# The Effect of Deforestation on Tree Species in IGALAMELA Local Government Area of KOGI State, Nigeria

Abiola K. A<sup>1</sup>, Ademu Samuel<sup>2</sup>, Medugu N.I.<sup>3</sup>

<sup>1,3</sup>Ph.D, <sup>2</sup>MSc. & Department of Geography, Nasarawa State University, Keffi, Nasarawa State

Abstract: This research was carried out to examine the effect of deforestation on tree species in in four communities (Ajaka, Imere, Okpe and Okochogbe)inIgalamela Local Government Area of Kogi State. Quadrat plots measuring 30metres square each, separated by transects of 5metres of undisturbed forest were used for the analysis, also undisturbed farmland were used as control. Simpson's Index was used to determine species diversity within the study area. The result revealed that agriculture has been abandoned by the youth as the aged people are mostly limited to subsistence farming most of who adopt indigenous farming techniques such as bush burning which invariably contributes to deforestation and loss of tree species in the study areas. Furthermore, results also revealed that the plant species of Magniferaindica (Mango), Elaeisquineensis (Oil palm), Pentraclethramacrophyla(locust tree), Azadiractaindica(Neem) and Bambusa vulgaris (Bamboo) which serve as economic tree species were being affected by human activities due to the fact that the wild tree species such as miliciaexcelsa (iroko), Entandrophragmaangolense (Mahogany), Lophiralanceolata (Obeche) which provide timber for various uses were no longer in abundance as a result of deforestation. However, Okochogbe community in Igalamela L.G.A has the highest tree species diversity with Simpson's diversity index value of 0.9731 compared to Imere (0.9703), Okpe (0.9665) and Ajaka (0.8111) communities. The studyrecommended that sustainable forestry practices should include the development of rapidly growing tree species such as gmelina, neem and daniellia which can be harvested after five to eight years and easily be replanted in order to reduce pressure on the slow growing species such as Iroko, Mahogany and Obeche which take a life time to mature.

Keywords: Deforestation, afforestation, reforestation, Species, Forestry, Quadrat, transect, diversity.

### I. Introduction

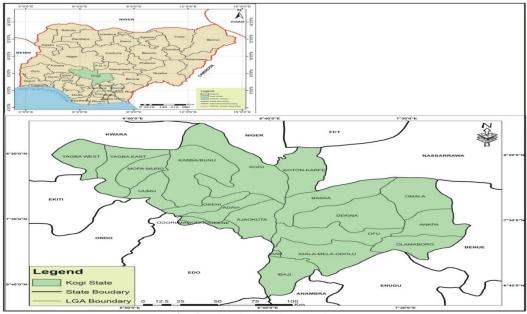
Deforestation is the process of cutting down of trees for various reasons without replacement. The reasons can be for farming, construction (housing, road, bridges and dam) and other uses in the form of firewood, timber, charcoal and medicinal uses. Deforestation poses a significant concern because of increased human encroachment upon wild areas, increased resource extraction and threats to biodiversity (Rudel, 2005).

Anthropogenic activity of man is a serious factor depleting trees and affecting the trees significant proactive and regenerative capabilities, creating an avenue for desert encroachment. In Africa, almost all countries rely on forest to meet basic energy needs. The share of wood fuels in African primary energy consumption represents on average 86% of total African energy consumption (Amous, 1999).

Cleared land is used as settlements, pasture for livestock, and agricultural plantations. One reason for forest depletion is to plant cash crops. Many West African countries depend on cash crop exports. Products like rubber, gum, oil palm, cocoa, and kolanuts provide a steady income. Disregard or ignorance of intrinsic value, lack of forest management and deficient environmental laws are some of the factors that allow deforestation to occur on a large scale (Susanna *et al.*, 2006).

The reliance on area expansion to meet the needs of rapidly increasing human populations has resulted in increased deforestation resulting in serious environmental problems including erosion, loss of soil fertility, loss of medicinal plants and fruits, extinction of species, changes in climatic conditions, and displacement of indigenous people (Marcoux, 2000).

