Effect of Temperature on the Uptake of Na⁺, K⁺, Ca²⁺and Mg²⁺ By the Various Anatomical Parts of the Vegetable Amaranth Gangeticus

Arjun C. Bhowmick^{*1}, Umme Salma¹, Tasneem A. Siddiquee², Mohammad Russel³ and Nikhil C. Bhoumik^{*3}

¹Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh ²Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd. Nashville TN 37209, USA ³Department of Chemistry, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

Abstract: In Bangladesh, Amaranth Gangeticus L. is widely cultivated common vegetable plant especially in winter season. This study examined the effect of temperature on the distribution of major nutrient elements (Na, K, Ca & Mg) in the different anatomical parts (roots, stems and leaves) of this vegetable. The investigation was performed in the laboratory in batch system in different tubs at different salinity at four different temperatures which are considered from the average temperature change during summer and winter season in the three upazila named Sonagazi, Savar and Bashail in Bangladesh. The average temperature change was determined in air as well as different depth of soil in a sunny agriculture land of these three upazila. It was found that the average temperature change for sunny lands follows the trend Bashail > Savar > Sonagazi during summer season and reverse trend in winter season. A pot experiment was conducted to assess the effect of temperature on the uptake of mineral nutrients like Na^+ , K^+ , Ca^{2+} and Mg^{2+} by the vegetable Amaranth Gangeticus L. At four different temperatures 8°c, 25°c, 30°c and 40°c. A salinity treatment was also applied in normal growth condition without temperature controlled. It was noted that the vegetable Amaranth Gangeticus L. Very sensitive towards salinity and temperature. At 25 °c, the minerals uptake (Na, K, Ca & Mg) by Amaranth Gangeticus are higher than the rest three applied temperatures. The highest uptake levels of Na, K, Mg and Ca were obtained in the soil of Sonagazi upazila with respective values (mg/g dry weight) 33.285, 44.936, 27.207 and 45.071 at 25 °c. The levels of all the elements were highly varied in the different anatomical parts of the selected plant. Moreover, this study also finds that the soil of Sonagazi upazila is more useful to cultivate Amaranth Gangeticus than other two upazila's soil and it follows the trend Sonagazi > Savar > Bashail. Keywords: Temperature, Salinity, Nutrient, Vegetable, Analysis And Digestion.

I. Introduction

Vegetables are good source of vitamins, mineral elements, fiber and other nutrients the body requires. During evolution and cause of life, plants have developed several biochemical mechanisms that have resulted in adaptation to and tolerance of new or chemical imbalanced environments [1]. Vegetables and crops are often influenced significantly by a few weather factors for their growth and development [2]. For instance, crops that mature during autumn contain higher vitamin a than those that mature in poorer light of winter [3]. During the rainy season, when temperature is normal it is the distribution of rain fall that becomes important. In the dry season temperature and water-use requirements of individual plant becomes paramount [4]. Seasonal changes in concentration of nutrients result mainly from movement of nutrients into component during growth and the reverse process when senescence approached although individual nutrients differ in their mobilities. These changes are most evident in photosynthetic tissues such as leaves. Translocation affects N, P and K in particular whilst the less mobile elements such as ca tend to be retained and even increased in apparent concentration as the leaf becomes older though changes of this nature vary from species to species [5]. Certain elements are considered as especially desirable for successful crop growth. If they are lacking or improperly balanced, normal development does not occur. Of the eleven essential elements (nitrogen, phosphorus, potassium, calcium, magnesium, sulphur, iron, manganese, boron, copper and zinc) obtained from the soil by plants, six are used in relatively large quantities and consequently are receiving major attention [6]. They are magnesium, phosphorus, potassium, calcium, nitrogen and sulphur. Because they are used by plants in relatively large amounts they are sometimes designated for convenience as the primary elements [6]. Plant growth may be retarded because these elements are actually lacking in the soil, because they become available too slowly, or because they are not adequately balanced by other nutrients. Sometimes all three of these limitations are operative particularly with respect to nitrogen [6]. On the other hand, salinity is a factor which directly affects the plant growth through its

Interaction with metabolic rates and pathways within the plants. It affects plant growth at all stages of the development. It is noted that the sensitivity to salinity varies from one growing stage to another. Adverse effects of salt stress on germination, seedling growth as well as some physiological activities of a number of cultivated plant species have been extensively investigated [7-9]. The influence of salinity and mineral nutrient added to the nutrient solution, on productivity, photosynthesis and growth has been studied in different plants [10-14]. Saghir et al. [15] reported that salinity increases Na⁺ and Cl⁻ and decreases K⁺, Ca²⁺ and Mg²⁺ in leaves of cotton. Chavan et al. [16] found that NaCl and Na₂SO₄ caused accumulation of Na, P, Fe and Mn in root, stem, leaf and gynophores whereas K uptake was hampered by both salts and Ca uptake were retarded mainly by Na₂SO₄. Nevertheless, nutrient supply is not uniform down the soil profile and crop plants differ in their ability to obtain nutrients from different soil profiles [17]. Several investigations indicated that salinity affects metabolic processes and induces irreversible physiological disorders [18]. Salinity is creating problem for growing vegetables in many area of Bangladesh. However, heavy rain fall usually happens in Bangladesh from June–October. Average temperature of about 40°c is observed in the months of March-May, while cold weather December-February with temperature as low as 4°c depending on district position. Amaranth gangeticus L. Is a very common vegetable plant in all areas of Bangaldesh. It is cultivated widely specially in winter season. Now a day, it has been cultivated throughout the all season. But winter seasonal *amaranth gangeticus* l. Vegetable is more tasteful than that of other seasonal. Tunde et al. [3] also reported that there is some seasonal variation in the availability of many vegetables. Since, vegetable like amaranth gangeticus L. Is very essential component of human diet, the need for their availability throughout the year become necessary. This has led to the cultivation of this vegetable in optimum temperature condition for better taste and production. Moreover, this vegetable can grow in varied types of soil such as sandy loam to clay and also tolerate moderate acidic and saline soils. Amaranth gangeticus L. Is a quick growing leafy vegetable. Bashail, Savar, Sonagazi are the three upazila (subdistrict) in Bangladesh. The average temperature change of the agriculture land of these three upazila is very different during both in summer and winter season. The salinity of soil of these lands is also different. In this study, the average temperatures of these three areas are determined during summer season and winter season. Moreover, because *amaranth gangeticus* L. Can grow in varied type of soil and tolerate moderate temperature, our present research interest has also tried to investigate the cause why winter seasonal amaranth gangeticus L. Is more tasteful than summer season of it. Data on the effect of seasonal variation on the nutrient contents of the selected vegetable from the above three areas is limited. In view of this, the present study was tried to determine the uptake value of mineral nutrients (Na⁺, K⁺, Ca²⁺ and Mg²⁺) by plant, *amaranth gangeticus* with or without temperature controlled of soil as well as atmosphere and investigate the effect of temperature on the mineral nutrients uptake at different anatomical parts (leaves, stems, roots) of the above selected plant. This mineral nutrients uptake observation was performed in the laboratory by considering filed data of average temperature. This investigation also finds which agriculture soil land of the selected three upazila is best.

