Seasonal Variation in Avian Diversity and Guild Composition at Gamela Pond and its Wetland, Sagwara (Dungarpur District, Rajasthan)

Pritha Pandya¹, Lalit Choudhary² and Seema Bharadwaj³

^{1,2} Limnology and Fish Biology Research Laboratory, Leo College, Banswara, Rajasthan. lalit540@gmail.com
³ Ret. Professor Limnology and Fish Biology Research Laboratory, H.D.J. Govt. Girls College, Banswara, Rajasthan. (Govind Guru Tribal University, Banswara, Rajasthan)

Abstract

This study examined seasonal changes in avian diversity and feeding guild structure at Gamela Pond, a semi-arid wetland in Sagwara, Dungarpur District, Rajasthan. Over a 12-month period (2021–2022), standardized pointcounts and transect surveys documented 86 bird species, with diversity peaking during the monsoon (83 species) and declining in winter (86 species). Insectivores dominated (26.74%), followed by piscivores and omnivorous (20.93% each) Frugivorous are very least (3.94%). Habitat degradation from agriculture and water extraction were identified as major threats. The findings highlight the ecological significance of Gamela Pond for both resident and migratory birds and emphasize the need for targeted conservation actions. **Keywords:** Wetland, Gamela pond, Avian diversity, Abundance, Anthropogenic threat

Date of Submission: 01-05-2025 Date of Acceptance: 13-05-2025

I. Introduction

Wetlands serve as a connection between aquatic and terrestrial ecosystems, characterised by a water table that is typically at or near the land's surface, accompanied by shallow water (Mitsch and Gosselink, 1986). Wetlands exhibit remarkable productivity and possess distinct biological characteristics globally, yet they maintain exceptionally fragile ecosystems. Wetlands provide essential habitats for biota and play a very important role in protection of biodiversity, especially rare and endangered species (Dai et al., 2019; Na et al., 2018). Habitat suitability is an essential and sensitive index explaining local habitat use (Coppes et. al., 2018). India is home to approximately 67,429 wetlands, encompassing an area of roughly 4.1 million hectares. Among these, there are 2,175 that are natural, while the total reaches 65,254. are created by humans. In India, wetlands (excluding rivers) comprise 18.4% of the nation's geographic area, with 70% of this area dedicated to paddy cultivation (MoEF, 1990; Parekh & Gadhvi, 2013). Wetlands provide a habitat for a significant variety of wildlife including mammals, fish, birds, insects, frogs, and plants (Buckton, 2007). The wetland environment hosts a diverse array of species, with birds playing a crucial role by occupying multiple trophic levels within the nutrient cycles. This indicates their significant cultural and social importance to local communities (Green, 2014). Wetlands serve as a habitat for birds, primarily for nesting, roosting, breeding, feeding, shelter, resting, social interaction, and various other activities (Stewart, 2007). Wetlands facilitate the congregation of numerous migratory birds due to their high nutritional value and productivity (Paracuellos, 2006).

Avian diversity is very important to attract people and tourists towards natural habitats. Waterbirds are intricately linked to freshwater and marine environments, contributing significantly to ecosystem health (Ogden et al., 2014) and serving as a source of recreational revenue (Carver, 2009).

Bird species composition and diversity are influenced by wetland habitat structures, area, and changes in adjacent land use. Understanding the bird and plant species of a specific wetland is essential for assessing habitat conditions and developing effective conservation strategies for sustainable biodiversity preservation. Wetlands represent some of the most productive ecosystems globally (Kumar and Gupta, 2009).

Birds are integral to ecosystems, delivering essential ecosystem services (MEA, 2005), including the regulation of invertebrate and vertebrate pest populations, pollination of flowers, seed dispersal, scavenging of carcasses and waste, provision of cultural services, and functioning as ecosystem engineers. Recent studies validated the notion of employing birds as markers for identifying terrestrial ecosystems abundant in biological variety (O'Connell et al., 2000; Niemi & McDonald, 2004) and assessing landscape damage (Morelli, 2015). Several studies concerning avifaunal diversity and its status have been undertaken in various wetlands of Rajasthan; however, limited research has focused on the distribution, diversity, and status of birdlife in this region.

Gamela Pond and its associated wetland in Sagwara, Dungarpur District, Rajasthan, constitute an important ecological site in the region, fostering a diverse array of bird species year-round. The ecological significance of these wetlands is highlighted by their function as transitional areas between water and land, providing a diverse array of microhabitats that support both resident and migratory bird populations.

Seasonal variation significantly impacts avian diversity and guild composition within wetland habitats. At Gamela Pond, the seasonal patterns of migratory species, especially in winter, result in significant variations in species richness and abundance. This wetland serves as a sanctuary for various migratory birds, while local species persist in their habitat throughout the entire year. The seasonal influx and turnover lead to dynamic alterations in the composition of ecological guilds—groups of species that utilise similar resources—such as insectivores, piscivores, granivores, and omnivores.