To redress this problem, this research determine the effect of deforestation on tree species diversity in Igalamela Local Government Area of Kogi State with the hope that the information provided would help in successful forest reestablishment in the area.


## II. Materials and Methods

The study site covers an area of 2175 km<sup>2</sup> in Igalamela local government area of Kogi State in the north central region of Nigeria, with mean annual rainfall of 1532mm and average temperature of 28<sup>o</sup>C (Ayoade, 2004). Five villages were chosen from each of the four communities in the study area by Simple random Sampling method as sample size for the study. Each of the communities in the study area was coded and a table of random digits was used to draw out four communities; this technique was used to ensure an unbiased selection. Field inventory was carried out in each of the forests and agricultural lands. Questionnaire was administered to all the

household heads in selected villages. The criterion for village selection was based on agricultural practices and accessibility to forest.

Twenty households were sampled from each of the five villages that make up the study communities, making a total of 400 households. In administering the questionnaire, the family was the basic unit of survey and the heads of households were mainly the respondents.

The primary data were collected through field inventory with the help of a Taxonomist and four other local helps to determine species diversity and tree density. Two rectangular plots of land measuring 30metres square each and separated by transect of 5metres of an undisturbed forest and farmland were used for the control. The diameter at breast height (dbh), were measured in the sample plots. All trees were noted, counted and documented. For each species the diversity index was calculated and the frequency distributions obtained were characterized by their mean, standard deviation and coefficient of variation.



Source: NASRDA, 2015

Fig. 1: Nigeria showing Kogi State.

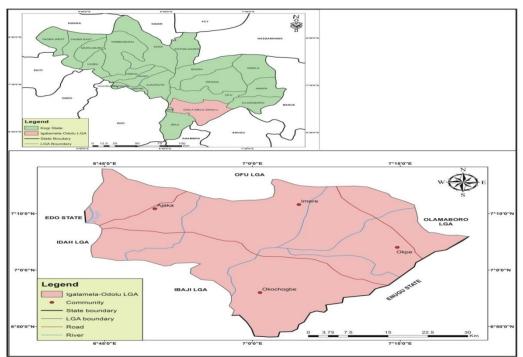



Fig. 2: Kogi State showing Igalamela L.G.A.

Source: NASRDA, 2015

In order to be able to achieve the objectives of this study, both descriptive and inferential statistical methods such as Structured and non-structured questionnaire, oral interview, Simpson's Diversity Index, arithmetic mean, standard deviation and coefficient of variation were used.

#### III. Results and Discussion

Respondents were mostly males (78%) in their middle and old ages (41years and above) (77.5%) with most of them having attended Primary school (50%) and possessed at least a hectare of farmland (46.5%). The dominance of the aged population in this survey is an indication that agriculture has been abandoned by the youth as the old people are mostly limited to subsistence farming most of who adoptindigenousfarming techniques such as bush burning which invariably contributes to deforestation and loss of tree species in the study area.

Most of the respondents covered by this study attributed farming activities (39%) as the major factor responsible for deforestation in the study area followed by construction works (14.25%), population growth (10%) and rural poverty (9.75%). The study observes that farming activities is the overwhelming cause of deforestation in the entire study area

As a result of increase in population in the Local Government Area, people resort to clearing of forest to provide shelter and to plant crops either for subsistence or for sale in the markets in order to augment a living. The implication of this finding is that farming activities when not practiced in a sustainable way can lead to destruction of tree species. This is supported by the earlier findings of Marcoux, (2000), Myers, (1991) and Vanclay, (1993).