II. Materials and Methods

2.1 Determination of soil temperature:

By using the thermometer we measured the soil temperature in 1.5cm depth, 15cm depth and 30cm depth. Digging soil we inserted the thermometer and kept 30 min for each reading to collect steady temperature. We took temperature in the morning (8.30am), noon (2.30pm) and evening (6.40pm) from the sunny agriculture land of each Upazila (sub-district) named Bashail, Savar, Sonagazi during both summer season and winter season. We also took temperature from shaded area where sunlight can be entered never.

2.2 Soil Sample Collection and Analysis:

The soils are collected from the three selected upazila's sunny agriculture land in the same day within the time period between summer season end and winter season beginning. The soils were stored into 45 (15x3) tubs of 3 batches labeled for three upazila. Some soils were stored separately for soil analysis. The soil ph determination was at a ratio of 1:1 with distilled water. Exchangeable cations (Ca^{2+} , Mg^{2+} , K^+ and Na^+) were extracted with 1M NH₄-acetate at ph 7. The Na⁺, K^+ , Ca^{2+} and Mg^{2+} were determined with with AAS [19] Fasina et al., 2005; Badora and Filipek, 1998; Wilcke et al., 1998). The soil samples were prepared for trace metal analysis by refluxing 1.0 g of air dried sample with 10 cm³ of HNO₃ for 45 min. Heating was continued with 10 cm³ of aqua-regia and finally with 10 cm³ HNO₃. The filtrates were diluted to the marks of 50 cm³ volumetric flasks and the determinations were carried using AAS [20] (Uba and Uzairu, 2008).

2.3 Plant material, culture conditions and vegetable sample collection:

This experiment was conducted at Wazed Miah Science Research Center, Jahangirnagar University, Savar, Dhaka, Bangladesh from April to June, 2012. Amaranth Gangeticus seeds were collected from local

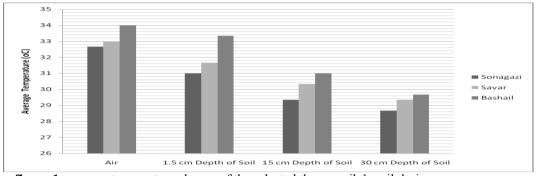
market. Then, the fresh seeds were germinated in the 45 (15x3) heat transferable tubs which are filled with soil collected from the selected three upazilas. The tubs were kept under normal conditions, $24\pm4^{\circ}c$ for several days. After 6 weeks, lovely teenage plants were found in each tub. Plants were irrigated with distilled water solution at each watering using an irrigation system. When the plants grew up to 10 cm in height then we started experiment upon them. An artificial saline water was prepared by dissolving approximate amount of nacl, kcl, MgSo₄ and CaSO₄ ($P^{H} = 6.48$ at 28.6°c). In each tub only 5 plants were kept and others were discarded. The saline water was applied with soils of 12 tubs of each batch keeping intake of other three tubs of the batch. We divided the plants of each batch (labeled by the name of upazila) in four groups - 1st group contain plants under normal growth conditions without saline water treatment and temperature controlled (room temperature); 2nd, 3rd, 4th and 5th group contain plants that were treated with prepared saline water with temperature maintained of soil as well as atmosphere around 8°c, 25°c, 30°c and 40°c respectively. Therefore, 12 tubs of each batch were subjected to salinity treatment twice (at 10:00 AM & 3:00 PM) every day until water drained from the bottom of the tub. The remaining plants of other three tubs of each batch were treated with normal distilled water. Each treatment was applied to three replicates located randomly in order to avoid positional effects. Three plants per treatment were collected for analysis at two weeks after salinity and temperature treatment. We collected root, stems and leaves from each vegetable plant. Before collecting sample all the plant parts were washed out with normal water and finally with deionized water and then, transferred to the laboratory where they were spread on polyethylene sheets until dried. After air-drying, roots were again rinsed with deionized water, re-dried and homogenized, the plant sample were sieved using 200 mm mesh. The sieved sample dried again in an oven at 65°C for 48 h and then weighed [21].

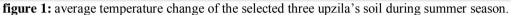
2.4 Plant *sample treatment*:

To determine the mineral concentrations of Na⁺, K⁺, Ca²⁺, Mg²⁺ the oven dried samples of vegetables were first ground into a fine powder using a vibratory mill and passed through a 1 mm mesh. Then the samples were digested by taking 600 mg of each oven dried powder sample into a separate 100 cm³ quick fitted round bottom flasks (Pyrex, Germany), 30 cm³ of 69.5% (w/w) HNO₃ were added to each of the flasks and heated until about 10 cm³ of each of the solution remained. Then the flaks were followed with the addition of 2 cm³ of 60% HClO₄ acid, 10 cm³ of 69.5% (w/w) HNO₃ and 1 cm³ of 98% (w/w) H₂SO₄. The mixtures were further heated in a fume cupboard until the appearance of white fumes. The resulting solutions after cooling were filtered into separate 100cm³ volumetric flasks and then diluted to the mark with de-ionized water [22]. Sodium, potassium, magnesium and calcium were analyzed in the samples using a flame atomic absorption spectrophotometer (AA-7000, Shimadzu Corporation, Japan). All the standard solutions (1000ppm) with certificates were purchased from Kanto Chemical Co., Japan. The background correction was done by the D_2 lamp method. Analyses were made in triplicate. The detection limits of all the elements were determined before sample solutions were analysed [23]. The detection limits were Na (0.001 ppm), K (0.005 ppm), Mg (0.001 ppm) and Ca (0.02 ppm) (all for aqueous solutions). The optimum analytical range was 0.5 to 5 absorbance units with coefficient of variation of 0.05-0.40%. Determination were made on dry weight basis for all samples. The measuring conditions of Na, K, Ca and Mg metal ions are as follows:

<u>Na:</u> Burner height: 7 mm; wave length: 589.0 nm; burner angle: 0 deg; slit width: 0.2 nm; acetylene fuel gas flow: 1.8 l/min; lighting mode: hcl; type of oxidant: air.

A five points calibration curve is also made with 0, 0.1ppm, 0.2ppm, 0.3ppm, 0.4ppm standard solutions prepared from certified 1000ppm standard solution.