The variety and quantity of bird groups are influenced by factors such as food availability, water levels, vegetation cover, and human impacts. Human activities such as agriculture, cattle grazing, fishing, and proximity to highways can profoundly influence bird populations by changing habitat structure and resource availability. The disturbances frequently result in a decline in avifaunal diversity and can in desert areas like Rajasthan, wetlands are vital for bird biodiversity because they supply vital supplies to landscapes that would otherwise be constrained by a lack of water. Despite their significance as local refuges, rural ponds like Gamela are still underrepresented in avifaunal studies, although well-known wetlands like Keoladeo National Park have received extensive study. In order to comprehend the functional responsibilities of ecosystems, this study intends to:

• Classify species by feeding guild;

• Quantify seasonal bird diversity at Gamela Pond.

• Recognise man-made hazards and suggest ways to protect them.

II. Method Methodology

Survey Area

The Gamela pond is 8.9667 hectares and located from $23^{\circ}40'5''N$ to $23^{\circ}68'N$ latitude and $74^{\circ}1'28''E$ to $74^{\circ}024''E$ longitude. Its proximity to the Gamerashwar Temple and National Highway 927A, which links Ratlam and Swaroopganj, shows its accessibility and possible influence on the local ecology and residents. The pond supplies irrigation for Patelwara and Sagwara's agricultural land and other residential and business needs. Locals use its waters to wash clothes, highlighting its importance in daily life. Local livelihoods and regional food security may improve with fish cultured in the pond. Its usefulness in communal animal husbandry is that it provides drinking water for nearby cattle. This wetland's biological health and water quality affect nearby residents and the environment.

III. Methodology

The data about the variety of numerous bird species were gathered using the point count technique, transect method, and linear approach. 24 field trips (two visits each month) were made to assess the status and variety of birds over this period. Birds were spotted in the morning from 06:00AM to 10:00AM and in the evening from 4:30PM to 7:00PM in summer and from 06:30AM to 11:00AM and from 4:00PM to 6:00PM in summer. The identification of these birds was conducted via Olympus binoculars (10x50) and field guides (Ali & Ripley 1983; Grimmett & Inskipp, 2007), with standardised common and scientific nomenclature following Pande et al. 2016 and Praveen et al. 2016.

IV. Results :

Observation and Discussion

The research recorded notable avian diversity within the wetland, identifying 86 bird species across 38 Passeriformes, families 16 orders. The 16 orders are listed here are as and Galliformes, Columbiformes, Pelecaniformes, Charadriiformes, Anseriformes, Coraciiformes, Gruiformes, Suliformes, Cuculiformes, Accipitriformes, Ciconiiformes, , Psittaciformes, Apodiformes, Bucerotiformes, and Strigiformes.

The 38 Families are listed here are as Ardeidae Anatidae, Phasianidae

Columbidae, Rallidae, Sturnidae, Threskiornithidae, Alcedinidae, Cuculidae, Phalacrocoracidae Accipitridae, Ciconiidae, Cisticolidae, Coraciidae, Corvidae, Hirundinidae, Jacanidae, Laniidae, Laridae, Leiothrichidae, Motacillidae, Psittaculidae, Scolopacidae, Anhingidae, Apodidae, Charadriidae, Dicruridae, Emberizidae, Estrildidae, Meropidae, Muscicapidae, Nectariniidae, Passeridae, Ploceidae, Pycnonotidae, Recurvirostridae, Strigidae, and Upupidae.

Sr. No.	Commoan Name	Scientific Name	Pre Monsoon	Monsoon	Post Monsoon	Guild Status
1	Black Kite	Milvus migrans	59	55	54	Carnivore
2	Shikra	Accipiter badius	7	7	7	Carnivore
3	Common Pochard	Aythya ferina	35	-	39	Piscivorus

