Chemical Composition And Nutritional Value Of Composite Wheat Flours (Triticum aestivum) And Two Varieties Of Taro Corms (Colocasia esculenta) Cultivar Fouê And Cultivar Yatan

ANON Attoh Hyacinthe, FAGBOHOUN Jean Bedel, EKISSI Elvis Serge Gbocho, YAPI Jocelyn Constant, KOUAME Lucien Patrice.

1Department of Food Science and Technology, University Nangui Abrogoua (Abidjan, Côte d’Ivoire)
2Department of Biochemistry-Genetics, University PeleforoGonCoulibaly (Korhogo, Côte d’Ivoire)
3Department of Biochemistry-Microbiologie, University LorougnonGuede (Daloa, Côte d’Ivoire)

Corresponding Author: FAGBOHOUN Jean Bedel

Abstract: The aim of this study was to evaluate nutritive potential of composite flours of wheat (Triticum aestivum) and taro corms (Colocasia esculenta) cv fouê and yatan.

I. Introduction

Taro (Colocasia spp) is a monocotyledenous and a member of the araceae family. Taro is widely cultivated in tropical areas of the world such as South East Asia, the Pacific Islands, the Mediterranean, Africa and the United States of America (Nip, 1997). The world production of taro is about 10.3 million tons with Africa producing 9.5 million tons representing 92.2 % (FAO, 2008). Among the African countries, Nigeria is the biggest world producer with more of 4 millions of tons (44% of the world production) then Ghana (1.5 millions of tons), Côte d’Ivoire (more than 350 000 tons) (Bell et al., 2000). Taro is a food that can turn into a series of similar foods to those described for cassava and yam such as porridge, fried, foufou, fritters, spicy soup, sweet soup, paste or ball (Hong et al., 1990; Njintang et al., 2000).

Considering its biochemical value(Aboubakaert et al., 2008; Kaur et al., 2011), taro has been found to be an important ingredient in the production of beverages and for partial replacement of wheat flour in bread, cookies (Nupet et al., 1994; Mongiet et al., 2011; Sanful, 2011)

Wheat (Triticum spp.) is the most important stable food crop for more than one third of the world population and contributes more calories and proteins to the world diet than any other cereal crops (Abd-El-Haleem et al., 1998 ; Adams et al., 2002 ; Shewry et al., 2009). Wheat flour is used to prepare bread, produce biscuits, confectionary products, noodles and vital wheat gluten or seitan (FAO, 2010). Many people like wheat-based products because of the taste, and particularly the texture. Wheat is unique among cereals because its flour possesses the ability to form a visco-elastic dough when mixed with water.

Composite flour defined as a mixture of flours, starches and other ingredients intended to replace wheat flour totally or partially in bakery and pastry products (Milligan et al., 1981). Composite flours used were either binary or ternary mixtures of flours from some other crops with or without wheat flour (Shitu et al., 2007). Composite flour is considered advantageous in developing countries as it reduces the importation of wheat flour and encourages the use of locally grown crops as flour (Berghofer, 2000; Hugo et al., 2000; Bugusu et al., 2001, Hasmadhet et al., 2014). Local raw materials substitution for wheat flour is increasing due to the growing market for confectioneries (Noor Aziah and Komathi, 2009).

Thus, several developing countries have encouraged the initiation of programmes to evaluate the feasibility of alternative locally available flours as a substitute for wheat flour (Abdelghafore et al., 2011). The aim of this study was to make wheat-based flours and a local product (colocasiaesculenta) and to determine their properties for use in food (pastry, bakery…)

II. Materials and methods

Sample collection

Taro (Colocasiaesculenta) corms cv yatan (Figure 1) and cv fouê (Figure 2) physiological maturity were collected in Affery (Southeast , Côte d’Ivoire). Put in a cooler to preserve its fresh state, they were transported to the Laboratory of Biocatalysis and Bioprocessing of University of Nangui Abrogoua (Abidjan. Côte d’Ivoire) where study was conducted.
Chemical Composition And Nutritional Value Of Composite Wheat Flours (Triticum aestivum) And...