The study noted heaps of fuel wood for sale in most of the communities studied. The reason could be attributed to the high cost of alternate energy sources which is beyond the reach of the rural poor as observed by Pearce (2001). Hunting activities were also prevalent in many villages of the study area particularly, Ikelegwu, Ofarachi, okpachala andokanekpa. It was a common sight to see young people and their dogs traversing one forest or the other with sticks, machetes and catapults in search of rodents, squirrels, alligators, and bush fowls.In most cases, they set a portion of the forest/bush ablaze in a bid to force the animals out from their hideouts.Table 1 showspopulation of plant species which was used to determine species diversity in Table 2.

| Community   | Villages   | No of Tree Species |        | Total No of Individuals of Species |       |  |
|-------------|------------|--------------------|--------|------------------------------------|-------|--|
|             |            | Forest             | Farm   | Forest                             | Farm  |  |
|             | Ikare      | 28                 | 4      | 526                                | 37    |  |
| AJAKA       | Ayikpele   | 32                 | 5      | 256                                | 16    |  |
|             | Otobo      | 33                 | 6      | 431                                | 24    |  |
|             | Ugbatugba  | 27                 | 3      | 540                                | 31    |  |
|             | Ogajogwu   | 29                 | 4      | 180                                | 22    |  |
| Total       |            | 149                | 22     | 1933                               | 130   |  |
| Mean (X)    |            | 29.8               | 4.4    | 386.6                              | 26    |  |
| Std Dev.    |            | 8.69               | 25.91  | 43.24                              | 31.35 |  |
| C. Var.     |            | 29.16              | 588.9  | 11.18                              | 120.6 |  |
|             |            | Forest             | Farm   | Forest                             | Farm  |  |
| IMERE       | Okanekpa   | 28                 | 4      | 840                                | 57    |  |
|             | Ibochi     | 27                 | 23     | 324                                | 14    |  |
|             | Ikelegwu   | 31                 | 3      | 420                                | 52    |  |
|             | Ogbagba    | 36                 | 5      | 1080                               | 104   |  |
|             | Ujeji      | 21                 | 3      | 315                                | 26    |  |
| Total       |            | 143                | 17     | 2979                               | 253   |  |
| Mean (X)    |            | 28.6               | 3.4    | 595.8                              | 50.6  |  |
| Std. Dev.   |            | 5.51               | 1.14   | 345.58                             | 34.78 |  |
| C. Var.     |            | 19.27              | 33.53  | 58.00                              | 68.74 |  |
|             |            | Forest             | Farm   | Forest                             | Farm  |  |
| OKPE        | OkpeEgbili | 28                 | 4      | 460                                | 24    |  |
|             | Okpeogane  | 33                 | 5      | 320                                | 36    |  |
|             | kpetelube  | 28                 | 3      | 376                                | 18    |  |
|             | ojuwocha   | 34                 | 4      | 410                                | 22    |  |
|             | okpachala  | 35                 | 5      | 688                                | 82    |  |
| Total       |            | 158                | 21     | 2254                               | 182   |  |
| Mean (X)    |            | 31.6               | 4.2    | 450.8                              | 36.4  |  |
| Std. Dev.   |            | 3.36               | 0.84   | 142.05                             | 26.36 |  |
| C. Var.     |            | 10.63              | 20     | 31.51                              | 72.42 |  |
| OKOCHOGBE   |            | Forest             | Farm   | Forest                             | Farm  |  |
|             | Ugbogbo    | 39                 | 7      | 1062                               | 108   |  |
|             | Ere-ogane  | 34                 | 3<br>2 | 1190                               | 48    |  |
|             | oforachi   | 31                 | 2      | 524                                | 21    |  |
|             | Ate        | 45                 | 7      | 920                                | 54    |  |
|             | Ogane      | 35                 | 2      | 280                                | 14    |  |
| Total       |            | 184                | 21     | 3976                               | 245   |  |
| Mean (X)    |            | 36.8               | 4.2    | 795.2                              | 49    |  |
| Std. Dev.   |            | 5.40               | 2.59   | 381.32                             | 37.79 |  |
| C. Var.     |            | 14.67              | 61.67  | 47.95                              | 75.79 |  |
| Grand Total |            | 634                | 81     | 11142                              | 810   |  |
| Mean (X)    |            | 31.7               | 4.05   | 557.1                              | 40.5  |  |
| Std. Dev.   |            | 5.16               | 1.50   | 303.02                             | 28.48 |  |
| C. Var.     |            | 16.28              | 37.12  | 54.39                              | 70.32 |  |