4	Cotton pygmy	<i>Nettapus</i>	106	81	98	Omnivorus
-		Spatula	100	01	70	Omnivorus
5	Garganey	querquedula	74	-	71	Omnivorus
6	Indian Spot billed Duck	Anas poecilorhyncha	29	27	31	Omnivorus
7	Knob billed Duck	Sarkidiornis melanotos	23	56	21	Piscivorus
8	Lesser Whistling Duck	Dendrocygna javanica	28	23	33	Omnivorus
9	House Swift	Apus nipalensis	67	56	75	Insectivorus
10	Eurasian Hoopoe	Upupa epops	17	16	11	Insectivorus
11	Little Ringed Ployer	Charadrius dubius	17	18	15	Insectivorus
12	Bronze winged Jacana	Metopidius indicus	67	113	85	Insectivore,Granivor e
13	Pheasant tailed Jacana	Hydrophasianus chirurgus	67	113	88	Insectivorus
14	Pivor Torn	Storma aurantia	22	20	22	Piscivorus
15	Wishand Trans	Chlidani na hahai da	12	15	11	Discissor
15	Wiskered Turn	Childonias hybrida Himantopus	12	15	11	Piscivorus
16	Black winged Stilt	himantopus	22	11	29	Insectivorus
17	common redshank	Tringa totanus	7	-	21	Carnivore
18	Common Sandpiper	Actitis hypoleucos	11	19	38	Carnivore
19	Asian Openbill	Anastomus oscitans Mycteria	158	744	90	Piscivorus
20	Painted Stork	leucocephala	64	249	510	Piscivorus
21	Euression collared Dove	Streptopelia decaocto	29	35	31	Granivorus
22	Laughing Dove	Spilopelia senegalensis	46	54	62	Granivorus
23	Rock Pigeon	Columba livia	54	57	49	Granivorus
24	Spotted Dove	Spilopelia chinensis	36	36	33	Granivorus
25	Common Kingfisher	Alcedo atthis	4	8	7	Piscivorus
26	Pied Kingfisher	Cervle rudis	8	9	17	Piscivorus
27	White Throated King Fisher	Halcyon smyrnensis	17	21	18	Piscivorus
27	Euroscien Deller	Congoige commutue	0	6	15	Incentivorus
20		Coracias	0	0	13	Insectivorus
29	Indian Roller	benghalensis	12	9	11	Insectivorus
30	Green Bee eater	Merops orientalis Eudynamys	30	53	79	Insectivorus Frugivorus,
31	Asian Koel	scolopaceus	36	32	21	Insectivorus
32	Common Cuckoo	Cuculus canorus	2	5	4	Insectivorus
33	Pied Cuckoo	Clamator jacobinus	-	16	12	Insectivorus
34	Common Quail	Coturnix coturnix	53	56	53	Granivorus
35	Gray Francolin	pondicerianus	68	67	73	Insectivorus
36	Indian Peafowl	Pavo cristatus	30	42	35	Omnivorus
37	Painted Francolin	Francolinus pictus	10	9	7	Granivorus
38	Rain Quail	Coturnix coromandelica	16	32	17	Omnivorus
39	Comman Moorhen	Gallinula chloropus	58	54	56	Omnivorus

DOI: 10.9790/2402-1905016171

	1	İ I		1	İ.	I
40	Eurasian Coot	Fulica atra	95	74	85	Omnivorus
41	Purple Moorhen	porphyrio porphyrio	81	91	89	Granivorus
42	White BreastedWater Heron	Amaurornis phoenicurus	49	49	47	Omnivorus
43	Ashy Prinia	Prinia socialis	32	36	35	Insectivorus
44	common tailorbird	Orthotomus sutorius	28	33	43	Insectivorus
45	House Crow	Corvus splendens	12	23	20	Omnivorus, varnivorus
46	Jungle Crow	Corvus macrorhynchos	9	12	14	Carnivore
47	Black Drongo	macrocercus	104	93	96	Insectivorus
48	Gray necked Bunting	Emberiza buchanani	35	47	57	Omnivorus
49	Indian Silverbill	Euodice malabarica	130	107	128	Granivorus
50	Dusky Creg Martin	concolor	13	11	15	Insectivorus
51	Wire Tailed swallow	Hirundo smithii	65	73	69	Insectivorus
52	Bay backed Shrike	Lanius vittatus	30	77	43	Carnivore
53	Long tailed Shrike	Lanius schach	6	6	7	Carnivore
54	Jungle Babbler	Turdoides striata	180	169	177	Insectivorus
55	Large Grey Babbler	Argya malcolmi	80	86	72	Omnivorus,Insectivo rus
56	white Browed Wegtail	Motacilla maderaspatensis	9	14	12	Insectivorus
57	White Wagtail	Motacilla alba	23	22	18	Insectivorus
58	Indian Robin	Copsychus fulicatus	89	83	82	Insectivorus
59	Purple Sunbird	Cinnyris asiaticus	58	56	56	Frugivorus
60	House sparrow	Passer domesticus	53	51	46	Omnivorus
61	Baya weaver	Ploceus philippinus	69	51	76	Granivorus
62	Red Vented Bulbul	Pycnonotus cafer	41	44	46	Omnivorus,Insectivo rus
63	brahminy starling	Sturnia pagodarum	41	41	42	Insectivorus
64	Common Maina	Acridotheres tristis	69	70	73	Omnivorus,Insectivo rus
65	Paid Starling	Gracupica contra	14	3	18	Insectivorus
66	Rosy Starling	Pastor roseus	1,540	770	2,010	Omnivorus
67	Cattle Egret	Bubulcus ibis	210	425	319	Piscivorus
68	Gray Heron	Ardea cinerea	16	31	34	Piscivorus
69	Great Egret	Ardea alba	99	105	93	Insectivorus
70	Indian Pond Heron	Ardeola grayii	69	73	73	Granivorus
71	Intermediate Egret	Ardea intermedia	44	54	59	Carnivore
72	Little Egret	Egretta garzetta	56	138	118	Piscivorus
73	Night heron	Nycticorax nycticorax	70	65	72	Carnivore
74	Pond Heron	Ardeola grayii	60	57	58	Granivorus
75	Purple Heron	Ardea purpurea	54	72	65	Carnivore

