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Abstract 
Sand flea insect thrives in hot and humid regions full of dust particles. It attacks humans leading to jiggers 

infection (tungiasis). Spread of jiggers has been recorded in Caribbean, South American and African countries. 

In Kenya, Murangá, Homabay and Siaya Counties are among the top regions affected by tungiasis infections. 

Poverty, lack of sufficient awareness, improper sanitation, and poor control methods are the major reasons for 

the unending spread of jiggers in Kenya. Prevention and treatment measures have been put in place by the 

government and NGO’s to combat the unending new infections, yet the recoveries are still incomplete. A 

number of mathematical frameworks have been put in place to unravel the cyclic behavior of this infectious 

disease. However, intensive study of the dynamical behavior of the disease in both human and flea population 

has not been conducted. In this research, we designed a model of jiggeers infestation which incorporates the 

human and sand flea population in Muranga County, Kenya. We derived an ODE system from SEIR-FLA 

mathematical model to investigate the dynamics of jiggers infestation which incorporates both the human and 

flea population in Muranga County, Kenya. We used the next generation matrix approach by employing 

Mathematica software tools to determine the effective basic reproduction number. We incorporated the 

MATLAB software to generate numerical simulations and the solutions of equations. Results confirmed local 

stability of JFE when 𝑅0 = 4.9827𝑒 − 13 as 𝑡 → ∞ for all the Susceptible, Exposed, Infectious, Recovered 

human compartments and the Egg, Larval, Adult sand flea compartments. All state variables are positive at all 

times 𝑡, and numerical analysis of the invariant region reveals that the model is well-posed. These findings 

confirm that treatment aid in reducing incomplete recoveries of jiggers infestation.  
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I. INTRODUCTION 
Female sand flea insect, scientifically referred to as Tunga penetrans, permeates through human skin 

leading to tungiasis infection. Popular names for jiggers are chigger, chigoe, tungiasis, funza, ndutu, dudu, pico, 

suthi, chica, cique, nigua, bicho de pe’, tu – a great indication that this is an existing infestation [1]. Sand flea is 

a small pin-head-sized insect mainly camouflages in the wall gaps and cracks on the floors and furniture [2]. 

The insect survives under seasonal conditions and is more pronounced during precipitation periods in the sandy 

and dusty zones. 

Severe inflammation coupled with pain, itching, and edema is some of the basic symptoms of tungiasis 

infection. Sand flea insect attacks the knees, feet, hands, and other body parts. The fecundated female sand flea 

burrows its head onto the host’s skin, beneath the toenails or fingernails, and stays for two weeks feeding on the 

host’s blood. It increases in size forming a sack full of eggs which it releases into the ground, and hatch within 

three to four days, the dies [3]. The insect completes its life cycle in the sand in three to four weeks and burrows 

onto the skin when it comes into contact with the host’s feet and other body parts. The pregnant flea entrenches 

itself underneath the nails of the toe and fingernails where it burrows resulting in sores that fill with a round 

sack full of eggs which later form pus, leading to serious inability to walk and perform daily activities 

effectively [4]. 

Jigger infestation is associated with poverty, poor living conditions, and lack of proper sanitation in 

dwelling places as they provide breeding grounds for this insect. In rural schools, this pandemic has contributed 

to a higher proportion of school dropouts and subpar academic performance, inability to walk easily as a result 

of discomfort, failure to carry out daily routines, reduced self-esteem and trauma-a subsequent of 

stigmatization, exposure to other infectious diseases such as HIV/Aids and tetanus resulting from sharing of 

unsterilized needles. Related complications may lead to disabilities and even death if not properly managed. 
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[2]has identified some of the control and management measures such as fumigation of the wall crevices kills 

flea eggs, ensuring adequate sanitation, capacity building, eradication of poverty, putting on shoes all the time, 

as well as treatments, are effective efforts aimed at curbing the spread of this disease. 

In Kenya, jiggers infestation has been ongoing in most of the communities. If jiggers outbreak is not 

adequately controlled, it has the potential to devastate communities’ progress by causing poor living conditions 

and even loss of individuals who are involved in the development sectors. In as much as researchers have 

developed dynamical systems of this sand flea, they failed to investigate the unsuccessful recoveries in these 

endemic regions. As a result, there is a need to address the tungiasis outbreak. This study, therefore, focuses on 

critical analysis of jiggers infestations with incomplete recoveries; with the incorporation of human and flea 

population.The study primarily focuses on creating a dynamical model of tungiasis infestation with incomplete 

recoveries that includes both the flea and human populations, in Muranga County, Kenya.  

Most authors have investigated the social perspective and public awareness of this disease whereas 

little research has been conducted on its scientific modeling. Extensive study on the dynamics of jiggers 

infestation which couples human and flea population has not been done.[5] formulated systems of Ordinary 

Differential Equations (ODEs) in his dynamical study of jigger infection whereas [6]articulated a deterministic 

mathematical model relating human-animal-sand flea interactions to establish an effective rate between the soil 

environment and susceptible human towards tungiasis. In the former, his model depicted an association between 

the animals, the flea, larvae, and the human. A research of dynamical systems on the impacts of public health 

awareness on tungiasis, which is a neglected illness that presents numerous obstacles in endemic populations, 

was conducted by [7]. 

The researchers discovered a model for tungiasis coupled with public health education aimed at 

determination of equilibrium analysis of the stable disease-free and the prevalence states. The authors 

incorporated theory of Lyapunov stability as well as the invariant principle of LaSalle for classification of 

global asymptotic stability of the disease-endemic critical points as unstable when 𝑅𝐸 ≤ 1 and stable if 𝑅𝐸 >
1. [4]modelled jiggers infestation and intervention in the human in Murang’a region. The research incorporated 

the study of [6]with an inclusion of the role of media campaigns towards creating awareness to the general 

public about the disease. This was discovered to be an effective means of minimizing the spread of tungiasis 

and other related complications such as HIV/Aids and Hepatitis B. National awareness campaigns through 

media, community health workers, community health extension workers have been established in Muranga, 

Bungoma, Migori, Homabay, and Siaya counties with the intent to boost appropriate sanitation among 

occupations thereby reducing infestation. Results displayed a positive trend in the decline of the further 

dissemination of this disease. [8]incorporated sanitation as a control tool in the dynamical study of tungiasis in 

Muranga County. Analysis of their model indicated stability points of both endemic and disease-free 

equilibrium points to be locally stable asymptotically for Basic Reproductive Number(𝑅0) above 1 and 𝑅0 

below 1, respectively.[4]concluded that the jiggers infestation model displays backward bifurcation in which 

Jiggers Free Equilibrium (JFE) exists even if the 𝑅0 < 1. This is insufficient information to reduce 𝑅0 below 1 

for containment of this disease. Consequently, direct Lyapunov methods have been used to demonstrate the 

global stability of jiggers’ free equilibrium infestation without backward bifurcation. 