Methods

Preparation of taro flour

The freshly harvested taro corms were thoroughly rinsed with water tap and then peeled. Peeled corms were thoroughly rinsed with tap water peeled then with a knife made of rustproof steel. The peeled corms have been rinsed abundantly to the water of faucet and has been cut in slices with the same knife made of rustproof steel. Slices were placed on aluminum foil at room temperature (28°C) for 20 min and deposited in an oven at forced convection air to a drying process for 48 hours at 45 ± 2°C. After drying, the slices were ground in a Bledor type of hammer mill. The ground material obtained was sieved through a 100 µm mesh sieve. The flour obtained was sealed in polyethylene bags and stored at 25°C in a desiccator until use.

Preparation of composite (wheat-taro) flour

Taro-wheat composite flour was processed by blending wheat and taro (ColocasiaesculentaCvyatan andfouê) flours. Predetermined proportions of 1. 3. 6. 9 and 12 part by weight of taro flour mixed with 99. 97. 94. 91 and 88 part by weight of wheat flour to obtain 1. 3. 6. 9 and 12% of taro-wheat composite flour respectively. 100% wheat flour was used as a control bread sample. The flours were packed in polythene bags and stored at 25 °C in a desiccator until use.

Proximate Composition

Dry matters were determined by drying in an oven at 105°C during 24 h to constant weight (AOAC. 1990). Crude protein was calculated from nitrogen (N)×6.25 obtained using the Kjeldahl method by AOAC (1990). Crude fat was determined by continuous extraction in a Soxhlet apparatus for 8 h using hexane as solvent (AOAC. 1990). Total ash was determined by incinerating in a furnace at 550°C (AOAC. 1990). Total carbohydrates were calculated by difference. Method described by Dubois et al. (1956) was used to determine total sugars while reducing sugars were analyzed according to the method of Bernfeld (1955) using 3.5 dinitrosalycilic acids (DNS). The crude cellulose contents were determined according to standard method (BIPEA, 1976).

Minerals analysis

Minerals were determined employing AOAC (1990) method. Flour was digested with a mixture of concentrated nitric acid (14.44 mol/L), Sulfuric acid (18.01 mol/L) and perchloric acid (11.80 mol/L) and analyzed using an atomic absorption spectrophotometer. The total of phosphorus was determined by method of Taussky and Shorr (1953) using the reactive vanado-molybdique.

Statistical analysis

All analyses were performed in triplicates. Results were expressed by means of ± standard deviation (SD). Statistical significance was established using Analysis of Variance (ANOVA) models to estimate the Chemical composition and nutritional value of composite flours. Means were separated according to Duncan’s multiple range analysis (p<0.05), with the help of the software Statistica (StatSoft Inc, Tulsa USA Headquarters).

III. Results and discussion

Proximate composition

The chemical compositions of wheat flour and composite (wheat-taro) flours are shown in tables 1 and 2. The moisture contents of the wheat flour and composite flours presented in tables 1 and 2 are statistically identical (p>0.05). The moisture contents of wheat flour of composite flours of wheat and taro corms of colocasiaesculenta cv yatan (Table 1) ranged between 11.66±0.46 (FB) to 11.83±0.23 (FCY12) and 11.66±0.46 (FB) to 11.88±1.55 (FCF12) (Table 2). These low moisture contents of flours would be due to the efficiency of the drying methods used (Pierre, 1989). Indeed, it is well established that high moisture superior at 12% of food products promotes susceptibility to microbial growth and enzyme activity which accelerates spoilage (Brock et al., 1986; Ndangui, 2014; Anno et al., 2016). Moisture content is an index of storage of the flours.

Flours moisture contents less than 14 % can resist microbial growth and contribute to best storage (Colas, 1998; Okonkwo and Opara, 2010). Similar observation were made by Matter (2015) in wheat-sweet potato composite flours.

ash flours contents presented in tables 1 and 2 differ significantly (p< 0.05) from cvyatan to cv fouê. The values of table 1 ranged between 2.13±0.06 (FB) to 3.6±0.06 (FCY12) and 2.13±0.06 (FB) to 3.73±0.06 (FCF12) (Table 2). These ash contentswere superior to those reported by Miteet al. (2008) in wheat-citrulluslanatus composite flours (1.53±0.04% to 2.33±0.13%). Incorporation of taro flour in wheat flour increased the ash contents.
The protein contents of the wheat flours (13.34±0.30 %) (Tables 1 and 2) were higher than composite flours 11.73±0.30 (FCY4) to 12.71±0.3 (FCY1) and 11.85±0.3 (FCF9) to 12.14±0.30 (FCF1). These results were similar to those reported by Igbabulet al. (2014) in breads produced from wheat-potato composite flours. Plant which produce more than 12% of protein are a good source of proteins (Ali, 2009).