DOI: 10.9790/2402-1905016171

76	Black Ibis	Plegadis falcinellus	23	21	15	Piscivorus
77	Black headed Ibis	Threskiornis melanocephalus	156	203	155	Carnivore
78	Eurasian Spoonbill	Platalea leucorodia	28	27	28	Carnivore
79	Glossy Ibis	Plegadis falcinellus	395	150	253	Piscivorus
80	Plum Headed Parakeet	Psittacula cyanocephala	89	111	104	Frugivorus
81	Rose Ring Parakeet	Psittacula krameri	136	152	145	Frugivorus
82	Spotted Owlet	Athene brama	8	14	8	Carnivore
83	Oriental Darter	Anhinga melanogaster	32	29	34	Piscivorus
84	Great Cormorant	Phalacrocorax carbo	27	14	27	Piscivorus
85	Indian Cormorant	Phalacrocorax fuscicollis	48	51	102	Piscivorus
86	Little Cormorant	Microcarbo niger	393	370	583	Piscivorus

In Gamela Pond, Rajasthan, India, wetland bird species were classified by their main food sources to explore their fostering guild structure. Carnivorous, granivorous, omnivorous, insectivorous, piscivorous, and frugivorous were the main feeding guilds. A quantitative analysis of bird species' dietary preferences showed a variable distribution among guilds. The majority of species were insectivorous, with 23 species (26.74%). This dominance shows insects are a major food resource in the studied region.

Omnivorous and piscivorous species made up 20.93% of the total with 18 each. This implies a large population of omnivorous and piscivorous birds. 13 vertebrate-eating carnivorous species made up 15.12% of the total. 11 species—12.79%—were granivorous, eating seeds and grains.

Only 3 frugivorous species (3.48% of the total) eat fruit.

This research shows Gamela Pond Sagwara wetlands birds' various eating methods. Distribution of species across feeding guilds indicates environmental diversity and richness of food supplies.

Insects are essential to marsh trophic dynamics because to their frequency. The low number of frugivorous species may imply that fruit supplies are few or that the local avifauna is less fruit-dependent. These findings illuminate wetland habitat ecological interactions and help explain animal community structure.

As a result, wetland birds use a range of habitats and are reliant on a mosaic of microhabitats to survive. For the marsh birds, paddy fields with stray trees and a dispersed vegetative cover may have provided comfortable cover and ideal feeding areas. Wetland bird diversity is further increased by this habitat's support of a variety of food sources, including fish, crabs, invertebrates, water plants, and planktons (Basavarajappa, 2004).

With a rise in the number of food layers, the number of possible niches for birds likewise increases, leading to a corresponding increase in the diversity of avian species. The reason for this is the distinct eating behavior of birds, which results in the partitioning of ecological niches (MacArthur, 1964).