K: Burner height : 7 mm; Wave length: 766.5 nm; Burner angle: 0 deg; Slit width: 0.5 nm; Acetylene fuel gas flow: 2.0 l/min; Lighting mode: HCl; Type of oxidant: air.


A Five points calibration curve is also made with 0, 0.1ppm, 0.2ppm, 0.4ppm, 0.8ppm standard solutions prepared from certified 1000ppm standard solution. Moreover, same volume of 0.1 to 0.2% cesium chloride is added to the standard and unknown sample to prevent the ionization of potassium. Ca:Burner height: 17 mm; Wave length: 422.7 nm; Burner angle: 0 deg; Slit width: 0.5 nm; Fuel gas flow: 6.5 l/min; Lighting mode: BGC-D₂; Type of oxidant: N₂O.

A five points calibration curve is made with 0, 0.1ppm, 0.2ppm, 0.4ppm, 0.6ppm standard solutions prepared from certified 1000ppm standard solution. Negative interference, due to coexist substances in the Air- C_2H_2 flame, is removed by using the N₂O- C_2H_2 flame. However, it is ionized and 0.1 to 0.2% potassium chloride is added to the standard and unknown sample with same extent.

<u>Mg:</u>Burner height: 7 mm; Wave length: 285.2 nm; Burner angle: 0 deg; Slit width: 0.5 nm; Fuel gas flow: 1.8 l/min; Lighting mode: BGC-D₂; Type of oxidant: air. A five points calibration curve is also made with 0, 0.1ppm, 0.2ppm, 0.4ppm, 0.8ppm standard solutions prepared from certified 1000ppm standard solution. Moreover, a negative interference is found if P, Al, Ti and Si are put in the form of an oxyacid, and coexist in

the same or more quantity than Mg. For this, the interference is retrained by the addition of 0.1% strontium chloride to the standard and unknown sample.

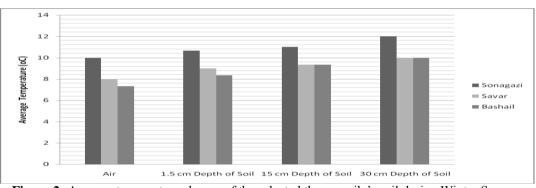


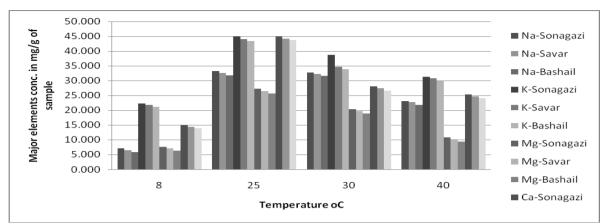
Figure 2: Average temperature change of the selected three upzila's soil during Winter Season.

III. Results And Discussion

At present time due to climate change temperature is rising all over the world. Bangladesh is also facing such problem. Moreover due to Storm, Cyclone and Flood saline water is entering cultivable land. So it is hampering the production of various Vegetables. Moreover vegetables are more sensitive towards saline water. Temperature has an effect upon uptake of macro nutrient from saline water. There have been several excellent treatments of soil temperature effects on root growth and related processes [24-28]. Hence, we measure the soil temperatures of the three agriculture lands of the three selected upazila (Sonagazi, Savar, Bashail) of Bangladesh during summer season and winter season in various depth of soil and compare the values in Figure 1&2. It was found the average temperature change trend is Bashail > Savar > Sonagazi during summer season and it follows reverse trend during winter season. So, from Figure 1& 2, we took 8°c, 25°c, 30°c and 40°c as our treated temperatures for soil in the tub as well as atmosphere in the laboratory for doing experimental works. Table 1 presents the ph and the available and exchangeable forms of the macro elements (Na^+ , K^+ , Mg^{2+} and Ca^{2+}) in the soils of the selected three upazila. The availability of elements to plants is influenced by various soil factors among which according to literature data is soil reaction which is observed to occur at ph below 4.2 [29]. The ph range observed in the soils is almost neutral. The cations concentration (Na⁺, K⁺, Mg²⁺ and Ca²⁺) are higher in Sonagazi upazila than the other two upazila. So, the soil of Sonagazi contains higher value of major nutrients for plants compare to other two upazilas.

Table 2 shows the major elements uptake by different parts of plant, *Amaranth Gangeticus* in the selected three upazila's soil without temperature controlled (in normal condition) and saline water treatment. The average uptake values of major elements by the three anatomical parts of *Amaranth Gangeticus* are higher in the soil of Sonagazi (Na = 31.635 mg/g, K = 43.244 mg/g, Mg = 25.537 mg/g and Ca = 43.349 mg/g) than those of other two upazila's soil. Although stems has the highest value for Ca for all upazila's soil, the leaves generally have the highest levels of Na and Mg is consistently the least value in the stems of *Amaranth Gangeticus* whereas K shows consistently the high value in roots for all three upazila's soil.

Table-1: pH and available cation concentration in the selected upazila's soils


Table-1: pri and available cation concentration in the selected upazita's sons								
Name of	Sample	pН	$Na^+(mg/g)$	$K^+(mg/g)$	$Mg^{2+}(mg/g)$	$Ca^{2+}(mg/g)$		
Upazila	ID							

	SN-1	7.31	0.025	0.064	0.048	0.036
	SN-2	7.28	0.024	0.069	0.046	0.039
Sonagazi	SN-3	7.29	0.025	0.073	0.047	0.037
	SN-	7.29	0.025	0.068	0.047	0.037
	Mean					
	Value					
	SD	0.02	0.000	0.005	0.001	0.002
	RSD	0.21	1.704	6.615	2.296	4.487
	SV-1	6.71	0.024	0.059	0.035	0.025
	SV-2	6.65	0.024	0.060	0.032	0.029
Savar	SV-3	6.69	0.023	0.059	0.037	0.028
	SV-	6.68	0.024	0.059	0.035	0.028
	Mean					
	Value					
	SD	0.03	0.001	0.001	0.003	0.001
	RSD	0.46	2.157	1.415	7.700	0.696
	BS-1	6.69	0.022	0.042	0.038	0.028
	BS-2	6.55	0.023	0.042	0.039	0.027
Bashail	BS-3	6.61	0.021	0.040	0.038	0.029
	BS-	6.62	0.022	0.041	0.038	0.028
	Mean					
	Value					
	SD	0.07	0.001	0.001	0.001	0.001
	RSD	1.06	3.053	2.589	2.192	3.398

Effect of temperature on the uptake of Na^+ , K^+ , Ca^{2+} and Mg^{2+} by the various anatomical parts