For a better understanding of the dynamical behavior of tungiasis infection,[9] employed ODEs and 

paired them with protection as a means of preventing the infection. Results confirmed the asymptotic stability 

of both the endemic and disease-free critical points. A mathematical model of thermography was developed by 

[10] and applied to the expansion of tungiasis on the skin. To analyze the related skin inflammation brought on 

by tungiasis infections, they employed a one-dimensional bioheat transfer equation known as the Pennes 

equation. The body may suffer harm from this Negleted Tropical Diseases (NTD), according to numerical 

findings, which also suggest that additional skin irritation may be connected. A mathematical model developed 

by [11]examined the impact of intervention methods on tungiasis transmission dynamics. Both disease-free as 

well as endemic stationary points were demonstrated to possess consistent asymptotic characteristics in these 

calculations. By applying Meltzer’s matrix stability theorem & Lyapunov’s approach,they discovered that the 

Disease Free Equilibrium (DFE) is globally stable asymptotically. When employed in combination rather than 

individually, control techniques have a greater influence on tungiasis disease transmission, according to the 

results of a numerical simulation. [12]developed a deterministic framework to assess the role of social 

networking sites in tungiasis disease control. Their model found solutions that are positively invariant and 

bounded, indicating that equilibrium conditions are asymptotically stable at the local level if the fundamental 

reproduction number is less than 1.0. 

Having an aim of studying the most ideal trajectory of tungiasis in accordance with Pontryagin’s 

maximum principle, [13]discovered the SIR-ELPA model. Improved human protection and treatment, as well as 

increased effectiveness against adult fleas, were found to have a significant impact on the ability to prevent and 

control the spread of the disease. [14]argued with regard to optimal-time solutions for controlling tungiasis 

complications with constrained resources. They applied the Pontryagin’s minimal principle to the control 
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parametrization scheme and the interior point method to discover that only bang-bang controls are allowed for 

all the control policies, and then they developed a numerical strategy to implement this result. The outcomes 

demonstrated a trade-off within the most efficient use of resources and the quickest possible elimination. When 

the number of infected humans approaches a threshold 𝜖 , where 0 < 𝜖 < 1  is a predetermined positive 

constant, we say that T is the eradication time of the controlled human-jigger system. In as much as researchers 

have developed dynamical systems of this sand flea, they failed to investigate the unsuccessful recoveries in 

these endemic regions coupled with both human and sand flea population. This study, therefore, aims at critical 

analysis of jiggers infestations with incomplete recoveries between the humans and fleas. 

 

II. THE MODEL 
In this model, we analyze both human and sand flea populations in relation to one other. The human 

population constitutes four compartments; the Susceptible(S), the Exposed(E), the Infested(I), and the 

Recovered(R) populations. The susceptible individuals are at risk of becoming infected by this parasite whereas 

the infested class are those that have acquired the disease. The exposed population is humans who are just 

beginning to be infected. The recovered group, on the other hand, are individuals who have been treated for 

jiggers infestation.At any time, 𝑡 > 0, the total number of human is denoted by, 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) +
𝑅(𝑡). Population of human is being drawn into the susceptible segment at the rate Λ . The Adult sand flea 

attacks and interact with the susceptible individuals at the rate 𝛽 , leading to a force of infestation, 𝛽𝑆𝐴. 

Recovery at a rate, 𝛾 is possible through treatment. Recovered individuals are still susceptible due to lack of 

permanent immunity, for re-infection at a rate 𝜔.Individuals who have been exposed, infected, or recovered can 

die inevitably at the rate of 𝜇 . The exposed group gets infected at the rate, 𝛼 whereas the already-infected 

individuals still become exposed at the rate, 𝛿.The flea population has three compartments; Egg stage (F), the 

Pupal-Larval stage (L), and the Adult stage (A). Adult sand fleas in the infected humans lay eggs onto the 

ground or crevices, at the rate, 𝜏. Some of the hatched eggs die at the rate, 𝜐 while the female fleas hatch and 

develop into pupal and larval stage (L) at a rate, 𝜎; which later grows into adult flea at 
𝜖𝜌𝐿

(1+𝐿)
. Some of these 

sand fleas( larval and adult stages) die naturally at the rate, 𝜐. 

 

Model Assumptions 

1.  The ratio of births to deaths in any given population of human is subject to cyclical shifts.  

    2.  Infested population sheds Egg–laying fleas to the environment.  

    3.  There is permanent immunity on recovery.  

 

Model flow chart and Equations 

 

 
Figure 1: The Model flow chart 

 

We have a system of ODEs arising from the chart  
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𝑑𝑆

𝑑𝑡
= Λ − (𝛽𝐴 + 𝜇)𝑆 

 
𝑑𝐸

𝑑𝑡
= 𝛽𝐴𝑆 − (𝛼 + 𝜇)𝐸 + 𝛿𝐼 

 
𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝛾 + 𝜇 + 𝛿)𝐼 

 
𝑑𝐹

𝑑𝑡
= 𝜏𝐼 − (𝜎 + 𝜐𝑓)𝐹 

 
𝑑𝐿

𝑑𝑡
= 𝜎𝐹 −

𝜖𝜌𝐿

(1+𝐿)
− 𝜐𝑙𝐿 

 
𝑑𝐴

𝑑𝑡
=

𝜖𝜌𝐿

(1+𝐿)
− 𝜐𝑎𝐴 

 
𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅 (1) 

where 𝑆(0) > 0 , 𝐸(0) ≥ 0 , 𝐼(0) ≥ 0 , 𝐹(0) ≥ 0 , 𝐿(0) ≥ 0 , 𝐴(0) ≥ 0  and 𝑅(0) ≥ 0  are positive initial 

conditions.  