Sr. no	COMMOAN NAME	SCIENTIFIC NAME	Pre Monsoon	Monsoon	Post Monsoon	GM	SE	CD5	CD1	CV
1	Rosy Starling	Pastor roseus	461.25	242.5	354.38	352.7	28.2	83.7	114.7	22.58
2	Painted Stork	Mycteria leucocephala	94.5	60.88	35	63.46	10.6	31.5	43.16	47.22
3	Little Cormorant	Microcarbo niger	93.75	101	122	105.6	11.2	33.4	45.73	30.07
4	Cattle Egret	Bubulcus ibis	83.75	78.13	70.5	77.46	3.78	11.2	15.4	13.81
5	Glossy Ibis	Plegadis falcinellus	76.38	44.38	80	66.92	3.16	9.38	12.87	13.35
6	Asian Openbill	Anastomus oscitans	69.38	74.88	107.5	83.92	12.9	38.5	52.73	43.63
7	Dia da hara da d	The line is								
	Ibis	melanocephalus	43.75	39.5	45.25	42.83	1.91	5.67	7.78	12.6
8	Rose Ring Parakeet	Psittacula krameri	37	35.13	35.88	36	0.74	2.19	3	5.78
9	Indian Silverbill	Euodice malabarica	29.38	28.5	29.25	29.04	1.02	3.04	4.16	9.95
10	Little Egret	Egretta garzetta	27.75	23.88	25.13	25.58	1.21	3.6	4.93	13.38
11	Jungle Babbler	Turdoides striata	27.38	26.38	28.5	27.42	0.76	2.26	3.1	7.86
12	Black Drongo	Dicrurus macrocercus	24.75	24.63	24	24.46	0.67	1.99	2.73	7.75
13	Plum Headed Parakeet	Psittacula cyanocephala	24.63	26.38	24.75	25.25	0.67	2	2.75	7.55
14	Great Egret	Ardea alba	24.38	23.75	25.38	24.5	0.67	2	2.74	7.76
15	G-#	Martin								
	Goose(Teal)	coromandelianus	22.88	25.13	22.38	23.46	0.88	2.6	3.56	10.55
16	Pheasant-tailed Jacana	Hydrophasianus chirurgus								
17			22.13	22.63	25.5	23.42	1.14	3.39	4.64	13.76
18	Indian Robin	Copsychus fulicatus	21.25	21.88	18.38	20.5	1.19	3.53	4.84	16.4
10	Eurasian Coot	Fulica atra Motopidius indiaus	21	23.5	19.13	21.21	0.75	2.22	3.04	9.96
19	Jacana	Metoplatus matcus	20.63	22.13	24.13	22.29	0.85	2.52	3.45	10.74
20	Large Grey Babbler	Argya malcolmi	20.25	20.13	18.75	19.71	0.63	1.87	2.56	9.01
21	Indian Pond- Heron	Ardeola grayii	18.5	17.25	17.63	17.79	0.33	0.97	1.33	5.17
22	Common Maina	Acridotheres tristis	18.5	18	16.75	17.75	0.61	1.8	2.47	9.67
23	Purple Moorhen	Porphyrio porphyrio	18.5	20.75	22.25	20.5	0.77	2.28	3.12	10.57
24		Francolinus								
25	Gray Francolin	pondicerianus	17.75	18.25	17.63	17.88	0.6	1.79	2.45	9.53
25	Jungle Babbler	Argya striata	17.5	15.25	12.75	15.17	0.83	2.46	3.37	15.42
26	wire Tailed swallow	Hirundo smithii	17.13	17.13	17.38	17.21	0.65	1.92	2.63	10.63
27	House Swift	Apus nipalensis	16.25	16.63	15.38	16.08	0.71	2.12	2.9	12.52
28	Night heron	Nycticorax nycticorax	16.13	17.5	15.88	16.5	0.81	2.41	3.3	13.89
29	Baya weaver	Ploceus philippinus	15.13	16.38	14.25	15.25	0.61	1.81	2.48	11.31
30	Indian Cormorant	Phalacrocorax fuscicollis	15	20.13	14.38	16.5	0.96	2.85	3.91	16.44
31	Purple Heron	Ardea purpurea	14.88	15.75	15.63	15.42	0.49	1.44	1.98	8.91
32	Purple Sunbird	Cinnyris asiaticus	14.5	13.75	13	13.75	0.47	1.39	1.91	9.62

