Effect of The Lavender Essential Oil Fortified Edible Film on Some Properties of Kashar Cheese During Storage Time

Nazan Kavas¹, Gökhan Kavas²

¹(Dairy Products Program, Ege Vocational Training School, Ege University, 35100 İzmir, Turkey)
²(Department of Dairy Technology, Faculty of Agriculture, Ege University, 35100 İzmir, Turkey)

Corresponding Author: Nazan Kavas

Abstract: This study focused on the use of antimicrobial edible coatings and films to reduce populations of foodborne pathogens in foods. The edible films were made by various lavender essential oil (Lavandula Stoechas L. Subsp. Stoechas) concentrations of 1%, 2%, egg white protein powder (EWPP) 5% (w/v) and sorbitol 3% (w/v) as plasticizer. Kashar cheese samples were artificially contaminated with Escherichia coli O157:H7 and Staphylococcus aureus at a level of 10⁶ cfu g⁻¹. After coating some of the Kashar cheese samples with film, all samples were stored at 4 ºC for 30 days. Antimicrobial activities and selected physical-chemical parameters were assessed on the 1st, 7th, 15th and 30th days of storage. The characteristics of the EWPP edible films have good water barrier properties, which improved with the addition of 2% (w/v) lavender essential oil to the film. All lavender essential oil containing films prevented the increase of Escherichia coli O157:H7 and Staphylococcus aureus counts in Kashar cheese for 4 weeks at 4 ºC. During storage, Escherichia coli O157:H7 and Staphylococcus aureus levels increased in the control samples, while they decreased in the film-coated samples.

Keywords: Edible film, Kashar cheese, lavender essential oil

Date of Submission: 17-11-2018 Date of acceptance: 03-12-2018

I. Introduction

Kashar cheese is the most produced cheese variety, after Beyaz cheese in Turkey. Kashar cheese is produced under different names in some Balkan and European countries. Kashkaval in Bulgaria, Kassari in Greece, Kachkawalj in Yugoslavia cheeses are similar to Kashar cheese. Kashar cheese is a semi-hard cheese type, whose production is not governed by one standard technique (Cetinkaya and Soyutemiz, 2004).

Edible films are defined as a thin layer, which can be consumed, coated on a food or placed as a barrier to moisture, oxygen and solute movement between the food and the surrounding environment. Edible films are produced with biologically hydrophilic materials including starch, protein, alginate, cellulose, and carrageenan (Taqi et al., 2011). Edible films obtained exclusively from biopolymers (carbohydrate and protein based) have weak mechanical properties, are brittle and can crack during the drying stage (McHugh and Krocha, 1994). These problems can be overcome by adding plasticizers to the film composition such as glycercol, propylene glycol, sorbitol or polyethylene glycol (Coupland et al., 2000; Dutta et al., 2009). Sorbitol (S) is an important plasticizer due to its lower moisture absorption and 100% dissolution capabilities (Ressouany et al., 1998). With the addition of different essential oils to protein based films, composite films with good water vapor barrier properties can be produced (Gennadios et al., 1998; McHugh et al., 1994). EWP based film coatings produced by the addition of different fruit and vegetable types are effective in food preservation (Sothornvit, 2005). Essential oils are frequently used to control the growth of pathogenic bacteria and degradation in foods due to their antimicrobial activities (Burt, 2004; Padgett et al., 1998; Quattara et al., 2001; Zivanovic et al., 2005). In previous studies on EWP, it has been reported that edible films produced by using EW ovalbumin and lysozyme together provided a packaging material with high antimicrobial properties (Padgett et al., 1995). Different edible film formulations have been developed by using EWP with different biopolymers (Handa et al., 1999; Gennadios et al., 1998).