SD= Standard deviation, RSD= Relative standard deviation

Table 3, Table 4 and Table 5 show the major elements (Na, K, Mg & Ca) concentration uptake by different parts of plant, Amaranth Gangeticus in the selected three upazila's soil respectively after temperature controlled saline water treatment. In roots, the trend of element concentration is K>Ca>Na>Mg for all applied temperatures. In stems, the trend is K>Ca>Na>Mg at 40°C & 30°C, K>Ca>Mg>Na at 8°C and Ca>K>Na>Mg at 25°C. But, for leaves no such correlation can be made among the temperatures, only Na has the higher concentration than other nutrients (K, Ca & Mg) for the temperatures 40°C, 30°C and 25°C but it has the least value at 8°C. These results are comparable to Ado-Ekiti samples for Lycopersicon esculentum & Hibiscus esculentus [30]. Moreover, table-3, 4 & 5 also illustrate that the highest uptake of mineral nutrients (Na, k, Mg & Ca) happens at 25°C in all different anatomical parts (roots, stems & leaves) but, beyond or less this temperature (25°C), the uptake value becomes lower. On comparative basis, the concentration of K in different parts of the selected plant follows the trend stems > roots > leaves for all upazila's soil for all temperatures. Similarly, the trend is leaves > stems > roots for Na & Mg and roots > stems > leaves for Ca. However, Figure-3 shows that there is tremendous effect of temperature on the major mineral nutrients (Na, K, Mg & Ca) uptake by plants. We find that the average major mineral nutrients uptake by the plant (Amaranth Gangeticus) is increased from 8°C to 25°C temperature but, after that, it is gradually decreased from 30°C to 40°C temperature for all upazila's soil. It has the highest value at 25°C and least value at 8°C for all upazila's soil. The highest values of Na, K, Mg & Ca are 33.285 mg/g, 44.936 mg/g, 27.207 mg/g, 45.071 mg/g respectively in Sonagazi upazila's soil at 25°C but the values are decreased from Savar to Bashail upazila's soil at same temperature. The least values of Na, K, Mg & Ca are 5.846 mg/g, 21.073 mg/g, 6.320 mg/g and 13.922 mg/g respectively in Bashail upazila's soil at 8°C. So, too high or too low temperature of soil causes lower mineral nutrients uptake by plant. This is happened because soil temperature influences plant nutrient uptake through effects on soil water, rates of chemical reactions, and nutrient transport [31]. Since most chemical reactions and nutrient transport occur in water, how soil water is affected by soil temperature directly impacts nutrient uptake. It has been estimated that only 1 % of the nutrients reaching the surface of plant root systems is due to direct interception, while the remainder is transported to the roots by mass flow (transpiration and hydrodynamic dispersion) and diffusion [32], although interception may be much more important for immobile nutrients such as P [33]. The most obvious effect of soil temperature on soil water is increased rates and depth of evaporation with increasing soil temperature, especially in situations where the supply of water may be limited. The high temperature of soil causes dryness of soil which not only does prevent mass flow and diffusion of nutrients, but it may also lead to increased mechanical impedance to root growth [34], thereby limiting nutrient interception. Hence, in this study, we have lower value of mineral nutrients uptake by plant at 40°C for all upazila's soil.

Figure 3: comparative study of major nutrients uptake by the plant, by *a. gangeticus* in selected three upazila's soil with varying temperature [na- sonagazi means concentration of na in sonagazi upazila's soil and similar meaning for others just varying metal name and soil location]

Again, Soil temperature has a significant effect on the viscosity of water. The viscosity of water is inversely related to its temperature in a nearly linear fashion ($r^2=0.94$) over the range of temperatures experienced in soil in ecosystems around the world (0 to ~70 °C), from 1.15 x 10^{-3} to 0.41 x 10^{-3} N s m⁻² [35]. The increased viscosity at low temperatures is known to decrease rates of water uptake by roots and transport within the plant [36-38], and therefore reduces the rate of nutrient transport to the plants via roots in mass flow. Similarly, the transport of nutrient ions from areas of high to low concentration by the process of diffusion is directly influenced by soil temperature. Therefore, this study also has lower value of mineral nutrients uptake by the selected plant at 8°C for all upazila's soil. Moreover, all chemical reactions that occur in soil, including mineral weathering [39], biologically mediated nitrogen transformations [40], and most reactions involving nutrient ions in soil solution [41], are strongly influenced by temperature. Concentrations of Ca^{2+} , Mg^{2+} , Na^+ , and K^{+} are decreased with increasing soil temperature, however, indicating that it cannot be assumed that all ions respond equally in all anatomical parts of plant. Temperature can alter specific rates of ion uptake in different anatomical parts of plant, root respiration, cell membrane permeability and rates of transport in the xylem. However, the mechanism for increased nutrient uptake in different anatomical parts of the selected plant with rising soil temperature is not well understood and this study cannot make generalizations about the multiple, interacting processes.

Zone	Plant Part	Sample ID	Element						
			Na (mg/g)	K (mg/g)	Mg (mg/g)	Ca (mg/g)			
		SVW-1	22.188	41.026	21.860	69.777			
		SVW-2	22.222	41.031	21.871	69.761			
	Roots	SVW-3	22.258	41.006	21.878	69.817			
		Mean Value	22.223	41.021	21.869	69.785			
		SD	0.035	0.014	0.009	0.029			
		RSD	0.158	0.033	0.041	0.041			
	Stems	SVW-4	28.113	54.515	14.832	34.480			
G		SVW-5	28.025	54.592	14.778	34.462			
Savar		SVW-6	27.908	54.581	14.824	34.345			
Upazila		Mean Value	28.016	54.563	14.811	34.429			
		SD	0.103	0.042	0.029	0.073			
		RSD	0.367	0.077	0.198	0.213			
		SVW-7	42.675	29.814	37.704	23.967			
		SVW-8	42.725	29.799	37.717	23.962			
	Leaves	SVW-9	42.805	29.796	37.750	23.943			
		Mean Value	42.736	29.803	37.724	23.957			
		SD	0.067	0.009	0.024	0.013			
		RSD	0.158	0.032	0.064	0.054			
	Average u	ptake value by plant, A.	30.992	41.799	24.801	42.724			

 Table-2: Major elements (Na, K, Mg & Ca) concentration without temperature control (in normal condition)