The fat content of wheat flour and wheat-taro composite flours (Table 1) were statistically identical (p>0.05) and ranged between 0.98±1.06 (FCF4) to 1.19±0.07 (FB). In Table 2, the fat content of flours differ significantly (p < 0.05) and ranged between 1.12±0.01 (FCY12) to 1.19±0.07 (FB). The wheat flour had the higher rate of fat than the composite flours. These results corroborate the findings of many authors who showed that vegetables are poor sources of fat (Ejoh et al., 1996). The fat contents of wheat-taro composite flours were lower to those mentioned by Diallo et al. (2015) in wheat-taro composite flours (6.90±2.38% to 9.91±1.82%).

Carbohydrate are major compound in flours. The carbohydrate contents obtained in the composite flours were relatively high. These values ranging between 71.55±0.79 (FCY2) to 73.8±0.83 (FB) (Table 1) and 71.86±0.58 (FCF9) to 73.38±0.83 (FB) (Table 2). The high carbohydrates content in the flours is a proof of their being highly nutritious and good for human consumption. These carbohydrate contents are superior to those reported by Igbabulet al. (2014) in composite bread produced from wheat, maize and orange fleshed sweet potato flours (52.18±0.2% to 53.35±0.01%).

The cellulose content of composite flours ranged from 1.03±0.07 % (FCY12) to 2.4±0.07 (FB) (Table 1) and 1.00±0.07 (FCF12) to 2.4±0.07 (FB) (Table 2). The cellulose is important in the man's food. Indeed, cellulose consumption also soften stools and lowers plasma cholesterol level in the body (Verma and Banerjee, 2010). Also they will be able to contribute to the reduction of the cardiovascular risk (Streppel et al., 2008), of the blood pressure (Lee et al., 2008). These food cellulose could be used them like ingredients to improve the food quality and also they will be able to contribute to the reduction of the cardiovascular risk (Streppel et al., 2008), of the blood pressure (Lee et al., 2008).

Mineral composition of flours (wheat-flour and composite flours) are shown in Tables 3 and 4. Mineral elements are essential for human health, have important physiological roles on different organs and cellular mechanisms.

The two dominant minerals in flours are phosphorus (P) and potassium (K). The least dominant are copper (Cu), zinc (Zn) and manganese (Mn). The phosphorus contents of flours ranged between 147.37±0.05% (FB) to 181.13±0.02% (FCY12) (Table 3) and 147.37±0.05% (FB) to 173.47±0.01 (FCF12) (Table 4). The potassium contents of flours ranged between 173.16±0.11% (FB) to 186.69±0.01% (FCF12) (Table 3) and 173.16±0.11% (FCF9) to 185.02±0.01% (FCF1) (Table 4). The presence of taro flours in wheat flour induced a Significant increase (p < 0.05) of the minerals contents in composite flours (Tables 3 and 4). The increase of minerals values in composite flours could be due to the degree of maturity of the different cultivars of the taro (Colocasia esculenta). Indeed, according to Huang et al. (2007), an increase of concentration metals in the taro is function of the degree of maturity of this one. Phosphorus values obtained were higher than those reported by Makamu and Awogbenja (2012) (99.7±0.17 and 129.7±3.3 mg/100g) on the complementary food in Nigeria.

| Table 1: Proximate chemical composition (g/100 g of dry matter) of wheat flour and composite flours of wheat and taro corms of Colocasia esculenta cvyatan |
|---|--------|--------|--------|--------|--------|--------|
| Substances nutritionnels organiques (%) | FB | FCY1 | FCY3 | FCY6 | FCY9 | FCY12 |
| Moisture | 11.66±0.46* | 11.66±0.46* | 11.66±0.11* | 11.70±0.23* | 11.77±0.72* | 11.83±0.23* |
| Ash | 2.13±0.06a | 2.18±0.02b | 2.42±0.06e | 2.40±0.06d | 2.99±0.02e | 3.60±0.06f |
| Protein | 13.34±0.30d | 12.71±0.30c | 12.31±0.43b | 12.09±0.30b | 11.73±0.30c | 11.90±0.43c |
| Fat | 1.19±0.07c | 1.16±0.07b | 1.14±0.02a | 1.14±0.11a | 1.12±0.17a | 1.12±0.07a |
| Sugar | 5.57±0.04a | 5.79±0.06e | 6.40±0.15b | 7.13±0.02c | 8.08±0.08c | 8.35±0.03d |
| Carbohydrate | 73.38±0.83b | 72.51±0.83b | 72.62±0.62b | 72.69±0.70b | 72.4±1.21b | 71++.55±0.79a |
| Cellulose | 2.4±0.07b | 2.24±0.07d | 2.18±0.07d | 1.94±0.07c | 1.74±0.07b | 1.03±0.07a |