Lavandula (Lavandula stoechas L. subsp. Stoechas) is an aromatic plant of Lamiaceae family. (Goren et al., 2002). There are two subspecies in Turkey. These are: L. stoechas subsp. stoechas and subsp. cariensis (Davis, 1982). Lavandula stoechas L. subsp. stoechas flower has been reported to contain 0.77-1.2% volatile oil and essential ingredients in essential oil, phentermine, camphor, pinocarvyl acetate, eucalyptol and mirtenol (Gilani et al., 2000). Tanker (1990) determined that the main constituents of volatile oil were 23% camphor and 4% eucalyptol. In Turkey subsp. stoechas from the obtained essential oil composition, 23.29% camphor, 10.87% fenchone, 4.07% eucalyptol, 1.5% linalool and linalyl acetate were detected. In the volatile oil composition obtained in the Aegean Region, 30% camphor, 18% fenchone, 5.3% eucalyptol, 2% linalool and...
linalyl acetate were detected (Sar et al., 1993). It has been determined that essential oil are sedative, anticonvulsant, antimicrobial, antifungal, antioxidant, antispasmodic, antithrombotic and cancer protective effects (Zeybek, 1999). In some studies antimicrobial activity was found to be associated with monoterpoid compounds and linalool, 1,8-Cineole, Camphor, Terpinene-4-ol (Abchin et al., 2013; Rasouli and Rezaie, 2000). The antimicrobial activity in the volatile oil obtained from the flower was associated with α-pinene, 1,8-cineole, fenchone, camphor and myrtenyl acetate (Akgun et al., 2000; Zuzarte et al., 2013).

In this study focused to investigate the effect of coating kashar cheese with edible films obtained by the fortification of S+EWPP based film with lavender essential oils at different concentrations [1% (v/v); 2% (v/v)] on the extension of shelf-life. Also, it was aimed to determine the effects of the film coatings on the physicochemical properties of kashar cheese and specifically the effects of using two antimicrobial essential oils incorporated into the film against Escherichia coli O157:H7 (E.coliO157:H7) and Staphylococcus aureus (S. aureus).

II. Material and Methods

Egg White Protein Powder (EWPP) and D-Sorbitol
For the preparation of coating material, Alfasol® egg white protein powder (EWPP) was purchased from Kimbiotek Chemical Agents Inc. (Istanbul-Turkey) and D-sorbitol (S1876) was obtained from Sigma-Aldrich.

Essential oils and volatile compounds by GC/MS

The lavender (Lavandula stoechas L. subsp. stoechas) flower essential oils (LEOs) were purchased from flora Bornova-Izmir (Turkey). Essential oil was obtained by hydrodistillation for 3 h using a Cleveger-type apparatus (Bouniatrou et al. 2007). The oils used were those of lavender, and the active components were obtained from Sigma-Aldrich (Steinheim, Germany). GC/MS analyses were carried out using Agilent 6890 GC system with Agilent 5973 MS system.

Column: DB-5MS 30m x 0.25mm x 0.25 um (5% Diphenyl / 95% Dimethylpolysiloxan) Agilent.

Oven temperature initially held at 50 °C / 3 min, programmed to 160 °C at 1.5 °C/min, then to 315 °C at 3 °C/min and the final temperature was held for 30 min.

The carrier gas: helium with a flow rate of 1.0 ml/min.

Split mode: 1:20

Enjection volume: 1.0 μl.

The mass spectrometer was operated in the electron impact mode (70 eV). The ion source temperature was held at 230 °C. The transfer-line was maintained at 280 °C. The scanned mass range was from 30 to 500 u.

Fresh Kashar Cheese

Kasar cheese was produced by following the traditional production steps. The production steps of the kashar cheese was given in Table 2.

Coating and Films Preparation and preparation of Kashar cheese samples
Edible films were prepared according to Pintado et al. (2010) and McHugh and Krochta (1994), with some modifications. (Table 1). Preparation of kashar cheese samples; E. coli O157:H7 (ATCC 43895) and S. aureus (ATCC 6538) strains used for the artificial contamination (10⁶ cfu/g) of kashar cheese samples were obtained from Hemakim Corporation (Turkey) (Table 3).

Physical - Chemical Analysis
The cheese composition was analysed by standard methods: dry matter (EN ISO, 2004), pH (SS-3 Zeromatic pH meter, USA) and titratable acidity according to the Soxhlet Henkel method. Weight loss percentages of kashar cheese samples during storage were determined gravimetrically AOAC (2000). The thicknesses of the films were measured with a micrometer (Digimatic Micrometer / Japan). Water vapor permeability of films were determined using ASTM E96-80 (1983) method. WVP was calculated by finding the slope of weight-time line and substituting it in the following formula.

\[
\text{Slope (C)} = \frac{\text{WVP}\times A\times \Delta p}{x} = \frac{C}{A\times \Delta p}
\]

A: Surface area (m²)
WVP: Water vapor permeability (g mm m⁻² h⁻¹ kPa⁻¹)
\(\Delta p\): Partial pressure difference of the gases (kPa)
x: Film thickness (mm)

Microbiological Analysis
Samples were analyzed for E.coli O157:H7 using Sorbitol MacConkey Agar with Cefixime-Tellurite Supplement and incubating at 35-37°C for 24-48 hours. Samples were analyzed for S.aureus using Baird Parker Agar with 5% Egg Yolk Tellurite emulsion and incubating under aerobic conditions at 35-37°C for 24-48 hours. All microbiological analyses were performed using petri films and colonies were counted (Food and Drug Administration, 2001).
Statistical Evaluation

Statistical analyses were performed using the Statistical Package for SPSS version 15 (SPSS, Chicago IL, USA), via one-way analysis of variance. The significance level was set at \(p < 0.05 \).