Sonaga zi UpazilaRootsStemsI LeavesLeavesI RootsAverage up RootsI LeavesBashail UpazilaStemsStemsI LeavesLeavesI LeavesBashail UpazilaI LeavesLeavesI LeavesLeavesI Leaves	Gangeticus				
Sonaga zi Upazila Stems Leaves Average up Roots Stems	SNW-1	22.944	43.672	22.538	70.335
Sonaga zi Upazila Stems Leaves Average up Roots Stems	SNW-2	22.835	43.678	22.506	70.647
zi Upazila Stems Leaves Average up Roots Stems	SNW-3	22.927	43.680	22.507	70.650
zi Upazila Stems Leaves Average up Roots Stems	Mean Value	22.902	43.677	22.517	70.544
zi Upazila Stems Leaves Average up Roots Stems	SD	0.059	0.004	0.019	0.181
Upazila Stems Leaves Average up Bashail Upazila Stems	RSD	0.255	0.009	0.083	0.256
Stems	SNW-4	28.778	55.870	15.666	34.963
Bashail Upazila Stems	SNW-5	28.760	55.509	15.653	34.944
Bashail Upazila Stems	SNW-6	28.759	54.989	15.609	34.927
Bashail Upazila Stems	Mean Value	28.766	55.456	15.643	34.945
Bashail Upazila Stems	SD	0.010	0.443	0.030	0.018
Bashail Upazila Stems	RSD	0.036	0.799	0.190	0.052
Bashail Upazila Stems	SNW-7	43.180	30.611	38.462	24.592
Bashail Upazila Stems	SNW-8	43.268	30.583	38.463	24.506
Bashail Upazila Stems	SNW-9	43.262	30.601	38.434	24.581
Bashail Upazila Stems	Mean Value	43.237	30.598	38.453	24.506
Bashail Upazila Stems	SD	0.049	0.014	0.016	0.047
Bashail Upazila Stems	RSD	0.114	0.046	0.042	0.192
Bashail Upazila Stems	otake value by plant, A.	31.635	43.244	25.537	43.349
Bashail Upazila Stems	Gangeticus				
Bashail Upazila Stems	BSW-1	21.352	42.244	21.076	69.393
Bashail Upazila Stems	BSW-2	21.371	42.242	21.064	69.384
Upazila	BSW-3	21.384	42.248	21.074	69.385
Upazila	Mean Value	21.369	42.245	21.071	69.387
Upazila	SD	0.016	0.003	0.007	0.005
Stems	RSD	0.075	0.007	0.031	0.007
	BSW-4	27.192	53.680	13.361	33.944
	BSW-5	27.275	53.678	13.371	33.961
Leaves	BSW-6	27.360	53.680	13.363	33.949
Leaves	Mean Value	27.276	53.679	13.365	33.951
Leaves	SD	0.084	0.001	0.005	0.009
Leaves	RSD	0.308	0.002	0.039	0.026
Leaves	BSW-7	41.842	28.980	36.908	23.259
Leaves	BSW-8	42.166	28.845	36.898	23.276
	BSW-9	41.981	28.852	36.925	23.248
	Mean Value	41.996	28.892	36.909	23.261
	SD	0.163	0.076	0.015	0.014
	RSD	0.387	0.264	0.041	0.060
Average upt Gangeticus	ake value by plant, A.	30.214	41.605	23.782	42.200

Effect of temperature on the uptake of Na^+ , K^+ , Ca^{2+} and Mg^{2+} by the various anatomical parts

Table-3: Major elements (Na, K, Mg & Ca) concentration after temperature treatment on Sonagazi Upazila soil

Zone	Tempe	Plant Part	Sample ID	Element			
	rature			Na (mg/g)	K (mg/g)	Mg (mg/g)	Ca (mg/g)
	(°C)						
			A1-1	20.432	28.607	7.352	27.074
			A1-2	20.170	28.601	7.430	27.006
		Roots	A1-3	19.668	28.606	7.427	27.081
			Mean Value	20.090	28.605	7.403	27.054
	40		SD	0.388	0.003	0.044	0.041
			A4-1	22.795	40.347	8.509	25.610
			A4-2	22.292	40.444	8.504	25.634
		Stems	A4-3	22.302	40.426	8.509	25.614

						<u> </u>	
			Mean Value	22.463	40.406	8.507	25.619
			SD	0.288	0.052	0.003	0.013
			A7-1	26.574	24.722	16.302	23.285
		T	A7-2	26.581	24.669	16.298	23.315
		Leaves	A7-3	26.551	24.676	16.301	23.317
			Mean Value	26.568	24.689	16.300	23.305
			SD	0.016	0.029	0.002	0.018
			ptake value by A.	23.040	31.233	10.737	25.326
-		Gangeticu	A8-1	23.610	38.172	15.161	32.482
			A8-1 A8-2	23.592	38.172	15.161	32.482
Sonagaz		Roots	A8-2 A8-3	23.592	38.702	15.148	32.480
i		Roots	Mean Value	23.595	38.702	15.160	32.403
Upazila			SD	0.010	0.009	0.007	0.009
			A9-1	28.169	45.944	21.822	27.713
	30		A9-1 A9-2	28.109	45.944	21.822	27.713
	20	Stems	A9-2 A9-3	26.838	45.901	21.757	27.822
			Mean Value	27.726	45.946	21.739	27.783
			SD	0.769	0.046	0.044	0.060
			A10-1	47.129	31.601	24.132	24.132
		Leaves	A10-1 A10-2	47.129	31.611	24.132	24.132
			A10-2 A10-3	47.169	31.701	24.120	24.110
			Mean Value	47.136	31.638	24.142	24.130
			SD	0.029	0.055	0.008	0.009
		A					
		Gangeticu	ptake value by A.	32.820	38.765	20.354	28.128
-		Gungeneu	A2-1	24.592	45.339	17.194	72.314
			A2-2	24.600	45.469	17.259	72.296
		Roots	A2-3	24.669	45.499	17.169	72.318
			Mean Value	24.620	45.435	17.207	72.309
			SD	0.042	0.085	0.046	0.012
		Stems	A5-1	30.443	57.169	24.259	36.552
			A5-2	30.444	57.176	24.205	36.647
	25		A5-3	30.451	57.177	24.335	36.633
			Mean Value	30.446	57.174	24.266	36.611
			SD	0.004	0.005	0.065	0.051
			A6-1	44.843	32.172	40.165	26.314
			A6-2	44.680	32.170	40.147	26.278
		Leaves	A6-3	44.847	32.259	40.131	26.285
			Mean Value	44.790	32.200	40.148	26.292
			SD	0.095	0.051	0.017	0.019
			ptake value by A.	33.285	44.936	27.207	45.071
F		Gangeticus		4 400	01.000	4.000	10.007
			A3-1	4.428	21.900	4.006	18.295
		Deete	A3-2	4.432	21.669	3.983	18.278
		Roots	A3-3	4.502	21.670	3.992	18.504
			Mean Value	4.454	21.746	3.994	18.359
			SD	0.042	0.133	0.011	0.126
	8		A11-1	5.555	25.853	8.422	13.669
	0	C.	A11-2	53563	26.002	8.384	13.650
		Stems	A11-3	5.554	25.965	8.390	13.647
			Mean Value	5.557	25.940	8.398	13.655
			SD	0.004	0.077	0.021	0.012
			A12-1	11.087	19.169	10.258	13.074
			A12-2	11.118	19.177	10.172	12.962
		Leaves	A12-3	11.110	19.150	10.240	12.961