Results are expressed in a dry weight basis. In each line different letters mean significant differences (p < 0.05).

FB: Flour of wheat

FCY1: Composite flour of wheat and taro corms of Colocasia esculenta cvyatan, proportion 99/1 (p/p)

FCY3: Composite flour of wheat and taro corms of Colocasia esculenta cvyatan, proportion 97/3 (p/p)

FCY6: Composite flour of wheat and taro corms of Colocasia esculenta cvyatan proportion 94/6 (p/p)

FCY9: Composite flour of wheat and taro corms of Colocasia esculenta cvyatan proportion 91/9 (p/p)

FCY12: Composite flour of wheat and taro corms of Colocasia esculenta cvyatan proportion 88/12 (p/p)
Table 2: Proximate chemical composition (g/100 g dry matter) of wheat flour and composite flours of wheat and taro corms of *Colocasia esculenta* cv. "fouê".

Results are expressed in a dry weight basis. In each line different letters mean significant differences (p < 0.05).

<table>
<thead>
<tr>
<th>Substance</th>
<th>FB</th>
<th>FCF1</th>
<th>FCF3</th>
<th>FCF6</th>
<th>FCF9</th>
<th>FCF12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>11.6±0.46a</td>
<td>11.66±0.30a</td>
<td>11.68±0.30a</td>
<td>11.73±0.68a</td>
<td>11.81±0.17a</td>
<td>11.88±1.55a</td>
</tr>
<tr>
<td>Ash</td>
<td>2.13±0.06a</td>
<td>2.31±0.04a</td>
<td>2.57±0.05a</td>
<td>2.61±0.07a</td>
<td>3.34±0.06a</td>
<td>3.73±0.96a</td>
</tr>
<tr>
<td>Protein</td>
<td>13.34±0.30a</td>
<td>12.14±0.39a</td>
<td>11.91±0.39a</td>
<td>11.89±0.39a</td>
<td>11.85±0.39a</td>
<td>11.83±0.39a</td>
</tr>
<tr>
<td>Fat</td>
<td>1.99±0.07a</td>
<td>0.98±0.16a</td>
<td>1.01±0.17a</td>
<td>1.09±0.05a</td>
<td>1.10±0.05a</td>
<td>1.13±0.08a</td>
</tr>
<tr>
<td>Total sugar</td>
<td>5.57±0.04a</td>
<td>5.90±0.08a</td>
<td>6.63±0.05a</td>
<td>7.88±0.06a</td>
<td>8.33±0.03a</td>
<td>9.46±0.04a</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>73.3±0.83a</td>
<td>72.9±1.70a</td>
<td>72.8±1.82a</td>
<td>72.6±1.11a</td>
<td>71.8±0.58a</td>
<td>71.4±1.99a</td>
</tr>
<tr>
<td>Cellulose</td>
<td>2.4±0.07a</td>
<td>2.3±0.07a</td>
<td>2.26±0.47a</td>
<td>2.01±0.07a</td>
<td>1.83±0.03a</td>
<td>1.00±0.07a</td>
</tr>
</tbody>
</table>

Table 3: Minerals concentrations (mg/100 g on dry weight basis) of wheat flour and composite flours of wheat and taro corms of *Colocasia esculenta* cv. "yatan".

Results are expressed in a dry weight basis. In each line different letters mean significant differences (p < 0.05).