**Table 1:** Plant Species Population in the Study Area

Table 1 shows the population of tree species in the sample plots of the study villages. The result reveals a total of 634 tree species in the sampled forests. Ajaka community has 149 tree species; Imere community has a

Source: Field Work, 2015

total of 143 tree species, Okpe community has 158 tree species while Okochogbe community records the highest number of 184 tree species. There is a total of 81 tree species in the sampled farms, with Ajaka, Imere, Okpe and Okochogbe communities having 22, 17, 21 and 21 tree species respectively. Their study records a total of 11,142 individual trees and an average of 557 trees in the sampled forests. While a total of 810 trees and average of 41trees in the sampled farmlands. Okochogbe community has the highest number (3976) of individuals of tree species in sampled forests, followed by Imere community (2979), and Okpe community (2254). Ajaka community has the least number of individuals of tree species in sampled forests.

| Community | Village   | No of Tree Species |      | Total No of individuals of species |      | Simpson's Index |        |
|-----------|-----------|--------------------|------|------------------------------------|------|-----------------|--------|
|           |           | Forest             | Farm | Forest                             | Farm | Forest          | Farm   |
| AJAKA     | Ikare     | 28                 | 4    | 526                                | 37   | 0.9606          | 0.7392 |
|           | Ayikpele  | 32                 | 5    | 256                                | 16   | 0.9561          | 0.7813 |
|           | Otobo     | 33                 | 6    | 431                                | 24   | 0.964           | 0.8111 |
|           | Ugbatugba | 27                 | 3    | 540                                | 31   | 0.959           | 0.641  |
|           | Oni Idah  | 29                 | 4    | 170                                | 22   | 0.9595          | 0.7397 |
| IMERE     | Okanekpa  | 28                 | 4    | 840                                | 57   | 0.9615          | 0.7288 |
|           | Ibochi    | 27                 | 2    | 324                                | 14   | 0.9574          | 0.4082 |
|           | Ikelegwu  | 31                 | 3    | 420                                | 52   | 0.9576          | 0.6635 |
|           | Ogbagba   | 36                 | 5    | 1080                               | 104  | 0.9703          | 0.7487 |
|           | Ujeji     | 21                 | 3    | 315                                | 26   | 0.9474          | 0.5769 |
| OKPE      | Egbili    | 28                 | 4    | 460                                | 24   | 0.96            | 0.4132 |
|           | ogane     | 33                 | 5    | 320                                | 36   | 0.9489          | 0.7978 |
|           | kpetelube | 28                 | 3    | 376                                | 18   | 0.9631          | 0.6481 |
|           | ojuwocha  | 34                 | 4    | 410                                | 22   | 0.9601          | 0.7219 |
|           | okpachala | 35                 | 5    | 688                                | 82   | 0.9665          | 0.7864 |
| OKOCHOGBE | Ugbogbo   | 39                 | 7    | 1062                               | 108  | 0.9711          | 0.8433 |
|           | Ere-ogane | 34                 | 3    | 1190                               | 48   | 0.9686          | 0.6660 |
|           | oforachi  | 31                 | 2    | 524                                | 21   | 0.9665          | 0.3628 |
|           | Ate       | 45                 | 7    | 920                                | 54   | 0.9731          | 0.8217 |
|           | Ogane     | 35                 | 2    | 280                                | 14   | 0.9678          | 0.5    |

**Table 2:** Estimation of species Diversity in the Study Area

Source: Field Work, 2015.