Effect of temperature on the uptake of Na^+ , K^+ , Ca^{2+} and Mg^{2+} by the various anatomical parts

Effect of temperature on the uptake of Na^+ , K^+ , Ca^{2+} and Mg^{2+} by the various anatomical parts

	Gangeticus					
	Average up	Average uptake value by A.		22.284	7.538	15.004
		SD	0.016	0.014	0.046	0.065
		Mean Value	11.105	19.165	10.223	12.999

Table-4	: Major eleme	nts (Na, K, Mg &	& Ca) concentration	on after temperature treatment on Savar Upazila soil
Zone	Temperatur	Plant Part	Sample ID	Element

Zone	Temperatur	Plant Part	Sample ID	Element			
	e (°C)			Na (mg/g)	K (mg/g)	Mg (mg/g)	Ca
							(mg/g)
			A1-1	19.762	28.107	6.765	26.570
		Roots	A1-2	19.918	27.825	6.765	26.574
			A1-3	19.668	28.098	6.752	26.609
			Mean Value	19.783	28.010	6.761	26.584
	40		SD	0.126	0.160	0.008	0.021
			A4-1	22.295	39.935	7.923	24.899
			A4-2	22.292	40.015	7.982	24.872
		Stems	A4-3	22.302	39.925	7.942	24.825
			Mean Value	22.296	39.958	7.949	24.865
			SD	0.005	0.049	0.030	0.037
			A7-1	26.077	24.285	15.802	22.829
			A7-2	26.017	24.185	15.788	22.802
		Leaves	A7-3	25.929	24.353	15.808	22.820
			Mean Value	26.007	24.274	15.800	22.817
			SD	0.075	0.085	0.010	0.014
		Average upta	ke value by A.				
		Gangeticus		22.695	30.748	10.170	24.755
			A8-1	22.903	34.718	14.426	31.982
Savar		Roots	A8-2	22.838	34.715	14.318	31.935
Upazil			A8-3	22.685	34.702	14.410	31.930
a			Mean Value	22.809	34.712	14.385	31.949
			SD	0.112	0.009	0.058	0.028
			A9-1	27.530	41.948	21.155	27.047
	30		A9-2	27.692	41.792	21.070	27.037
		Stems	A9-3	27.537	41.943	21.092	26.989
			Mean Value	27.586	41.894	21.106	27.024
			SD	0.091	0.089	0.044	0.031
		Leaves	A10-1	46.378	27.605	23.465	23.465
			A10-2	46.318	27.613	23.407	23.444
			A10-3	46.385	27.618	23.442	23.454
			Mean Value	46.361	27.612	23.438	23.454
			SD	0.037	0.007	0.029	0.011
		Average upta	ke value by A.				
		Gangeticus		32.252	34.739	19.643	27.476
			A2-1	23.852	44.353	16.348	71.622
			A2-2	23.905	44.378	16.360	71.592
		Roots	A2-3	23.875	44.505	16.443	71.558
			Mean Value	23.877	44.412	16.384	71.591
			SD	0.027	0.081	0.052	0.032
			A5-1	29.680	56.233	23.505	35.887
	2-		A5-2	29.692	56.335	23.528	35.884
	25	Stems	A5-3	29.608	56.275	23.372	35.881
			Mean Value	29.660	56.281	23.468	35.884
			SD	0.045	0.051	0.085	0.003
			A6-1	44.342	31.458	39.357	25.535
			A6-2	44.392	31.468	39.362	25.137
		Leaves	A6-3	44.327	31.480	39.370	24.102
	•	•			•	•	•

[]						
		Mean Value	44.353	31.469	39.363	24.924
		SD	0.034	0.011	0.007	0.740
	Average upt	ake value by A.				
	Gangeticus		32.630	44.054	26.405	44.133
		A3-1	3.920	21.405	3.339	17.735
		A3-2	3.952	20.990	3.355	17.818
	Roots	A3-3	3.947	20.980	3.370	17.813
		Mean Value	3.940	21.125	3.355	17.789
		SD	0.017	0.242	0.016	0.047
		A11-1	5.039	25.353	7.923	13.039
8		A11-2	5.062	25.192	7.982	13.020
	Stems	A11-3	5.048	25.872	7.942	13.050
		Mean Value	5.050	25.472	7.949	13.036
		SD	0.011	0.355	0.030	0.015
		A12-1	10.587	18.683	9.796	12.407
		A12-2	10.618	18.600	9.769	12.382
	Leaves	A12-3	10.597	19.250	9.814	12.435
		Mean Value	10.601	18.844	9.793	12.408
		SD	0.016	0.354	0.022	0.027
	Average upt	ake value by A.				
	Gangeticus	·	6.530	21.814	7.032	14.411

Effect of temperature on the uptake of Na^+ , K^+ , Ca^{2+} and Mg^{2+} by the various anatomical parts

Table-5: Major elements (Na, K, Mg & Ca) concentration after temperature treatment on Bashail Upazila soil

Zone	Temperature	Plant Part	Sample ID	1	Eleme		1
	(°C)			Na (mg/g)	K (mg/g)	Mg (mg/g)	Ca
							(mg/g)
			A1-1	18.835	27.169	6.099	25.907
			A1-2	19.003	27.148	6.092	25.898
		Roots	A1-3	18.991	27.167	6.075	25.944
			Mean Value	18.943	27.161	6.088	25.916
	40		SD	0.094	0.011	0.012	0.024
			A4-1	21.259	38.999	6.923	24.092
			A4-2	21.335	38.925	6.926	24.038
		Stems	A4-3	21.334	39.002	6.907	24.142
			Mean Value	21.309	38.975	6.919	24.091
			SD	0.044	0.043	0.010	0.052
			A7-1	25.167	23.353	15.136	21.843
		Leaves	A7-2	25.204	23.353	15.129	21.978
			A7-3	25.176	23.334	15.115	21.987
			Mean Value	25.182	23.347	15.126	21.936
			SD	0.019	0.011	0.011	0.081
		Average uptak	ke value by A.				
		Gangeticus		21.811	29.828	9.378	23.981
	Roots		A8-1	22.240	33.882	13.676	31.110
Bashail			A8-2	22.135	33.871	13.643	31.097
Upazila		Roots	A8-3	22.142	33.870	13.652	31.046
-			Mean Value	22.172	33.874	13.657	31.084
			SD	0.059	0.007	0.017	0.034
	20		A9-1	26.723	41.129	20.223	26.191
	30		A9-2	26.850	41.126	20.240	26.259
		Stems	A9-3	26.848	41.115	20.277	26.248
			Mean Value	26.807	41.123	20.247	26.233
			SD	0.073	0.007	0.027	0.037
			A10-1	45.648	26.819	22.796	22.647
			A10-2	45.643	26.814	22.802	22.648
		Leaves	A10-3	45.631	26.817	22.793	22.676
			Mean Value	45.640	26.816	22.797	22.657
			SD	0.008	0.003	0.004	0.016
		Average uptal	ke value by A.				
		Gangeticus		31.540	33.938	18.900	26.658