 

Model Analysis 

Positivity of Solutions 

For a well posed model, all the state variables must be > 0 for all 𝑡 ≥ 0. In this section we need to 

show that all the state variables are positive 𝑡 > 0. In order to show this, we first express all the equations of 

system (1) as;  

 
𝑑𝑆

𝑑𝑡
≥ −𝜇𝑆 

 
𝑑𝐸

𝑑𝑡
≥ −(𝛼 + 𝜇)𝐸 + 𝛿𝐼 

 
𝑑𝐼

𝑑𝑡
≥ −(𝛾 + 𝜇 + 𝛿)𝐼 

 
𝑑𝐹

𝑑𝑡
≥ −(𝜎 + 𝜐𝑓)𝐹 

 
𝑑𝐿

𝑑𝑡
≥ −(𝜖𝜌 + 𝜐𝑙)𝐿 

 
𝑑𝐴

𝑑𝑡
≥ −𝜐𝑎𝐴 

 
𝑑𝑅

𝑑𝑡
≥ −𝜇𝑅 (2) 

 By use of separation of variable method, we solve the first equation of system (2)as follows 
𝑑𝑆

𝑆
≥ −𝜇𝑑𝑡 

⇒  
𝑑𝑆

𝑆
≥ − 𝜇𝑑𝑡 

⇒ ln𝑆 ≥ −(𝜇𝑡 + 𝑐 

⇒ 𝑆(𝑡) ≥ 𝐶𝑒−𝜇𝑡 where  𝐶 = 𝑒𝑐 . 
At 𝑡 = 0, 𝐶 = 𝑆(0) 

Thus 

𝑆(𝑡) ≥ 𝑆(0)𝑒−𝜇𝑡 > 0 for 𝑡 > 0 

 Upon solving the other equations of system (2) as the first equation, we get 𝐸(𝑡) ≥ 𝐸(0)𝑒−(𝛼+𝜇)𝑡 ≥ 0, 

𝐼(𝑡) ≥ 𝐼(0)𝑒−(𝛾+𝜇+𝛿)𝑡 ≥ 0, 

𝐹(𝑡) ≥ 𝐹(0)𝑒−(𝜎+𝜐𝑓 )𝑡 ≥ 0, 
𝐿(𝑡) ≥ 𝐿(0)𝑒−(𝜖𝜌+𝜐𝑙)𝑡 ≥ 0, 

𝐴(𝑡) ≥ 𝐴(0)𝑒−𝜐𝑎 𝑡 ≥ 0 and  

𝑅(𝑡) ≥ 𝑅(0)𝑒−𝜇𝑡 ≥ 0 for 𝑡 > 0 

Clearly, all the state variables are positive 𝑡 > 0 

 

Invariant Region 

Here, we obtain the bounded region of solution of (1). We add the first three equations and the last equation of 

system (1) and get ordinary Differential Equation (ODE) for the total human population size as 

 
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
 (3) 

By using system (1), we substitute the derivatives in equation (3) and simplify the resulting equation to get  

 
𝑑𝑁

𝑑𝑡
≤ Λ − 𝜇𝑁 (4) 

Equation (4) can be written as; 

 

 (𝜇𝑁 − Λ)𝑑𝑡 + 𝑑𝑁 ≤ 0. (5) 

 Let 𝑃 = 𝜇𝑁 − Λ,𝑄 = 1. 
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 Thus 
𝜕𝑃

𝜕𝑁
= 𝜇 and 

𝜕𝑄

𝜕𝑡
= 0 Equation (4) is not an exact ODE. Using integrating factor given by 

𝑒
  

1

𝑄
 
𝜕𝑃

𝜕𝑁
−
𝜕𝑄

𝜕𝑡
  𝑑𝑡

= 𝑒𝜇𝑡 . 
Applying integrating factor on (4) we obtain  

     −10.0𝑐𝑚(𝑒𝜇𝑡𝜇𝑁𝐻 − 𝑒𝜇𝑡Λ)𝑑𝑡 + 𝑒𝜇𝑡𝑑𝑁 ≤ 0. (6) 

 Assume Ψ(𝑁, 𝑡) ≤ 𝑘1 is a solution to equation (6). Then, 
𝜕

𝜕𝑡
Ψ(𝑁, 𝑡) = (𝑒𝜇𝑡𝜇𝑁 − 𝑒𝜇𝑡Λ) 

𝜕

𝜕𝑁
Ψ(𝑁, 𝑡) = 𝑒𝜇𝑡  

Taking integration of the first equation w.r.t t, we get 

  
𝜕Ψ(𝑁, 𝑡)

𝜕𝑡
 𝑑𝑡 =  (𝑒𝜇𝑡𝜇𝑁 − 𝑒𝜇𝑡Λ)𝑑𝑡 + 𝑘2 

⇒ Ψ(𝑁, 𝑡) = 𝑒𝜇𝑡𝑁 − 𝑒𝜇𝑡
Λ

𝜇
+ 𝑘2 ≤ 𝑘1 

     −4.3𝑐𝑚 ⇒ 𝑒𝜇𝑡𝑁 − 𝑒𝜇𝑡
Λ

𝜇
≤ 𝑘    (𝑓𝑜𝑟    𝑘 = 𝑘1 − 𝑘2) (7) 

 At t=0, 𝑘 = 𝑁(0) −
Λ

𝜇
. 

Upon substitution of 𝑘 in equation (7) and making 𝑁 the subject, we get 

𝑁 ≤  𝑁(0) −
Λ

𝜇
 𝑒−𝜇𝑡 +

Λ

𝜇
. 

Thus, as 𝑡 ⟶ ∞, we obtain  

 𝑁(𝑡) ≤
Λ

𝜇
 (8) 

 Therefore 𝑁(𝑡) ≤ max  𝑁(0),
Λ

𝜇
     ∀  𝑡 > 0 

In the flea cycle, the Egg stage (F), the Pupal-Larval stage (L), and the Adult stage (A) are considered as 

populations separately. 

For the the Egg stage (F), we express the 4th equation of (1) as  

 
𝑑𝐹

𝑑𝑡
≤

𝜏Λ

𝜇
− (𝜎 + 𝜐𝑓)𝐹 (9) 

 Solving (9) by use of integrating factor, we obtain  

𝐹 ≤  𝐹(0) −
𝜏Λ

𝜇(𝜎 + 𝜐𝑓)
 𝑒−(𝜎+𝜐𝑓 )𝑡 +

𝜏Λ

𝜇(𝜎 + 𝜐𝑓)
. 

Thus, as 𝑡 ⟶ ∞, we get  

 𝐹(𝑡) ≤
𝜏Λ

𝜇(𝜎+𝜐𝑓 )
 (10) 

 Therefore,𝐹(𝑡) ≤ max  𝐹(0),
𝜏Λ

𝜇(𝜎+𝜐𝑓 )
     ∀  𝑡 > 0 

For the Pupal-Larval stage (L) we rewrite the fifth equation of system (1) as  

 
𝑑𝐿

𝑑𝑡
≤

𝜏𝜎Λ

𝜇 (𝜎+𝜐𝑓 )
−  

𝜖𝜌

(1+𝐿)
+ 𝜐𝑙 𝐿 (11) 

 Since 𝜖𝜌 < (1 + 𝐿), equation (11) can be expressed as  

 
𝑑𝐿

𝑑𝑡
≤

𝜏𝜎Λ

𝜇 (𝜎+𝜐𝑓 )
−  𝜖𝜌 + 𝜐𝑙 𝐿 (12) 

 Solving (12) by use of integrating factor, we obtain  

𝐿 ≤  𝐿(0) −
𝜏𝜎Λ

𝜇(𝜎 + 𝜐𝑓)(𝜖𝜌 + 𝜐𝑙)
 𝑒−(𝜖𝜌+𝜐𝑙)𝑡 +

𝜏𝜎Λ

𝜇(𝜎 + 𝜐𝑓)(𝜖𝜌 + 𝜐𝑙)
. 