The index (Table 2) revealed that species in the forests recorded higher values than species in the farms in the communities which is an indication of greater species richness (diversity) in the forests compared to the farms. This implies that conversion of forests to non-forest use, such as farmland has negative effect on tree species diversity as also observed by Houghton, (1994), Myers, (1994) and Achard et al., (2002).Comparing the diversity of the forests in the different villages of the sampled communities, it was noticed that the forests have closely related values of Simpson Index. However some villages have forests with greater diversity as shown in Table 2. These include okochogbe ate village (0.9731) and ugbogbo village (0.9711) in okochogbe community, ogbagba village (0.9703) in Imere community. Villages with the least diversity of species include Ujeji (0.9474) in Imere community and Okpe - Ogane (0.9489) in Okpe community.

| Community             | Villages   | Tree Species                | No of Individual (n) in<br>Sampled Plots |               | Diameter at Breast Height (cm) |            |
|-----------------------|------------|-----------------------------|------------------------------------------|---------------|--------------------------------|------------|
|                       |            |                             | Forest                                   | Farm          | Minimum                        | Maximum    |
| AJAKA                 | Ikare      | Artocarpuscommunis Tectonag |                                          | 12            | 8cm                            | 26cm       |
|                       | Ayikpele   | randis                      | 2                                        | *             | 27cm                           | 34cm       |
|                       | Otobo      | Elaeis guineens is          | 13                                       | 2             | 18cm                           | 29cm       |
|                       | Ugbatugba  | Irvingiagabonensis          | 32                                       | 14            | 15cm                           | 34cm       |
|                       | Ogajogu    | Miliciaexcelsa              | 16                                       | 7             | 38cm                           | 62cm       |
| Total                 |            |                             | 100                                      | 35            | 103                            | 185        |
| Mean (X)              |            |                             | 20                                       | 8.75          | 20.6                           | 37         |
| Std Dev.              |            |                             | 12.82                                    | 4.657         | 13.24                          | 15.79      |
| C. Var.               |            |                             | 64.1                                     | 53.22         | 60.18                          | 40.49      |
| IMERE                 |            |                             | Forest                                   | Farm          | Forest                         | Farm       |
|                       | Okanekpa   | Elaeis guineens is          | 52                                       | 21            | 18cm                           | 29cm       |
|                       | Ibochi     | Dacryodesedulis             | 22                                       | 10            | 8.2cm                          | 23cm       |
|                       | Ikelegu    | Elaeis guineens is          | 38                                       | 19            | 12cm                           | 28cm       |
|                       | Ogbagba    | Elaeis guineens is          | 41                                       | 24            | 22cm                           | 28cm       |
| <b>T</b> ( )          | Ujeji      | Treculiaafricana            | 15                                       | 1             | 18cm                           | 28cm       |
| Total                 |            |                             | 168                                      | 75<br>15      | 78.2                           | 136        |
| Mean (X)<br>Std. Dev. |            |                             | 33.6                                     |               | 15.64                          | 27.2       |
| C. Var.               |            |                             | 12.95<br>38.54                           | 5.45<br>30.62 | 6.14<br>40.79                  | 2.71 10.04 |
| OKPE                  |            |                             | 58.04<br>Forest                          | 50.02<br>Farm | 40.79<br>Forest                | Farm       |
| OKPE                  | Egbili     | Mangiferaindica             | 27                                       | 18            | 18cm                           | 39cm       |
|                       | Ogane      | Azadirachtaindica           | 49                                       | *             | 15cm                           | 31cm       |
|                       | Kpetelube  | Gmelinaarborea              | 17                                       | 8             | 16.5cm                         | 30cm       |
|                       | Oiuwocha   | Treculia Africana           | 38                                       | 10            | 18cm                           | 28cm       |
|                       | Okpachala  | Pentaclethramacrophylla     | 48                                       | 22            | 20cm                           | 32cm       |
| Total                 | Okpacitata | 1 enacieth anacrophyna      | 179                                      | 58            | 87.5                           | 160        |
| Mean (X)              |            |                             | 35.8                                     | 14.5          | 17.5                           | 32         |
| Std. Dev.             |            |                             | 13.77                                    | 6.61          | 1.87                           | 4.18       |
| C. Var.               |            |                             | 38.46                                    | 45.59         | 10.69                          | 13.06      |
| OKOCHOGBE             |            |                             | Forest                                   | Farm          | Forest                         | Farm       |
|                       | Ugbogbo    | Mangiferaindica             | 59                                       | 21            | 12cm                           | 37cm       |
|                       | ere- ogane | Elaeis guineens is          | 51                                       | 8             | 18.5cm                         | 25cm       |
|                       | Oforachi   | Gmelinaarborea              | 21                                       | 16            | 8.2cm                          | 31cm       |
|                       | Ate        | RaphiaSpp.                  | 57                                       | 16            | 14cm                           | 28cm       |
|                       | Ogane      | Terminaliaivorens is        | 14                                       | *             | 12cm                           | 25cm       |
| Total                 | -          |                             | 202                                      | 61            | 64.7                           | 146        |
| Mean (X)              |            |                             | 40.4                                     | 15.25         | 12.94                          | 29.2       |
| Std. Dev.             |            |                             | 21.26                                    | 5.38          | 3.75                           | 5.02       |
| C. Var.               |            |                             | 52.62                                    | 35.28         | 28.98                          | 17.19      |
| Grand Total           |            |                             | 649                                      | 229           | 333.4                          | 627        |
| Mean (X)              |            |                             | 162.25                                   | 57.25         | 83.35                          | 156.75     |
| Std. Dev.             |            |                             | 37.98                                    | 14.36         | 13.94                          | 18.403     |
| C. Var.               |            |                             | 23.406                                   | 25.08         | 16.72                          | 11.74      |