III. Results and Discussions

Lavanderessential oil containing, camphor 39.21%, 1.8- cineole (eucalyptol) 18.47%, fenchone 15.24%, borneol 6.02%, camfen 5.16%, \(\beta \)-pinene 3.83% velinalool 2.15% was obtained from *Lavandula stoechas* L. *subsp. stoechas* species.

Thickness and WVP values of EWPP\(_{LEO(1)}\), EWPP\(_{LEO(2)}\) obtained by adding LEOs to EWPP are given in Table 4.

Presented relationship between increase in essential oil concentration and the increase in film thickness was statistically significant \((p<0.05)\). Taqi et al. (2011) reported that the film thickness increased and WVP decreased in edible films containing hydrophobic agents such as wax and vegetable oils (Greener and Fennema 1989; Kester and Fennema, 1986; Kamontip and Adisak, 2001). In this study, trends in the film thicknesses were similar to those of water vapor permeability.

During storage, titratable acidity values (°SH) (decrease in pH values) increased in all samples. The expected increase in acidity of samples coated with films prepared with the addition of essential oils was higher than those with control samples. Acidity increased from the 1st day of the storage until the end of the storage. This increase was higher depending on the essential oil concentration; the highest acidity increase occurred with 2% (v/v) essential oil concentrations. The relationship between the increase in acidity and essential oil concentration was significant \((p<0.05)\).

Weight loss in all cheese samples was measured and compared. Weight loss in EWPP\(_{LEO(1)}\), EWPP\(_{LEO(2)}\) and EWPP samples were lower compared to those with C sample. This difference was statistically significant \((p<0.05)\). Water barrier properties increased with the addition of essential oil in a dose-dependent manner.

Antimicrobial effects obtained in uncoated control samples, edible films obtained with the addition of essential oils in different concentrations to EWPP are given in Figure 1. The increase in the antimicrobial activity and the addition of essential oil at all concentrations was statistically significant \((p<0.05)\). The antimicrobial effects of all LEOs supplemented films were higher than control sample. This result was associated with the high camphor 39.21%, 1.8- cineole (eucalyptol) 18.47%, fenchone 15.24%, borneol 6.02%, camfen 5.16% contents of LEOs all significantly contribute to the increased antimicrobial effects.

LEOs (Abchin et al., 2012) are essential oil with strong antimicrobial effects. Our results are consistent with the literature. Additionally, it was demonstrated that the previously demonstrated antimicrobial properties of EWPP is also true for EWPP based edible films. This antimicrobial effect was increased with the addition of LEOs to EWPP based film in a dose-dependent manner.

In addition, the antimicrobial effect of EWPP\(_{LEO(2)}\) during storage was higher than that of EWPP\(_{LEO(1)}\) and C sample. The antimicrobial effect of LEOs was higher on *S. aureus* than *E. coli* O157: H7. In the C sample the *S. aureus* level increased during storage and reached 8 log10 cfu\(^g\) on days 15 and 30. The antimicrobial effect of LEO 2% (v/v) on *E. coli* O157: H7 was higher than LEO\(_{15}\) LEOs added to EWPP at 1% (v/v) showed antimicrobial activity until the end of storage. The bactericidal effect was determined at 30 days at 2% (v/v). *E. coli* O157: H7 LEOs concentration at 1% (v/v), 5 log10 cfu\(^g\) at 15 days, and decreased to 3 log10 cfu\(^g\) at 30 days. But decreased to 3 log10 cfu\(^g\) on the 15th day at 2% (v/v). In the C sample *E. coli* O157: H7 showed an increase during storage. The *E. coli* O157: H7 level detected at the 30th day in the C sample was 8,48 log10 cfu\(^g\).