As 𝑡 ⟶ ∞, we have  

 𝐿(𝑡) ≤
𝜏𝜎Λ

𝜇(𝜎+𝜐𝑓)(𝜖𝜌+𝜐𝑙)
 (13) 

 Clearly, 𝐿(𝑡) ≤ max  𝐿(0),
𝜏𝜎Λ

𝜇 (𝜎+𝜐𝑓 )(𝜖𝜌+𝜐𝑙)
     ∀  𝑡 > 0 

Lastly, for the Adult stage (A) we have  

 
𝑑𝐴

𝑑𝑡
≤

𝜖𝜌𝜏𝜎 Λ

𝜇(𝜎+𝜐𝑓 )(𝜖𝜌+𝜐𝑙)+𝜏𝜎Λ
− 𝜐𝑎𝐴 (14) 

 Solving (14) by use of integrating factor, we obtain  

𝐴 ≤  𝐴(0) −
𝜖𝜌𝜏𝜎Λ

(𝜇(𝜎 + 𝜐𝑓)(𝜖𝜌 + 𝜐𝑙) + 𝜏𝜎Λ)𝜐𝑎
 𝑒−𝜐𝑎 𝑡 +

𝜖𝜌𝜏𝜎Λ

(𝜇(𝜎 + 𝜐𝑓)(𝜖𝜌 + 𝜐𝑙) + 𝜏𝜎Λ)𝜐𝑎
, 

Hence, as 𝑡 ⟶ ∞, we have;  
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 𝐴(𝑡) ≤
𝜖𝜌𝜏𝜎 Λ

(𝜇(𝜎+𝜐𝑓 )(𝜖𝜌+𝜐𝑙)+𝜏𝜎Λ)𝜐𝑎
 (15) 

 Thus, 𝐴(𝑡) ≤ max  𝐴(0),
𝜖𝜌𝜏𝜎 Λ

(𝜇(𝜎+𝜐𝑓 )(𝜖𝜌+𝜐𝑙)+𝜏𝜎Λ)𝜐𝑎
     ∀  𝑡 > 0 

From the above derivations, the region in which the solution of (1) is bounded is given by =(S, E, I,R, 

F, L, A)  R_+^7; N(t) max N(0),, F(t) max F(0),( +_f), L(t) max L(0),( +_f)(  +_l), A(t) max A(0),  (( +_f)(  

+_l)+)_a   Furthermore, a solution of the model (1) that starts at time 𝑡 ≥ 0 will always stay in the region. As 

result, this model is well posed. 

 

Remark 1 The seventh equation of system (1) is redundant and since R(t) = N(t) − (S(t) + E(t) +
I(t)), it is enough to consider the first six equations of system (1). As a result, the remainder of this project will 

focus on system (16) in the region =(S, E, I, F, L, A)  R_+^6; N(t) max N(0),, F(t) max F(0),( +_f), L(t) max 

L(0),( +_f)(  +_l), A(t) max A(0),  (( +_f)(  +_l)+)_a  , our new system becomes 

 

 
𝑑𝑆

𝑑𝑡
= Λ − (𝛽𝐴 + 𝜇)𝑆 

 
𝑑𝐸

𝑑𝑡
= 𝛽𝐴𝑆 − (𝛼 + 𝜇)𝐸 + 𝛿𝐼 

 
𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝛾 + 𝜇 + 𝛿)𝐼 

 
𝑑𝐹

𝑑𝑡
= 𝜏𝐼 − (𝜎 + 𝜐𝑓)𝐹 

 
𝑑𝐿

𝑑𝑡
= 𝜎𝐹 −

𝜖𝜌𝐿

(1+𝐿)
− 𝜐𝑙𝐿 

 
𝑑𝐴

𝑑𝑡
=

𝜖𝜌𝐿

(1+𝐿)
− 𝜐𝑎𝐴 (16) 

 

Jiggers Free Equilibrium 

Without jiggers infestation, system (16), has a steady state solution referred to as Jiggers Free 

Equilibrium (JFE). In order to calculate the JFE point of this model, we equate the RHS of the equations of 

(16)to zero then let 𝑆 = 𝑆0 , 𝐸 = 𝐸0 , 𝐼 = 𝐼0 = 0 , 𝐹 = 𝐹0 = 0 , 𝐿 = 𝐿0 = 0  and 𝐴 = 𝐴0 = 0  and hence 

𝑆0 =
Λ

𝜇
. The JFE will therefore be given by ℰ0 = (𝑆0,𝐸0, 𝐼0,𝐹0 , 𝐿0 ,𝐴0) =  

Λ

𝜇
, 0,0,0,0,0  

 

Basic Reproduction Number 

Studies by [15], outlined the 𝑅0  as the estimated number of new infectious cases that a normally 

infected person will cause in a completely susceptible community throughout the period of his or her infectious 

lifetime . We calculate the 𝑅0 using next generation matrix approach [16]. Applying this approach, we consider 

the following equations of infectious compartments  

 
𝑑𝐸

𝑑𝑡
= 𝛽𝐴𝑆 − (𝛼 + 𝜇)𝐸 + 𝛿𝐼 

 
𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝛾 + 𝜇 + 𝛿)𝐼 

 
𝑑𝐹

𝑑𝑡
= 𝜏𝐼 − (𝜎 + 𝜐𝑓)𝐹 

 
𝑑𝐿

𝑑𝑡
= 𝜎𝐹 −

𝜖𝜌𝐿

(1+𝐿)
− 𝜐𝑙𝐿 

 
𝑑𝐴

𝑑𝑡
=

𝜖𝜌𝐿

(1+𝐿)
− 𝜐𝑎𝐴 (17) 

 From system (17) we have 

𝑓𝑖 =

 

 
 

𝛽𝐴𝑆
0
0
0
0  

 
 

 and 𝑣𝑖 =

 

 
 
 
 

(𝛼 + 𝜇)𝐸 − 𝛿𝐼

(𝛾 + 𝜇 + 𝛿)𝐼 − 𝛼𝐸

(𝜎 + 𝜐𝑓)𝐹 − 𝜏𝐼
𝜖𝜌𝐿

(1+𝐿)
+ 𝜐𝑙𝐿 − 𝜎𝐹

𝜐𝑎𝐴 −
𝜖𝜌𝐿

(1+𝐿)  

 
 
 
 

 Calculating the Jacobian matrices of 𝑓𝑖  and 𝑣𝑖  at ℰ0  we get 

𝐹 =

 

  
 

0 0 0 0
𝛽Λ

𝜇

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0  

  
 

 and  
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𝑉 =

 

 
 