www.iosrjournals.org

[1	A2-1	23.019	43.848	15.509	70.925
		A2-1 A2-2	23.019	43.848	15.509	70.925
	Roots	A2-2 A2-3	23.058	43.841	15.538	70.909
	Roots	Mean Value	23.030	43.866	15.525	70.898
		SD	0.016	0.038	0.014	0.014
		A5-1	28.858	55.676	22.759	35.181
		A5-2	28.942	55.647	22.739	35.211
25	Stems	A5-2 A5-3	28.942	55.650	22.748	35.211
	Stems	Mean Value	28.887	55.658	22.749	35.203
		SD	0.048	0.016	0.006	0.019
		A6-1	43.509	30.515	38.537	24.843
		A6-2	43.666	30.515	38.590	24.843
	Leaves	A6-3	43.648	30.513	38.575	24.833
	Leaves	Mean Value	43.607	30.514	38.567	24.836
		SD	0.086	0.001	0.027	0.020
	A versae unts	ke value by A.	0.080	0.001	0.027	0.020
	Gangeticus	Ke value by A.	31.843	43.346	25.614	43.650
		A3-1	3.499	20.659	2.669	17.602
	Roots	A3-2	3.480	20.667	2.671	17.601
		A3-3	3.461	20.650	2.669	17.592
		Mean Value	3.480	20.659	2.670	17.598
		SD	0.019	0.008	0.001	0.006
		A11-1	4.373	24.523	7.343	12.259
8		A11-2	4.390	24.538	7.343	12.248
	Stems	A11-3	4.375	24.525	7.352	12.249
		Mean Value	4.379	24.528	7.346	12.252
		SD	0.009	0.008	0.005	0.006
		A12-1	9.678	18.009	8.890	11.872
		A12-2	9.680	18.011	8.980	11.941
	Leaves	A12-3	9.678	18.074	8.965	11.931
		Mean Value	9.678	18.031	8.945	11.914
		SD	0.001	0.037	0.048	0.037
	Average upta	ke value by A.				
	Gangeticus		5.846	21.073	6.320	13.922

Effect of temperature on the uptake of Na^+ , K^+ , Ca^{2+} and Mg^{2+} by the various anatomical parts

IV. Conclusion

None-the-less, these findings suggest that soil temperature effects on nutrient availability are greatest when soil temperature is low and changes on short timescales such as in temperate systems in spring and fall. Increased nutrient availability on short timescales as soils warm may provide the selective pressure for the ability to rapidly increase rates of nutrient uptake. There is great variation of major nutrients (Na, K, Ca & Mg) uptake in different anatomical parts of vegetable plant, *Amaranth Gangeticus* with varying soil temperature. The soil of Sonagazi is best for cultivating vegetable *Amaranth Gangeticus* among the three upazila's soil studied in Bangladesh. And, we also can conclude that salinity and rising temperature is a threat for growing vegetables like Amaranth Gangeticus. Excessive uptake of the macro nutrient than normal can cause even death of the vegetables. This salinity also hampered their normal water content in body. We also noted during our research that due to excessive salinity some tissue of the amaranth was damaged. So much awareness is required for salinity and rising temperature in Bangladesh.

Acknowledgement

We are extremely grateful to Express our deepest sense of gratitude and sincere thanks to our respectful teachers Professor Shariff Enamul Kabir, Professor Kazi Ali Azam and Professor Tapan Kumar Saha, Depertment of Chemistry, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh for their prudent suggestions and constant encouragement at all stages of my research work and revision of this manuscript.

References

- [1] I. E. Adeyeye, Trace Metals in Soils and Plants from Fadiman Farms in Ekiti State, Nigeria. Bell. *Chem. Soc. Ethio.*, *19*(1), 2005, 23-33.
- [2] U. A. Birnin-Yauri, Y. Yahaya, B. U. Bagudo and S. S. Noma, Seasonal variation in nutrient content of some selected vegetables from Wamakko, Sokoto State, Nigeria; *Journal of Soil Science and Environmental Management*, 2(4), 2011, 117-125.
- [3] O. Tunde, Green Leafy Vegetables. Nutritional Quality of Plant Foods. Post harvest Research Unit, Department of Biochemistry University of Benin Benin City, Nigeria, 1988, 120-133.