IV. Conclusions

It was demonstrated that EWPP based films can be exclusively used in edible film production and the appearance properties are similar to other protein based films. This result is consistent with previous findings (Gennadios et al. 1998; Sothornvit, 2005; Yuno-Ohta et al., 1996). Addition of essential oils to EWPP based film improved both physico-chemical and antimicrobial properties in a dose-dependent manner. The best essential oil concentration in terms of physico-chemical and antimicrobial properties was 2% (v/v). Therefore, the present work points at new alternative to synthetic films for the cheese industry.

References

Effect of The Lavender Essential Oil Fortified Edible Film on Some Properties of Kashar Cheese...

Table 1. Production of Traditional Fresh Kashar Cheese

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw milk</td>
<td></td>
</tr>
<tr>
<td>Heating (32–34 °C)</td>
<td></td>
</tr>
<tr>
<td>Commercial liquid rennet addition</td>
<td></td>
</tr>
<tr>
<td>Coagulation (45 min)</td>
<td></td>
</tr>
<tr>
<td>Clot section (1 cm² in size) and rest</td>
<td></td>
</tr>
<tr>
<td>Removal of a portion of the whey (approximately one-third)</td>
<td></td>
</tr>
<tr>
<td>Heating the curd (at 75 ± 1 °C) and mixing</td>
<td></td>
</tr>
<tr>
<td>keep in a 4% salt solution for an hour at room temperature</td>
<td></td>
</tr>
<tr>
<td>store at 5 ± 1 °C for 30 days</td>
<td></td>
</tr>
</tbody>
</table>

Effect of The Lavander Essential Oil Fortified Edible Film on Some Properties of Kashar Cheese

Table 2. Preparation of edible films solution

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Egg White Protein Powder (%5 w/v) solution</td>
</tr>
<tr>
<td>2.</td>
<td>Sorbitol addition (% 3 w/v)</td>
</tr>
<tr>
<td>3.</td>
<td>Centrifugation (20,000 rpm / 1 min)</td>
</tr>
<tr>
<td>4.</td>
<td>pH adjustment (pH=8)</td>
</tr>
<tr>
<td>5.</td>
<td>Heating (45±2 °C/30 min)</td>
</tr>
<tr>
<td>6.</td>
<td>Cooling (room temperature)</td>
</tr>
<tr>
<td>7.</td>
<td>Filtering</td>
</tr>
<tr>
<td>8.</td>
<td>Essential lavender oils addition (1%;2% (v/v))</td>
</tr>
<tr>
<td>9.</td>
<td>Tween 20 (0.5 % (v/v)) addition</td>
</tr>
<tr>
<td>10.</td>
<td>Centrifugation (20,000 rpm / 1 min)</td>
</tr>
</tbody>
</table>

Lavander essential oils fortified edible films (LEOs) was added to the first two parts in different concentrations [1% (v/v) EWPP\text{LEO(1)} and 2% (v/v) EWPP\text{LEO(2)}]. Third part was non coated control (C) sample.

Table 3. Preparation and storage of kashar cheese samples

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kashar Cheese (100 g)</td>
</tr>
<tr>
<td>2.</td>
<td>Artificial contamination (10^6 cfU/g)</td>
</tr>
<tr>
<td>3.</td>
<td>Immersion into inoculum (Hold for 15 minutes)</td>
</tr>
<tr>
<td>4.</td>
<td>First Immersion into film solution (90 seconds)</td>
</tr>
<tr>
<td>5.</td>
<td>Hold (for 3 minutes)</td>
</tr>
<tr>
<td>6.</td>
<td>Second Immersion into film solution (60 seconds)</td>
</tr>
<tr>
<td>7.</td>
<td>Drying (10°C/ 4-5 hours)</td>
</tr>
</tbody>
</table>
Effect of The Lavander Essential Oil Fortified Edible Film on Some Properties of Kashar Cheese.

Table 4. Film thicknesses and water vapor permeability of EWPP_{LEO(1)}, EWPP_{LEO(2)} and based films (n=3).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Thickness (mm) ±SD</th>
<th>Water vapor permeability (g mm m⁻² h⁻¹ kPa⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWPP_{LEO(1)}</td>
<td>0.169 ±0.002</td>
<td>6.52 g mm m⁻² h⁻¹ kPa⁻¹</td>
</tr>
<tr>
<td>EWPP_{LEO(2)}</td>
<td>0.172 ±0.004</td>
<td>6.49 g mm m⁻² h⁻¹ kPa⁻¹</td>
</tr>
</tbody>
</table>

:Standard deviation (n=3)

Figure 1. *E. coli* O157:H7 and *S. aureus* growth in samples coated with lavender essential oil added film and C sample.