𝛼 + 𝜇 −𝛿 0 0 0
−𝛼 𝛾 + 𝜇 + 𝛿 0 0 0
0 −𝜏 𝜎 + 𝜐𝑓 0 0

0 0 −𝜎 𝜖𝜌 + 𝜐𝑙 0
0 0 0 −𝜖𝜌 𝜐𝑎 

 
 

 

respectively. 𝑅0  is given by 𝜌(𝐹𝑉−1)  i.e. the largest absolute eigenvalue of the matrix 𝐹𝑉−1 . Using 

Mathematica software to carry out computations, we get  

 𝑉−1 =

 

 
 
 
 
 
 

𝛾+𝜇+𝛿

(𝛼+𝜇 )(𝛾+𝜇+𝛿)−𝛼𝛿

𝛿

(𝛼+𝜇)(𝛾+𝜇+𝛿)−𝛼𝛿
0 0 0

𝛼

(𝛼+𝜇 )(𝛾+𝜇+𝛿)−𝛼𝛿

𝛼+𝜇

(𝛼+𝜇)(𝛾+𝜇+𝛿)−𝛼𝛿
0 0 0

𝛼𝜏

(𝜎+𝜐𝑓)((𝛼+𝜇)(𝛾+𝜇+𝛿)−𝛼𝛿 )

(𝛼+𝜇 )𝜏

(𝜎+𝜐𝑓 )((𝛼+𝜇)(𝛾+𝜇+𝛿)−𝛼𝛿 )

1

𝜎+𝜐𝑓
0 0

𝛼𝜎𝜏

(𝜖𝜌+𝜐𝑙)(𝜎+𝜐𝑓 )((𝛼+𝜇)(𝛾+𝜇+𝛿)−𝛼𝛿 )

(𝛼+𝜇)𝜎𝜏

(𝜖𝜌+𝜐𝑙)(𝜎+𝜐𝑓 )((𝛼+𝜇 )(𝛾+𝜇+𝛿)−𝛼𝛿 )

𝜎

(𝜖𝜌+𝜐𝑙)(𝜎+𝜐𝑓)

1

𝜖𝜌+𝜐𝑙
0

𝛼𝜎𝜏𝜖𝜌

(𝜖𝜌+𝜐𝑙)(𝜎+𝜐𝑓 )((𝛼+𝜇)(𝛾+𝜇+𝛿)−𝛼𝛿 )𝜐𝑎

(𝛼+𝜇)𝜎𝜏𝜖𝜌

(𝜖𝜌+𝜐𝑙)(𝜎+𝜐𝑓 )((𝛼+𝜇 )(𝛾+𝜇+𝛿)−𝛼𝛿 )𝜐𝑎

𝜎𝜖𝜌

(𝜖𝜌+𝜐𝑙)(𝜎+𝜐𝑓)𝜐𝑎

𝜖𝜌

(𝜖𝜌+𝜐𝑙)𝜐𝑎

1

𝜐𝑎 

 
 
 
 
 
 

 (18) 

 Thus 𝑅0 =
𝛽Λ

𝜇
 

𝛼𝜎𝜏𝜖𝜌

(𝜖𝜌+𝜐𝑙)(𝜎+𝜐𝑓 )((𝛼+𝜇 )(𝛾+𝜇+𝛿)−𝛼𝛿 )𝜐𝑎
  

 

 

Local stability of Jiggers-Free Equilibrium 

 Here, we will discuss the local stability of JFE.  

Theorem 1 The Jiggers-free equilibrium ℰ0 is locally asymptotically stable for 𝑅0 < 1 and unstable 𝑅0 > 1.  

 

Proof. We begin the proof by evaluating the Jacobian matrix of system (16) at ℰ0 

 𝐽(ℰ0) =

 

 
 
 
 
 

−𝜇 0 0 0 0 −
𝛽Λ

𝜇

0 −(𝛼 + 𝜇) 𝛿 0 0
𝛽Λ

𝜇

0 𝛼 −(𝛾 + 𝜇 + 𝛿) 0 0 0

0 0 𝜏 −(𝜎 + 𝜐𝑓) 0 0

0 0 0 𝜎 −(𝜖𝜌 + 𝜐𝑙) 0

0 0 0 0 𝜖𝜌 −𝜐𝑎  

 
 
 
 
 

 (19) 

 From matrix (19), the determinant is given by  

𝐷𝑒𝑡 = (𝛼 + 𝜇)(𝛾 + 𝜇 + 𝛿)(𝜎 + 𝜐𝑓)(𝜖𝜌 + 𝜐𝑙)𝜐𝑎𝜇 − (𝜎 + 𝜐𝑓)(𝜖𝜌 + 𝜐𝑙)𝜐𝑎𝛼𝛿𝜇 − 𝛽Λ𝜖𝜌𝛼𝜎𝜏 

and the trace is obtained as 

𝑡𝑟 = −(𝜇 + (𝛼 + 𝜇) + (𝛾 + 𝜇 + 𝛿) + (𝜎 + 𝜐𝑓) + (𝜖𝜌 + 𝜐𝑙) + 𝜐𝑎) 

Applying the Routh Hurwitz criterion [17], matrix (19) has negative eigenvalues because the trace 

(𝑡𝑟) < 0 and the determinant (𝐷𝑒𝑡) > 0 when 𝑅0 < 1. Hence, the JFE point 𝐸0  is locally asymptotically 

stable whenever 𝑅0 < 1 

 

Endemic Equilibrium point 

 This is a steady state when jiggers spread in the population. We denote Endemic Equilibrium by ℰ∗ =
(𝑆∗,𝐸∗, 𝐼∗,𝐹∗, 𝐿∗,𝐴∗).  

Theorem 2 A unique endemic equilibrium point exists if 𝑅0 > 1 

Proof. We begin the proof by replacing of (S, E, I, F, L, A) with ℰ∗ in system (16) and equating the RHS to 

zero to obtain  

 0 = Λ − (𝛽𝐴∗ + 𝜇)𝑆∗ 
 0 = 𝛽𝐴∗𝑆∗ − (𝛼 + 𝜇)𝐸∗ + 𝛿𝐼∗ 
 0 = 𝛼𝐸∗ − (𝛾 + 𝜇 + 𝛿)𝐼∗ 
 0 = 𝜏𝐼∗ − (𝜎 + 𝜐𝑓)𝐹∗ 

 0 = 𝜎𝐹∗ −
𝜖𝜌 𝐿∗

(1+𝐿∗)
− 𝜐𝑙𝐿

∗ 

 0 =
𝜖𝜌 𝐿∗

(1+𝐿∗)
− 𝜐𝑎𝐴

∗ (20) 

 Inferring to the 5𝑡ℎ  and 6𝑡ℎ  equations of system (20), we deduce 
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 𝐹∗ =
𝜐𝑙𝐿