Seasonal variation of Bird

DOI: 10.9790/2402-1905016171

		1								
33	Black Kite	Milvus migrans	14.38	13.25	13.25	13.63	0.59	1.75	2.4	12.2
34	Comman Moorhen	Gallinula chloropus	14.25	12.88	13 13	13.42	0.54	16	2 19	11 32
35	Common Quoil	Cotumix cotumix	12.29	14	12.12	12.5	0.76	2.25	2.09	15.86
36			13.36	14	13.13	13.5	0.70	2.25	3.08	15.60
37	Laughing Dove	Spilopelia senegalensis	13.25	13.75	13.25	13.42	0.66	1.97	2.71	14
38	House sparrow	Passer domesticus	13.13	12.25	12.13	12.5	0.42	1.25	1.71	9.52
20	Rock Pigeon	Columba livia	13	13.88	13.13	13.33	0.45	1.32	1.81	9.44
39	Green Bee-eater	Merops orientalis	12.88	16.63	9.88	13.13	0.62	1.84	2.52	13.35
40	Intermediate Egret	Ardea intermedia	12.75	12.75	13.13	12.88	0.63	1.86	2.55	13.73
41	White BreastedWater Heron	Amaurornis phoenicurus	12.5	12.38	12.5	12.46	0.67	1.99	2.73	15.22
42	Bay-backed	I	11.00	12.5	11.25	11.00	1.07	2 10	4 20	25.50
43	Knob-billed	Sarkidiornis melanotos	11.88	6	9.88	8.96	1.18	3.51	4.38	37.33
44	Duck brahminy									
45	starling	Sturnia pagodarum	10.5	11.38	9	10.29	0.65	1.93	2.65	17.85
45	Bulbul	Pycnonotus cafer	10.25	11	11.25	10.83	0.44	1.31	1.8	11.51
46	Gray-necked Bunting	Emberiza buchanani	9.38	11.13	10.38	10.29	0.7	2.08	2.85	19.2
47	Black-winged	Himantopus	0.00	4.10	5.00	(21	0.77	2.00	2.00	25.26
48	Common	himantopus Actitis hypoleucos	8.63	4.13	5.88	6.21	0.77	2.3	3.15	35.26
49	Sandpiper		8.63	6.13	6.25	7	1.03	3.07	4.21	41.72
72	Spotted Dove	Spilopelia chinensis	8.63	9	8.38	8.67	0.4	1.2	1.65	13.18
50	tailorbird	Orthotomus sutorius	8.63	9.75	7.88	8.75	0.57	1.71	2.34	18.57
51	River Tern	Sterna aurantia	8.5	6.38	6.5	7.13	0.81	2.41	3.31	32.2
52	Garganey	Spatula querquedula	8.25	8.38	18.88	11.83	3.95	11.7	16.09	94.41
53	Oriental Dartar	Anhinga melanogaster	<u>8 12</u>	7 75	7 75	7 99	0.32	0.05	1.2	11.5
54	Indian Spot-	Anas poecilorhyncha	8	9.5	7.13	8.21	0.32	2.11	2.89	24.41
55	billed Duck Euression									
56	collared Dove	Streptopelia decaocto	7.88	8.25	7.88	8	0.47	1.4	1.92	16.67
50	Ashy Prinia	Prinia socialis	7.88	8.25	8.88	8.33	0.41	1.21	1.66	13.86
57	Asian Koel	Eudynamys scolopaceus	7.75	7.5	7	7.42	0.34	1.02	1.4	13.1
58	Lesser Whistling- Duck	Dendrocygna javanica	7	8	7	7.33	1.1	3.26	4.46	42.28
59	Eurasian			c 00	6.00	6.70	0.4	1.10	1.64	16.70
60	Spoonbill	Platalea leucorodia	0.03	6.88	6.88	6.79	0.4	1.19	1.64	16.73
61	Great Cormorant	Phalacrocorax carbo	6.38	6.88	5.38	6.21	0.78	2.33	3.19	35.67
62	Indian Peafow1	Pavo cristatus	5.75	7.25	11.13	8.04	1.19	3.53	4.83	41.73
62	White Wagtail	Motacilla alba	5.25	5.38	4.63	5.08	0.29	0.86	1.18	16.06
03	Gray Heron	Ardea cinerea	5	8.5	6.5	6.67	0.37	1.11	1.52	15.81
64	Black Ibis	Plegadis falcinellus	4.88	5.25	5	5.04	0.35	1.04	1.43	19.7
65	Rain Quail	Coturnix coromandelica	4.75	4.63	5.75	5.04	0.48	1.44	1.97	27.16
66					0.10	0.04	0.10			20
	White Throated King Fisher	Halevon suvenancis	4.5	5	3 75	4.42	0.34	1.02	1.4	22
67	Common	Aythya ferina	4	5.13	9.88	6.33	2.25	6.7	9.18	100.7
68	Pochard Little Ringed									
60	Plover Euracian Hoopee	Charadrius dubius	3.63	4.13	4.38	4.04	0.28	0.83	1.14	19.56
09		Opupa epops	3.05	0	3.13	4.92	1.04	3.08	4.22	59.59
70	Dusky Creg Martin	Ptyonoprogne concolor	3.25	3	2.5	2.92	0.28	0.82	1.13	26.8
71	Wiskered Turn	Chlidonias hybrida	3.13	2.88	3.38	3.13	0.38	1.14	1.56	34.77
72	House Crow	Corvus splendens	3	4.75	5.13	4 29	0.31	0.92	1.26	20.37
		- stras sprenacias	. ~							

Seasonal Variation in Avian Diversity and Guild Composition at Gamela Pond and its ..

73										
	white Browed Wegtail	Motacilla maderaspatensis	2.88	2.63	2.5	2.67	0.29	0.88	1.2	31.25
74	Jungle Crow	Corvus macrorhynchos	2.75	2.25	3	2.67	0.24	0.7	0.96	25
75	Indian Roller	Coracias benghalensis	2.63	2.63	2.63	2.63	0.35	1.03	1.41	37.29
76	Euression Roller	Coracias garrulus	2.5	2	2	2.17	0.39	1.15	1.57	50.44
77	Pied Kingfisher	Ceryle rudis	2.38	2.63	2.25	2.42	0.34	1.01	1.38	39.62
78	Spotted Owlet	Athene brama	2.38	3.25	2	2.54	0.43	1.27	1.74	47.51
79	Paid Starling	Gracupica contra	2.13	2	3.63	2.58	0.64	1.89	2.6	69.78
80	Shikra	Accipiter badius	1.88	1.75	1.5	1.71	0.31	0.92	1.26	51.16
81	Painted Francolin	Francolinus pictus	1.88	1.88	1.63	1.79	0.3	0.9	1.24	47.89
82	Common Kingfisher	Alcedo atthis	1.75	1.75	1.63	1.71	0.27	0.81	1.11	45.24
83	Pied Cuckoo	Clamator jacobinus	1.75	2.63	1.63	2	0.35	1.04	1.42	49.3
84	Long-tailed Shrike	Lanius schach	1.63	1.63	1.5	1.58	0.18	0.53	0.72	31.58
85	common redshank	Tringa totanus	1.38	2.75	3.25	2.46	0.42	1.26	1.72	48.65
86	Common Cuckoo	Cuculus canorus	0.88	1 38	1	1.08	0.19	0.55	0.76	48.65

Seasonal Variation in Avian Diversity and Guild Composition at Gamela Pond and its ..

Pre Monsoon, Monsoon, Post Monsoon: Average abundance or count of each species in the respective season.GM (Geometric Mean): Central tendency of abundance across seasons.SE (Standard Error): Indicates variability or precision of the sample mean.CD5, CD1: Critical Differences at 5% and 1% significance levels, respectively, for comparing means.CV (Coefficient of Variation %): Relative variability in abundance, expressed as a percentage.