Table 3: Plant species affected by deforestation in the study area

Source: Field Work, 2015.

Table 3: shows tree species affected by deforestation in the study area. The mean number of individual tree species in sampled plots is 162.25 (forest) and 57.25(farmland); the standard deviation is 37.98 (forest) and 14.36(farm). The result showed moderate variability for forest (CV=23.406) and high variability for farmland (CV = 25.08). The result of analysis revealed that most of the trees in the study area are small (8cm-23cm dbh) and medium trees (23cm-38cm dbh) with a few large trees (>38cm dbh). The implication is that most of the old growth tree species have been cut down in the study area, while the small trees are no longer allowed to grow to maturity before being felled. This result corroborate with the findings of Reenberg et al., (2002) and Wardell et al., (2004).

#### IV. Conclusion

The realization of the fact that deforestation can have negative effect on tree species diversity leading to loss of valuable economic and medicinal trees, climate change, erosion, flooding amongst others led to the need for this study in the area. The study suggested ways to mitigate the environmental problems associated with deforestation in the Area. Efforts aimed at attaining sustainable forestry practices should include the development of rapidly growing species of trees such as gmelina, daniellia and neem. These trees can be harvested after five to eight years and easily replanted. This will help to reduce pressure on the slow-growing species such as Miliciaexcelsa (Iroko) and Triplochitonscleroxylon (Obeche) which take a life time to mature. Since farming has been implicated as one of the primary causes of deforestation. There is need to adopt farming systems that encourage afforestation and reforestation. This should include introduction of greenhouse gardens, slash and char rather than slash and burn, as well as alley farming in which crops are interspersed with small trees.