2∗+(𝜐𝑙+𝜖𝜌 )𝐿∗

𝜎(1+𝐿∗)
 (21) 

 

 𝐴∗ =
𝜖𝜌 𝐿∗

(1+𝐿∗)𝜐𝑎
. (22) 

 Using the 4𝑡ℎ  equation of system (20) and equation (21), we get  

 𝐼∗ =
(𝜎+𝜐𝑓 )(𝜐𝑙𝐿

2∗+(𝜐𝑙+𝜖𝜌 )𝐿∗)

𝜏𝜎 (1+𝐿∗)
. (23) 

 Substituting equation (23) in the third equation of system (20) and rearranging, we deduce  

 𝐸∗ =
(𝛾+𝜇+𝛿)(𝜎+𝜐𝑓 )(𝜐𝑙𝐿

2∗+(𝜐𝑙+𝜖𝜌 )𝐿∗)

𝛼𝜏𝜎 (1+𝐿∗)
. (24) 

 Using the first of system (20) and equation (22), we get  

 𝑆∗ =
(1+𝐿∗)𝜐𝑎Λ

𝛽𝜖𝜌 𝐿∗+(1+𝐿∗)𝜐𝑎𝜇
 (25) 

 Now we substitute equations (22), (23), (24) and (25) in the the 2𝑛𝑑  equation of system (20) an simplify the 

resulting equation to obtain  

 𝐴2𝐿
2∗ + 𝐴1𝐿

∗ + 𝐴0 = 0 (26) 

where 

𝐴0 =  −𝛽𝜖Λ𝛼𝜏𝜎 +  𝜖𝜌 + 𝜐𝑙  𝜎 + 𝜐𝑓   𝛼 + 𝜇  𝛾 + 𝜇 + 𝛿 − 𝛼𝛿 𝜐𝑎𝜇 

 

𝐴1 =  −𝛽𝜖Λ𝛼𝜏𝜎 +  𝜖𝜌 + 𝜐𝑙  𝜎 + 𝜐𝑓   𝛼 + 𝜇  𝛾 + 𝜇 + 𝛿 − 𝛼𝛿 𝜐𝑎𝜇 + (𝛼 𝛾 + 𝜇 + 𝜇 𝛾 + 𝜇 + 𝛿 )(𝜎

+ 𝜐𝑓)(𝜐𝑎𝜇𝜐𝑙 + 𝛽𝜖𝜌 𝜐𝑙 + 𝜖𝜌 ) 

𝐴2 =  𝛼 𝛾 +  𝜎 + 𝜐𝑓 𝛽𝜖𝜌𝜐𝑙 + 𝜇 𝛾 + 𝜇 + 𝛿  𝜎 + 𝜐𝑓 𝛽𝜖𝜌𝜐𝑙 + 𝜐𝑎𝜇𝛼 𝛾 + 𝜇  𝜎 + 𝜐𝑓 𝜐𝑙
+ 𝜐𝑎𝜇

2 𝛾 + 𝜇 + 𝛿  𝜎 + 𝜐𝑓 𝜐𝑙  

 

 

Hence, the number of possible positive real zeros of equation (26) is dependent on the signs of 𝐴2, 𝐴2 and 𝐴0. 

Using the Descartes Rule of signs by [18], we analyze equation (26). 

Clearly, 𝐴2 > 0, 𝐴0  
> 1if𝑅0 < 1
< 1if𝑅0 > 1

  and 

𝐴1

 
 
 
 

 
 
 

> 1if𝑅0 < 1

< 1if𝑅0 > 1and 
𝛼(𝛾 + 𝜇) + 𝜇(𝛾 + 𝜇 + 𝛿))(𝜎 + 𝜐𝑓)(𝜐𝑎𝜇𝜐𝑙 + 𝛽𝜖𝜌(𝜐𝑙 + 𝜖𝜌)) <

((𝜖𝜌 + 𝜐𝑙)(𝜎 + 𝜐𝑓)((𝛼 + 𝜇)(𝛾 + 𝜇 + 𝛿) − 𝛼𝛿)𝜐𝑎𝜇 − 𝛽𝜖𝜌Λ𝛼𝜏𝜎)
 

> 1if𝑅0 > 1and 
𝛼(𝛾 + 𝜇) + 𝜇(𝛾 + 𝜇 + 𝛿))(𝜎 + 𝜐𝑓)(𝜐𝑎𝜇𝜐𝑙 + 𝛽𝜖𝜌(𝜐𝑙 + 𝜖𝜌)) >

((𝜖𝜌 + 𝜐𝑙)(𝜎 + 𝜐𝑓)((𝛼 + 𝜇)(𝛾 + 𝜇 + 𝛿) − 𝛼𝛿)𝜐𝑎𝜇 − 𝛽𝜖𝜌Λ𝛼𝜏𝜎)
 

  

According to [18], the number of positive real zeros of equation (6.1)is equal to the number of changes 

in the signs of the coefficients of equation (6.1) or less than this by an even number. Thus we summarize the 

possibilities of positive zeros (6.1) in Table 1 

 

Table  1: Zeros of Equation (26) 
Cases 𝑨𝟐 𝑨𝟏 𝑨𝟎 𝑹𝟎 Number of 

Sign Changes 

Number of 

Positive real zeros 

i.  + + + 𝑅0 < 1 0 0 

ii.  + - - 𝑅0 > 1 1 1 

iii.  + + - 𝑅0 > 1 1 1 

 

From cases ii and iii in Table 1 it is clear that a unique endemic equilibrium exists whenever 𝑅0 > 1 

 

Local stability of endemic equilibrium point 

 Here, we investigate local stability of ℰ∗ 
Theorem 3 ℰ∗ is locally asymptotically stable if 𝑅0 > 1 

 

Proof. We use Center manifold theory [19]to prove this theorem by investigating the existence of forward 

bifurcation at 𝑅0 = 1 . Applying Theorem 4.1 of [19], we consider the transmission rate 𝛽  as bifurcation 

parameter such that 𝑅0 = 1 if and only if 

𝛽 = 𝛽∗ =
(𝜖𝜌 + 𝜐𝑙)(𝜎 + 𝜐𝑓)((𝛼 + 𝜇)(𝛾 + 𝜇 + 𝛿) − 𝛼𝛿)𝜐𝑎𝜇

Λ𝛼𝜎𝜏𝜖𝜌
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Then we let 𝑆 = 𝑥1, 𝐸 = 𝑥2, 𝐼 = 𝑥3, 𝐹 = 𝑥4, 𝐿 = 𝑥5, 𝐴 = 𝑥6 and 𝛽 = 𝛽∗ 
Thus system (16) becomes  

