Conference.
- [33]. Hambsch B, Werner P (1993). Control of bacterial regrowth in drinking water treatment plants and distribution system. Water supply
- Holf JC (1978). The relationship of turbidity to disinfection of potable water. Washington DC, United States Environmental [34]. Protection Agency.
- IS 10500:2012 Indian Standard, Drinking Water-Speciation (Second Revision), Bureau of Indian Standards, New Delhi, [35]
- [36]. Kenneth T. Bogen and Robert C. Spear (1987), Integrating Uncertainty and Inter individual Variability in Environmental Risk Assessment, Risk Analysis, Vol. 7, Issue 4, (Dec. 1987), Pages 427-436.
- [37]. Le Chevallier MW (1999). The case for maintaining a disinfectant residual. Journal of the American water works Association.
- [38]. Le Chevallier MW, Evans TM, Seilder RJ (1981). Effect of turbidity on chlorination efficiency & bacterial persistence in drinking water. Applied & Environmental Microbiology.
- [39]. Letterman RD, Amirtharajah A, O'Melia CR (1999). Coagulation and flocculation. N: Letterman RD, ed. Water quality and treatment, Newyork, McGraw Hill, Inc.
- [40]. L. Failing, R. Gregory, M. Harstone (2007), Integrating science & local knowledge in environmental risk management: A decisionfocused approach, Ecological Economics, Vol. 64, Issue 1, 15 Oct. 2007, Pages 47-60.
- [41]. Logsdon GS (1990). Microbiology and water filtration, Newyork springer Vertag.
- Logsdon GS, Hess AF, Chipps MJ (2000). Operating and monitoring pretreatment and filtration for optimized filter performance. [42]. Proceedings of the American water works Association water quality technology Conference.
- [43]. Lubka Tchankova, (Faculty of Management, Technical University of Sofia, Bulgaria) (2002). Risk identification-basic stage in risk management, Environment Management & Health, Vol. 13, Page 290-297.
- [44]. Macharia. L. (2012), Ensuring water safety in informal settlements (Nairobi KENYA), IWA Water safety Conference, Nairobi.
- [45]. Mark W Lechevallier and KWOK-Keing Au, WHO with IWA publishing, www.iwapublishing.com ISB M 92 4 156255 2 (WHO), Water treatment & Pathogen Control-Process efficiency in achieving safe drinking water.
- [46]. Mc Tigue et al. (1998). National Assessment of particle removal by filtration. Denver, CO, American water works Association Research Foundation and American water works Association.
- [47]. Ministry of Health, Newzealand (2014), Small drinking-water supplies (Water safety kit) www.health.govt.nz.
- [48]. Nabedaum DR, Chapman M, Merdan R, Rizak S. (2004), A guide to hazard identification & risk assessment for drinking water supplies Research Report 11, CRC for water quality & treatment. www.waterquality.crc.org.au/ publication_occphr_resrpts.htm.
- [49]. Robbins RW et al. (1991). Effective water shed management for surface water supplies. Denver, CO, American water works Association Research Foundation and American water works Association.
- [50]. S.J.T. Pollard, J.E. Strutt, B.H. Macgillivray, P.D. Hamilton, S.E. Hrudey (2004), Risk Analysis and Management in the Water Utility Sector: A Review of Drivers, Tools and Techniques, Process Safety and Environmental Protection, Vol. 82, Issue 6, Nov. 2004, Page 453-462.
- [51]. Steve E. Hrudey & William Leiss (2003). Risk Management & Precaution: Insights on the Cautious Use of Evidence, Environ Health Perspect 111:1577-1581 (2003).
- [52]. Susan R. Poulter (1998). Monte Carlo Simulation Environmental Risk Assessment - Science, Policy and Legal Issues. Risk: Health, Safety & Environment.
- [53] Terrence Thompson et al. (2007), Chemical safety of drinking water, Assessing priorities or Risk Management.
- Timothy O'Riordan, Steve Rayner (1991). Risk management for global environmental change. [54]
- [55]. USEPA (1991). Optimizing water treatment plant performance using the composite correction programme. Cincinnati, OH, office of Research and Development, United States Environmental Protection Agency.
- [56]. Water & Sanitation for Health Project (1998), Lessons learned from the WASH Project: ten years of water & sanitation experience in developing countries (13 years) www.WASH,virginia.
- [57]
- [58].
- Weber WJ Jr. (1972). Physiochemical process for water quality control. New York, John Wiley & Sons. WHO (2004) Guidelines for drinking-water quality 3rd ed, World Health Organization, Geneva. WHO (2006) Guidelines for drinking water quality 1st Addendum to 3rd ed, Vol. 1. Recommendations, World Health Organization. [59].

- [60]. WHO WPR (2008) Training workbook on water safety plans for urban systems published by WHO Western Pacific Region. http://www.who.int/water sanitation health/(2011/dwq guidelines/en/
- [61]. WHO (2011), Guidelines for drinking water quality; Fourth Edition http://www.who.int/water sanitation health/ (2011/dwq guidelines/en/
- [62]. <u>Wouter Poortinga</u>, Anglia <u>Linda Steg</u>, <u>Charles Vlek</u> (2003), Environmental Risk Concern and Preferences for Energy-Saving Measures, Environ Health Perspect 111 (13):1577-1581 (Oct. 2003).