#### References

- [1]. Achard, F., Gallego, J., Richards T., Malingreau J., Eva H., Stibig H., and Mayaux P. (2002). "Determination of deforestation rates Science, Vol. 297, No.5583, pp. 999-1002. of the world's humid tropical forests."
- Agbola, T. (2008). "The Value of land use planning to sustainable development." Paper presented at the Urban Summit held at the [2]. Transcorp Hilton Hotel, Abuja, 1st- 3rd September.
- [3]. Akinsami, F.A. (2006). "Challenges of forest production for economic development." Paper presented at 31st Annual Conference of the Forestry Association of Nigeria, Markurdi, Benue State, Nigeria, 20th -25th November, pp.1-9.
- Amous, S. (1999). "The role of wood energy in Africa," in Wood Energy Today for Tomorrow (WETT) Regional Studies.FAO [4]. Forestry Department Working Paper FOPW/99/3, FAO, Rome.
- [5]. Ayoade, J. O. (2004). Introduction to Climatology for the Tropics (2nd ed.). Ibaban: Spectrum Book Limited.
- Philippines [6]. (2008)"Corruption deforestation". Burgonio ΤL blamed Daily for Inquirer.http://newsinfo.inquirer.net/breakingnews/nation/view\_article.php?article\_id=110193.
- [7]. FAO (2009)."Adoption of Sustainable Forest Management Practices." International Forestry, Vol. 11 No. 14, p. 147. www.atyponlink.com/CFA/doi/pdf/10.1505/ifor.11.4.514
- Houghton, R.A. (1994). "Land-use change and tropical forests," BioScience. Vol.44, pp. 305-331. [8].
- [9]. Cummings.Jr., (eds.) Land Clearing and Development in the Tropics. pp. 299-315. Balkema. Rotterdam.
- [10]. Marcoux, A. (2000). "Population and deforestation". SD Dimensions. Sustainable Development Department, Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/sd/WPdirect/WPan0050.htm.
- [11]. Myers, N. (1991). Tropical forests: Present status and future outlook. Climatic Change. Vol. 19, No.1-2, pp. 3-32.
- [12]. Meyers, N. (1994). Tropical deforestation rates and patterns. The causes of tropical deforestation.
- [13]. Pearce, D. W. (2001). "The Economic Value of Forest Ecosystems". Ecosystem Health, Vol. 7, no. 4. pp. 284-296.
- Reenberg, A., Nielsen, T.L., Rasmussen, K. (1997). Field expansion and reallocation in the Sahel-land use pattern dynamics in a [14]. fluctuating biophysical and socio-economic environment. Global Environmental Change, Vol.8, No.1, pp. 309-327.

[15]. Ron, N. (2006). The Little Green Handbook: Seven Trends Shaping the Future of Our Planet, Picador, New York.

- [16]. Rudel, T. (2005). Tropical Forests: Regional Paths of Destruction and Regeneration in the Late 20th Century. Columbia University Press.
- [17]. Sample, I. (2006)."Forests are poised to make a comeback, study shows". The Guardian. November 14, 2006.
- [18]. Science Daily (2007). Confirmed: Deforestation Plays Critical Climate Change Role.
- Stock, J. and Rochen, A. (2009)."The choice of doomsday or arbor day" http://www.umich.edu/-http://hgs265/society/deforestation.htm.Retrieved January 15, 2015. [19].
- [20]. Susanna, B., Susan, K., Ileana, G., Nelson C., and Herman R. (2006). Globalization, Forest Resurgence, and Environmental Politics in El Salvador. WorldDevelopment, Vol. 34, No. 2. pp. 308-323.
- [21]. Uneke, C. and Ibeh, L. (2009). Impacts of deforestation on malaria in south-eastern Nigeria: the epidemiological, socio-economic and ecological implications. The Internet Journal of Third World medicine, Volume 8, Number 1.
- [22]. USATODAY.com (2008). Amazon deforestation rises sharply in 2007, "Use Energy, Get Rich and Save the Planet", The New York Times, April 20, 2009.
- [23]. Vanclay, J. (1993). Saving the tropical forest: Needs and prognosis. Ambio, Vol, No. 4. pp. 225-231
- [24]. Wardell, D.A., Reenberg, A., Tettrup, C. (2004). Historical footprints in contemporary land-use systems: forest cover changes in savannah woodlands in the Sudano-Sahelian zone. Global Environmental Change, Vol. 13, No.4, pp. 235-254.
- [25]. World Population Day (2012). Politics/The Earth Times. Environmental News.www.earthtimes.org. Retrieved 25 October, 2014.
- [26]. World (2003)."World Rainforest Movement Rainforest Movement Bulletin Number 74". http://www.wrm.org.uy/bulletin/74/Uganda.html.