 
𝑑𝑥1

𝑑𝑡
= Λ − (𝛽∗𝑥6 + 𝜇)𝑥1 

 
𝑑𝑥2

𝑑𝑡
= 𝛽∗𝑥6𝑥7 − (𝛼 + 𝜇)𝑥2 + 𝛿𝑥3 

 
𝑑𝑥3

𝑑𝑡
= 𝛼𝑥2 − (𝛾 + 𝜇 + 𝛿)𝑥3 

 
𝑑𝑥4

𝑑𝑡
= 𝜏𝑥3 − (𝜎 + 𝜐𝑓)𝑥4 

 
𝑑𝑥5

𝑑𝑡
= 𝜎𝑥4 −

𝜖𝜌 𝑥5

(1+𝑥5)
− 𝜐𝑙𝑥5 

 
𝑑𝑥6

𝑑𝑡
=

𝜖𝜌 𝑥5

(1+𝑥5)
− 𝜐𝑎𝑥6 (27) 

 

 

Remark 2 System (26) can be rewritten as 
𝑑𝑿

𝑑𝑡
= 𝐻(𝑥) where 𝑋 = (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6)𝑇  and 𝐻 = (ℎ1,

ℎ2, ℎ3 , ℎ4 , ℎ5, ℎ6)𝑇  

  Computing the Jacobian matrix of system (26), at ℰ0 we obtain  

 𝐽(ℰ0) =

 

 
 
 
 
 

−𝜇 0 0 0 0 −
𝛽∗Λ

𝜇

0 −(𝛼 + 𝜇) 𝛿 0 0
𝛽∗Λ

𝜇

0 𝛼 −(𝛾 + 𝜇 + 𝛿) 0 0 0

0 0 𝜏 −(𝜎 + 𝜐𝑓) 0 0

0 0 0 𝜎 −(𝜖𝜌 + 𝜐𝑙) 0

0 0 0 0 𝜖𝜌 −𝜐𝑎  

 
 
 
 
 

 (28) 

 Let 𝐮 = (𝑢1,𝑢2,𝑢3,𝑢4,𝑢5,𝑢6)𝑇  be the right eigenvector of matrix (27) when 𝑅0 = 1 then  

 

 
 
 
 
 
 
−𝜇 0 0 0 0 −

𝛽∗Λ

𝜇

0 −(𝛼 + 𝜇) 𝛿 0 0
𝛽∗Λ

𝜇

0 𝛼 −(𝛾 + 𝜇 + 𝛿) 0 0 0

0 0 𝜏 −(𝜎 + 𝜐𝑓) 0 0

0 0 0 𝜎 −(𝜖𝜌 + 𝜐𝑙) 0

0 0 0 0 𝜖𝜌 −𝜐𝑎  

 
 
 
 
 
 

 

  
 

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6 

  
 

= 𝟎 

⇒

 
 
 
 
 

 
 
 
 −𝜇𝑢1 −

𝛽∗Λ

𝜇
𝑢6 = 0

−(𝛼 + 𝜇)𝑢2 + 𝛿𝑢3 +
𝛽∗Λ

𝜇
𝑢6 = 0

𝛼𝑢2 − (𝛾 + 𝜇 + 𝛿)𝑢3 = 0
𝜏𝑢3 − (𝜎 + 𝜐𝑓)𝑢4 = 0

𝜎𝑢4 − (𝜖𝜌 + 𝜐𝑙)𝑢5 = 0
𝜖𝜌𝑢5 − 𝜐𝑎𝑢6 = 0

  

⇒

 
 
 
 
 
 
 

 
 
 
 
 
 𝑢1 = −

𝛽∗Λ𝛼𝜏𝜎𝜖𝜌

𝜇2(𝜖𝜌 + 𝜐𝑙)(𝜎 + 𝜐𝑓)(𝛾 + 𝜇 + 𝛿)𝜐𝑎
𝑢2

𝑢2 = 𝑢2 > 0

𝑢3 =
𝛼

(𝛾 + 𝜇 + 𝛿)
𝑢2

𝑢4 =
𝛼𝜏

(𝜎 + 𝜐𝑓)(𝛾 + 𝜇 + 𝛿)
𝑢2

𝑢5 =
𝛼𝜏𝜎

(𝜖𝜌 + 𝜐𝑙)(𝜎 + 𝜐𝑓)(𝛾 + 𝜇 + 𝛿)
𝑢2

𝑢6 =
𝛼𝜏𝜎𝜖𝜌

(𝜖𝜌 + 𝜐𝑙)(𝜎 + 𝜐𝑓)(𝛾 + 𝜇 + 𝛿)𝜐𝑎
𝑢2

  

 Also, let 𝐯 = (𝑣1 , 𝑣2 , 𝑣3 , 𝑣4, 𝑣5 , 𝑣6)𝑇  be the left eigenvector of matrix (28) corresponding with zero eigenvalue 
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then  

 

 
 
 
 
 

−𝜇 0 0 0 0 0

0 −(𝛼 + 𝜇) 𝛼 0 0 0

0 𝛿 −(𝛾 + 𝜇 + 𝛿) 𝜏 0 0

0 0 0 −(𝜎 + 𝜐𝑓) 𝜎 0

0 0 0 0 −(𝜖𝜌 + 𝜐𝑙) 𝜖𝜌

−
𝛽∗Λ

𝜇

𝛽∗Λ

𝜇
0 0 0 −𝜐𝑎  

 
 
 
 
 

 

  
 

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6 

  
 

= 𝟎 

⇒

 
 
 
 
 

 
 
 
 
−𝜇𝑣1 = 0
−(𝛼 + 𝜇)𝑣2 + 𝛼𝑣3 = 0

𝛿𝑣2 − (𝛾 + 𝜇 + 𝛿)𝑣3 + 𝜏𝑣4 = 0

−(𝜎 + 𝜐𝑓)𝑢4 + 𝜎𝑣5 = 0

−(𝜖𝜌 + 𝜐𝑙)𝑣5 + 𝜖𝜌𝑣6 = 0

−
𝛽∗Λ

𝜇
𝑣1 +

𝛽∗Λ

𝜇
𝑣2 − 𝜐𝑎𝑣6 = 0

  

⇒

 
 
 
 
 
 
 

 
 
 
 
 
 
𝑣1 = 0
𝑣2 = 𝑣2 > 0

𝑣3 =
𝛽∗Λ𝜖𝜌𝜎𝜏 + 𝛿(𝜖𝜌 + 𝜐𝑙)(𝜎 + 𝜐𝑓)𝜐𝑎𝜇

(𝛾 + 𝜇 + 𝛿)(𝜖𝜌 + 𝜐𝑙)(𝜎 + 𝜐𝑓)𝜐𝑎𝜇
𝑣2

𝑣4 =
𝛽∗Λ𝜖𝜌𝜎

(𝜖𝜌 + 𝜐𝑙)(𝜎 + 𝜐𝑓)𝜐𝑎𝜇
𝑣2

𝑣5 =
𝛽∗Λ𝜖𝜌

(𝜖𝜌 + 𝜐𝑙)𝜐𝑎𝜇
𝑣2

𝑣6 =
𝛽∗Λ

𝜐𝑎𝜇
𝑣2

  