Field data gathered in the existing study regarding population abundance, species richness, species diversity, and species evenness were aggregated according to three seasons: pre-monsoon (March-June), monsoon (July-October), and post-monsoon (October-February) to determine the seasonal pattern of wetland bird assemblages in the study area. During the post-monsoon season, a maximum of 86 species were seen, although the pre-monsoon season recorded 85 species and the monsoon season recorded 83 species.

The avian community at Gamela pond and its wetland demonstrates varied population dynamics, with the *Pastor roseus* predominating in the pre-monsoon phase, yet exhibiting notable seasonal variations (CV = 22.58%). This species peaks prior to the monsoon, decreases during the monsoon, and subsequently rebounds. Various species, such as the *Mycteria leucocephala*, *Microcarbo niger*, and *Bubulcus ibis*, exhibit larger populations yet demonstrate moderate to high seasonal fluctuations. The *Psittacula krameri* and *Euodice*

malabarica exhibit stable populations throughout the year, as evidenced by their low Coefficient of Variation (CV) values. The *Mycteria leucocephala* and *Anastomus oscitans* demonstrate high coefficients of variation (CVs) exceeding 40%, indicating significant seasonal fluctuations. The *Psittacula krameri* and *Turdoides striata* exhibit low CVs below 10%, reflecting population stability. The majority of other species are categorized within a moderate variability range of 10-30%. Species exhibiting high coefficients of variation (CVs) may demonstrate migratory behaviour, heightened sensitivity to seasonal variations, or dependence on specific seasonal resources. In contrast, species with low CVs are typically resident, well-adapted to their local environments, and less reliant on seasonal fluctuations. This data is essential for bird conservation planning, elucidating seasonal migration patterns, identifying vulnerable species requiring targeted intervention, and assessing the overall health of the ecosystem via its bird populations in Gamela pond and its wetland.

It has been claimed that water birds have exploited the availability of water as proximal signals to help in their broad-scale selection of habitat preference according to Austin, 2002.

Water birds exhibit significant mobility throughout the winter season, relocating to different regions in response to several causes including low temperatures, fluctuations in water levels, and variations in food availability (Kershaw and Cranswick, 2003).

Threats:

Irrigation and agricultural water extraction near wetland boundaries limit water supply and alter hydrological regimes, thereby impacting bird habitats.

Conversion of wetland margins into agricultural land reduces breeding and feeding opportunities for insectivorous and piscivorous birds, which constitute 26.74% and 20.93% of the avian guilds, respectively. The excessive utilisation of pond water for irrigation and livestock consumption modifies water levels, particularly during arid seasons, adversely affecting shallow-water species such as shorebirds and ducks.

Noise, traffic, and habitat fragmentation caused by National Highway 927A interfere with nesting and foraging activities.

Bird populations experience stress due to cattle grazing, fishing, and washing activities, which contribute to pollution and degradation of wetland boundaries.

Conservation Status

Conserving Gamela Pond, a key wetland in Sagwara, Rajasthan, demands an integrated approach to counter ecological threats and safeguard its rich avian diversity. Effective habitat restoration-such as groundwater recharge using check dams and native vegetation replanting-will stabilize water levels and restore essential bird habitats. Community involvement is crucial; promoting sustainable agriculture, eco-tourism, and regulated water use can reduce local pressures while generating support for conservation. Legal protection, including potential designation as a Community Reserve, will help restrict harmful activities, while ongoing monitoring of bird populations and water quality will inform adaptive management. Buffer zones, fencing, and signage are necessary to mitigate disturbances from highways, agriculture, and grazing, especially during breeding seasons. Targeted actions for vulnerable feeding guilds, like protecting riparian zones for insectivores and piscivorous and restoring fruiting plants for frugivores, are vital. These coordinated strategies will help preserve Gamela Pond's ecological integrity and its role as a haven for diverse birdlife.

V. Conclusion:

The examination of avian feeding guilds and population dynamics at Gamela Pond, Rajasthan, highlights the ecological intricacies and importance of this semi-arid wetland. The quantitative analysis indicated a prevalence of insectivorous species, underscoring the essential function of insects within the marsh's food web. Omnivorous and piscivorous birds constituted significant segments of the community, whereas frugivores were markedly rare, probably indicating restricted fruit availability or specific habitat requirements. Seasonal fluctuations in population, as demonstrated by coefficients of variation, differentiated migratory or seasonally sensitive species from stable, resident populations. Species like the Rosy Starling and Painted Stork displayed significant seasonal variations, indicating a dependence on particular resources or migratory patterns. In contrast, the Rose-ringed Parakeet and Jungle Babbler showed consistent populations throughout the year, reflecting a robust adaptation to their local environments. The results of this study are essential for conservation strategies, as they assist in pinpointing at-risk guilds and species that need focused management efforts. The variety and seasonal changes in bird populations act as indicators of wetland health, highlighting the importance of habitat protection, sustainable water management, and addressing human-induced threats like agriculture and

disturbances from adjacent highways. The findings establish a basis for effective conservation strategies aimed at maintaining the ecological health of Gamela Pond and its bird populations.