- [4] Indian Council of Agricultural Research (ICAR), Handbook of Agriculture. New Delhi, 2006, 59-61.
- [5] A. Stewente, H. M. Gramshaw, J. A. Parkinson, C. Quarmby, Chemical Analysis of Ecological Material. Blackwell Scientific Publication, U.K., 1974, 78-88.
- T. L. Lyon, H. O. Buckman, N. C. Brady, *The Nature and Properties of Soils*, 5th ed. (The Macmillan Company: New York; 1952) 20-44.
- K. Hussain, M. Ashraf, M. Y. Ashraf, Relationship between growth and ion relation in pearl millet (Pennisetum glaucum (L.) R. Br.) at different growth stages under salt stress. *Afr. J. Plant Sci.* 2(3), 2008, 23-27.
- [8] S. H. Shah, J. Gorham, B. P. Forster, R. G. Jones, Salt tolerance in the Triticeae. J. Exp. Bot., 38, 1987, 254-269.
- M. Ashraf, Z. U. Zafar, M. Tufail, Intra-specific variation for salt tolerance in a potential oil seed crop, brown mustard Brassica juncea (L.), J. Agron. Soil Sci. 38, 1994, 449-458.
- [10] B. Cokuysal, H. Cakici, E. Erbas, The effect of salinity and fertilizer applications on leaf nutrient status and some quality characteristics of Ficus benjamina. Int. J. Bot., 2 (2), 2006, 107-112.
- [11] G. Hosseini, R. J. Thengane, Salinity tolerance in cotton (Gossipium hirsutum L.) genotypes. Int. J. Bot., 3 (1), 2007, 48-55.
- [12] A. Mekhaldi, M. Benkhelifa, M. Belkhodja, The effect of salinity on gas exchange on different development stages of mung bean (Vignaradiata L. Wilczek). Int. J. Bot., 4(3), 2008, 269-275.
- [13] V. D. Taffouo, N. L. Djiotie, M. Kenne, D. Ndongo, J. R. Priso, S. Dibong, A. Amougou, Effects on salt stress on physiological and agronomic characteristics of three tropical cucurbit species. J. Appl. Biosci., 10, 2008, 434-441.
- [14] V. D. Taffouo, F. O. Wamba, E. Youmbi, G. N. Nono, A. Amougou, Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranea (L.) Verdc.) landraces grown under saline conditions, *Int. J. Bot.* 6(1), 2010, 53-58.
- [15] A. Saghir, N. O. Khan, M. Z. Igbal, A. Hussain, M. Hassan, Salt tolerance of cotton (Gossypium hirsutum L.), Asian J. Plant Sci. 1, 2002, 715-719.
- [16] P. D. Chavan, B. A. Karadge, Influence of salinity on mineral nutrition of peanut (Arachis hypogaea L.). Plant Soil. 54, 1980, 5-13.
- [17] D. R. Genney, I. J. Alexander, S. E. Hartley, Soil organic matter distribution and below ground competition between Calluna vulgaris and Nardus strita., *Func. Ecol.* 16, 2002, 644-670.
- [18] L. D. Rudulier, Osmoregulation in rhizobia. The key role of compatible solutes, *Grain Legume*, 42, 2005, 18-19.
- [19] S. A. Fasina, O. J. Aruleba, O.S. Omotoso, O. F. Omolayo, S. O. Shittu, Evaluation of Potentials of some Soils for Crop Production at Ado-Ekiti, South West Nigeria. *Nig. J. Soil Sci.*, 15(2), 2005,16-20.
- [20] S. Uba, A. Uzairu, Heavy Metal Levels in Soils and Amranthus spinusis of Dumpsites in Zaria Metropolis, *Bio. Env. Sci. J. Trop.*, 5(4), 2008, 110-116.
- [21] V. D. Taffouo, K. J. Kemdem, N. L. M. Tchiengue, B. A. N. Nandjou, A. Amougou, Effects of salinity stress on growth, ions partitioning and yield of some cowpea (Vigna unguiculata L. Walp.) cultivars. *Int. J. Bot.* 5(2), 2009, 135-145.
- [22] J. N. Miller-Ihli, A. S. Baker, Food and Dairy Products, Applications of Atomic Spectroscopy Encyclopedia of Spectroscopy and Spectrometry (Academic press, London, Vol.1, 2000) 583-588.
- [23] Varian Techtron, Basic Atomic Absorption Spectroscopy A Modern Introduction, Varian Techtron (Springvale, Australia, 1975) 104-106.
- [24] (a) J. Gliński, J. Lipiec, Soil physical conditions and plant roots (CRC Press, 1990); (b) Boca Raton Gosselin A, M. J. Trudel, (1986) Root-zone temperature effects on pepper, J Am Soc Hortic Sci 111, 1986, 220–224.
- [25] G. D. Bowen, Soil temperature, root growth, and plant function. In: Y. Waisel, A. Eshel, U. Kafkafi (eds) Plant roots: the hidden half (Marcel Dekker, New York, 1991) 309–330.
- [26] B. L. McMichael, J. J. Burke, Temperature effects on root growth, In: Y. Waisel, A. Eshel, U. Kafkafi (eds) Plant roots: the hidden half, 2nd edn., (Marcel Dekker, New York, 1996) 383–396.
- [27] B. L. McMichael, J. J. Burke, Soil temperature and root growth. Hortic. Sci., 33, 1998, 947–951.
- [28] K. S. Pregitzer, J. S. King, A. J. Burton, S. E. Brown, Responses of tree fine roots to temperature, *New Phytol*, *147*, 2000, 105–115.
 [29] A. Badora, T. Filipek, An Assessment of Rehabilitation of Strongly Acidic Sandy Soils. Towards Sustainable Land Use Furthering Cooperation Between People and Institutions. *Adv. Geo.*, *1*(*31*), 1998, 721-726.
- [30] E. I. B. Adeyeye, Chem. Soc. Ethiop., 19, 2005, 1-5.
- [31] K. S. Pregitzer and J. S. King, *Effects of Soil Temperature on Nutrient Uptake*, Chapter-10 ; Ecological Studies, Vol. 181, H. BassiriRad (ed.) Nutrient Acquisition by Plants, An Ecological Perspective (Springer-Verlag Berlin Heidelberg, 2005).
- [32] A. O. Jungk, Dynamics of nutrient movement at the soil-root interface, In: Y. Waisel, A. Eshel U. Kafkafi (eds) Plant roots: the hidden half, 2nd edn., (Marcel Dekker, New York, 1996) 529–556.
- [33] S. A. Barber, A. D. Mackay, R. O. Kuchenbuch, P. B. Barraclough, Effects of soil temperature and water on maize root growth. *Dev Plant Soil Sci 36*, 1989, 231–233.
- [34] A. T. P. Bennie, Growth and mechanical impedance, In: Y. Waisel, A. Eshel, U. Kafkafi (eds) Plant roots: the hidden half (Marcel Dekker, New York, 1991) 393–414.
- [35] T. L. Brown, H. E. J. LeMay, *Chemistry: the central science* (Prentice-Hall, Englewood Cliffs, 1981).
- [36] I. R. Johnson, J. H. M. Thornley, Temperature dependence of plant and crop processes, Ann Bot 55, 1985, 1–24.
- [37] (a) P. J. Kramer, J. S. Boyer, *Water relations of plants and soils* (Academic Press, San Diego,1995); (b) M. R. Kuhns, H. E. Garret, R. O. Teskey, T. M. Hinckley, Root growth of black walnut trees related to soil temperature, soil water potential, and leaf water potential. *For Sci.*, 31, 1985, 617–629.
- [38] X. Wan, J. J. Zwiazek, V. J. Lieffers, M. Landhausser, Hydraulic conductance in aspen (Populus tremuloides) seedlings exposed to low root temperatures. *Tree Physiol*, 21, 2001, 691–696.
- [39] D. L. Sparks, Environmental soil chemistry (Academic Press, San Diego, 1995).
- [40] E. A. Paul, F. E. Clark, Soil microbiology and biochemistry (Academic Press, San Diego, 2nd edn, 1996).
- [41] G. Sposito, Chemical equilibria and kinetics in soils (Oxford University Press, New York, 1994).