<table>
<thead>
<tr>
<th>Fleur de grains et composite flour</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>26.3±4.58a</td>
<td>5.18±0.02a</td>
<td>173.6±4.1a</td>
<td>20.8±4.01a</td>
<td>147.3±0.02a</td>
</tr>
<tr>
<td>FCY1</td>
<td>26.8±0.23a</td>
<td>5.8±0.21a</td>
<td>177.5±0.1a</td>
<td>28.4±0.7b</td>
<td>132.4±0.2a</td>
</tr>
<tr>
<td>FCY3</td>
<td>30.9±0.22a</td>
<td>6.1±0.46a</td>
<td>186.1±0.11a</td>
<td>33.9±0.06a</td>
<td>162.0±0.1a</td>
</tr>
<tr>
<td>FCY6</td>
<td>36.4±0.12a</td>
<td>6.5±0.12a</td>
<td>186.2±0.06a</td>
<td>36.8±0.03a</td>
<td>181.9±0.02a</td>
</tr>
<tr>
<td>FCY9</td>
<td>41.8±0.34a</td>
<td>6.5±0.06a</td>
<td>186.6±0.06a</td>
<td>38.6±0.03a</td>
<td>181.2±0.02a</td>
</tr>
<tr>
<td>FCY12</td>
<td>42.8±0.32a</td>
<td>6.5±0.06a</td>
<td>186.6±0.06a</td>
<td>38.6±0.03a</td>
<td>181.2±0.02a</td>
</tr>
</tbody>
</table>

Table 4: Minerals concentrations (mg/100 g on dry weight basis) of wheat flour and composite flours of wheat and taro corms of *Colocasia esculenta* cv. "fouê".

Results are expressed in a dry weight basis. In each line different letters mean significant differences (p < 0.05).

<table>
<thead>
<tr>
<th>Fleur de grains et composite flour</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>26.3±4.58a</td>
<td>5.18±0.02a</td>
<td>173.6±4.1a</td>
<td>20.8±4.01a</td>
<td>147.3±0.02a</td>
</tr>
<tr>
<td>FCF1</td>
<td>26.8±0.23a</td>
<td>5.8±0.21a</td>
<td>177.5±0.1a</td>
<td>28.4±0.7b</td>
<td>132.4±0.2a</td>
</tr>
<tr>
<td>FCF3</td>
<td>30.9±0.22a</td>
<td>6.1±0.46a</td>
<td>186.1±0.11a</td>
<td>33.9±0.06a</td>
<td>162.0±0.1a</td>
</tr>
<tr>
<td>FCF6</td>
<td>36.4±0.12a</td>
<td>6.5±0.12a</td>
<td>186.2±0.06a</td>
<td>36.8±0.03a</td>
<td>181.9±0.02a</td>
</tr>
<tr>
<td>FCF9</td>
<td>41.8±0.34a</td>
<td>6.5±0.06a</td>
<td>186.6±0.06a</td>
<td>38.6±0.03a</td>
<td>181.2±0.02a</td>
</tr>
<tr>
<td>FCF12</td>
<td>42.8±0.32a</td>
<td>6.5±0.06a</td>
<td>186.6±0.06a</td>
<td>38.6±0.03a</td>
<td>181.2±0.02a</td>
</tr>
</tbody>
</table>

DOI: 10.9790/2402-1208012428
Chemical Composition And Nutritional Value Of Composite Wheat Flours (Triticum aestivum) And...

Results are expressed in a dry weight basis In each line different letters mean significant differences (p < 0.05).

FB: Flour of wheat
FCF1: Composite flour of wheat and taro corms of Colocasia esculenta cv “fouê”, proportion 94/6 (p/p)
FCF2: Composite flour of wheat and taro corms of Colocasia esculenta cv “fouê”, proportion 88/12 (p/p)
FCF6: Composite flour of wheat and taro corms of Colocasia esculenta cv “fouê”, proportion 94/6 (p/p)
FCF9: Composite flour of wheat and taro corms of Colocasia esculenta cv “fouê”, proportion 94/6 (p/p)

IV. Conclusion

Composite flour shows good potential for use as a functional agent in bakery products, therefore the evaluation of the functionality of composite flour in test baking should be performed in an increase in the use of composite flour made from many different raw materials in future. This study shows that taro (Colocasia esculenta) can be successfully introduced in the formulation of composite flours, which are low cost and easy to prepare. This is a new method of valuing this very important crop in the diets. The stability of the obtained flour addition. Cereal Chemistry 78(1): 3135.

References

DOI: 10.9790/2402-1208012428 www.iiosjournals.org 28 Page