References:

- [1]. Ali, S. and Ripley, S.D. (1983) A pictorial guide to the birds of the Indian subcontinent. Oxford University, Delhi.
- [2]. Basavaraja, S., Hiremath, S. M., Murthy, K. N. S., Chandrashekarappa, K. N., Anil, N. P., & Puttiah, E. T. (2011). Analysis of Water Quality Using PhysicochemicalParameters Hosahalli Tank in Shimoga District, Karnataka, India. *Global Journal of Science Frontier Research*, 1(3), 31-34.
- [3]. Carver, E. (2009) Birding in the United States: A demographic and economic analysis: Addendum to the 2006 national survey of fishing, hunting, and wildlife-associated recreation. US Fish and Wildlife Publication.
- [4]. Coppes, J., Nopp-Mayr, U., Gruenschachner-Berger, V., Storch, I., Suchant, R., Braunisch, V., 2018. Habitat suitability modulates the response of wildlife to human recreation. Biol. Conserv. 227, 56–64.
- [5]. Dai, J., Zhou, Y., Wu, H., Zhang, Y., Zhu, K., 2019. Response of phytoplankton to banana cultivation: a case study of Lancang-Mekong River, southwestern China. Sci. Rep. 9, 9145.
- [6]. Grimmett, R. and Inskipp, T. (2007) Birds of Southern India. Om Books International, New Delhi, India.
- [7]. Kershaw, M., & Cranswick, P. A. (2003). Deriving Population Estimates for Wintering Wildfowl in Great Britain. *Ornis Hungarica*, 12-13, 75-87.
- [8]. Kumar, P. and Gupta, S.K. (2009) Diversity and Abundance of Wetland Birds around Kurukshetra, India. Our Nature 7(1), 212-217. doi: https://doi.org/10.3126/on.v7i1.2574.
- [9]. MacArthur, R. (1964). Environmental factors affecting bird species diversity. The American Naturalist, 98, 387-397.
- [10]. MEA. 2005. Millennium Ecosystem Assessment: Ecosystems and Human Well-being. Synthesis, Island Press.
- [11]. Morelli, F. 2015. Indicator species for avian biodiversity hotspots: Combination of specialists and generalists is necessary in less natural environments. *Journal for Nature Conservation*, 27, 54–62.
- [12]. Na, X., Zhou, H., Zang, S., Wu, C., Li, W., Li, M., 2018. Maximum Entropy modeling for habitat suitability assessment of Redcrowned crane. Ecol. Ind. 91, 439–446.
- [13]. Niemi, G. J., McDonald, M. E. 2004. Application of ecological indicators. Annual Review of Ecology, Evolution and Systematics, 35 (1), 89–111.
- [14]. O'Connell, T. J., Jackson, L. E., Brooks, R. P. 2000. Bird guilds as indicators of ecological condition in the central Appalachians. *Ecological Applications*, 10 (6), 1706–1721.
- [15]. Ogden, J.C., Baldwin, J.D., Bass, O.L., Browder, J.A., Cook, M.I., Frederick, P.C., et al. (2014) Waterbirds as indicators of ecosystem health in the coastal marine habitats of southern Florida: 1. Selection and justification for a suite of indicator species. Ecological Indicators 44: 148- 163. doi: <u>https://doi.org/10.1016/j.ecolind.2014.03.007</u>.
- [16]. Paracuellos M (2006) How can habitat selection affect the use of a wetland complex by waterbirds? Biodiversity and Conservation, 15: pp 4569-4582.
- [17]. Mitsch, W.I. and Gosselink, I.G., (1986) Wetlands. Van Nostrand Reinhold, New York.
- [18]. MoEF (1990) Wetlands of India A Directory. Ministry of Environment and Forests, Govt. of India, New Delhi.
- [19]. Parekh, H. and I.R. Gadhvi (2013) Water bird diversity at Kumbharvada Marsh Land, Bhavnagar, Gujarat. Life Sciences Leaflets 44: 53–59.
- [20]. Buckton, S. (2007) Managing wetlands for sustainable livelihoods at Koshi Tappu. Danphe 16(1): 12-13.
- [21]. Austin, G. T. Tomoff, C. S. 1978. Relative abundance in bird populations. *Am.Nat.*, 112: 695-699.
- [22]. Pande S., Deshpande P. and Thatte S. (2016) Checklists: Birds of India (Endemic, Threatened and CITES species); Birds of Maharashtra (Species in schedules of WPA), Ela Foundation Pune and Forest Department, Maharashtra. PP 1-80.
- [23]. Praveen J., Jayapal, R. and Pite, A. (2016) A checklist of the birds of India. Indian BIRDS 11(5&6): 113-172.