 Now, as explained in Theorem 4.1 of [19], we derive the related bifurcation parameters, a and b; 

𝑎 =  𝑣𝑘𝑢𝑖𝑢𝑗
𝜕2ℎ𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0,0)

𝑛

𝑘 ,𝑖 ,𝑗=1

 

𝑏 =  𝑣𝑘𝑢𝑖
𝜕2ℎ𝑘
𝜕𝑥𝑖𝜕𝛽

∗
(0,0)

𝑛

𝑘 ,𝑖=1

 

 

We first get the non-zero partial derivatives of model system (27) evaluated at ℰ0 to get the corresponding 

bifurcation coefficient a. As a result, it follows that  

 
𝜕2ℎ1

𝜕𝑥1𝜕𝑥6
= −𝛽 

 
𝜕2ℎ2

𝜕𝑥1𝜕𝑥6
= 𝛽 

 
𝜕2ℎ5

𝜕𝑥5
2 = 2𝜖𝜌 

 
𝜕2ℎ6

𝜕𝑥5
2 = −2𝜖𝜌 (29) 

 so that  

 

𝑎 = 𝑣1𝑢1𝑢6
𝜕2ℎ1

𝜕𝑥1𝜕𝑥6
+ 𝑣2𝑢1𝑢6

𝜕2ℎ2

𝜕𝑥1𝜕𝑥6
+ 𝑣5𝑢5

2 𝜕2ℎ5

𝜕𝑥5
2 + 𝑣6𝑢5

2 𝜕2ℎ6

𝜕𝑥5
2

= 𝑣2𝑢2
2  −

𝛽2Λ𝛼2𝜏2𝜎2𝜖2𝜌2

(𝜖𝜌+𝜐𝑙)
2(𝜎+𝜐𝑓 )2(𝛾+𝜇+𝛿)2𝜐𝑎

2𝜇2 +
2𝛽Λ𝜖2𝜌2𝛼2𝜏2𝜎2

(𝜖𝜌+𝜐𝑙)
3(𝜎+𝜐𝑓 )2(𝛾+𝜇+𝛿)2𝜐𝑎𝜇

−
2𝛽Λ𝜖𝜌𝛼2𝜏2𝜎2

(𝜖𝜌+𝜐𝑙)
2(𝜎+𝜐𝑓 )2(𝛾+𝜇+𝛿)2𝜐𝑎𝜇

 

= −𝑣2𝑢2
2  

𝛽2Λ𝛼2𝜏2𝜎2𝜖2𝜌2

(𝜖𝜌+𝜐𝑙)
2(𝜎+𝜐𝑓 )2(𝛾+𝜇+𝛿)2𝜐𝑎

2𝜇2 +
2𝛽Λ𝜖𝜌𝛼2𝜏2𝜎2

(𝜖𝜌+𝜐𝑙)
3(𝜎+𝜐𝑓 )2(𝛾+𝜇+𝛿)2𝜐𝑎𝜇

 1 −
𝜖𝜌

(𝜖𝜌+𝜐𝑙)
  

 (30) 

 Furthermore, the non-zero partial derivatives associated with b are  

 
𝜕2ℎ1

𝜕𝑥6𝜕𝛽
∗ = −

Λ

𝜇
 

 
𝜕2ℎ2

𝜕𝑥6𝜕𝛽
∗ =

Λ

𝜇
 (31) 
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 so that  

 

𝑏 = 𝑣1𝑢6
𝜕2ℎ1

𝜕𝑥6𝜕𝛽
∗ (0,0) + 𝑣2𝑢6

𝜕2ℎ2

𝜕𝑥6𝜕𝛽
∗ (0,0)

= 𝑣2
𝛼𝜏𝜎𝜖𝜌

(𝜖𝜌+𝜐𝑙)(𝜎+𝜐𝑓 )(𝛾+𝜇+𝛿)𝜐𝑎
𝑢2

Λ

𝜇

= 𝑣2𝑢2  
Λ𝛼𝜏𝜎𝜖𝜌

(𝜖𝜌+𝜐𝑙)(𝜎+𝜐𝑓 )(𝛾+𝜇+𝛿)𝜐𝑎𝜇
 

> 0

 (32) 

Forward bifurcation happens at 𝛽 = 𝛽∗(𝑅0 = 1) according to Theorem 4.1 in[19]. If 𝛽 > 𝛽∗ , the 

theorem states that there exists a positive equilibrium point that is locally asymptotically stable. It’s worth 

noting that 𝛽 > 𝛽∗ implies 𝑅0 > 1. As a result, if 𝑅0 > 1, the sole endemic equilibrium point that occurs if 

𝑅0 > 1 is locally asymptotically stable.  

 

III. NUMERICAL SIMULATION 
Utilizing the values in Table 2, numerical simulations are run to visually depict the dynamics of a Jiggers 

infestation.  

 

Table  2: Parameter values 
Parameter Description Value Source 

Λ The recruitment rate of the human population into susceptible 5.36 [20] 

𝛽 Exposure rate of the susceptible humans 8.5𝑒−6 Estimated 

𝛼 The infection rate of the exposed humans 5.03𝑒−2 Estimated 

𝛾 The recovery rate of the infected humans 0.731 Estimated 

𝜇 The natural death rate of humans 5.4𝑒−5 [20] 

𝛿 The rate at which the infested humans become exposed 0.2 Estimated 

𝜐𝑓  The rate at which sand flea eggs die naturally 0.09 [21] 

𝜐𝑙  Sand flea larval and pupal natural mortality rates 0.049525 [21] 

𝜐𝑎  Adult sand flea mortality rates 0.005 [21] 

𝜏 The rate at which eggs are laid by sand flea from infected 

humans 

0.001  Estimated 

𝜎 The rate at which flea eggs develop into larval and pupal stages  0.0126665 [21] 

𝜌 The rate at which larvae develop into adult sand fleas 0.016665 [21] 

𝜖 The proportion of larvae that develop into adult fleas 0.2 [21] 

 

IV. RESULTS AND DISCUSSIONS 

 
Figure 2: The dynamics of exposed and infested groups at different rates of incomplete recoveries 

 

Figure 2 displays the curves of the solutions of exposed and infested classes at different rates of incomplete 

recovery in a and b respectively.  

Figure  2: (a)  The dynamics of exposed population at different rates of incomplete recoveries. The 
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incomplete recovery rate (𝛿) ranges from 0 to 0.9, where 𝛿 = 0 implies that there is no incomplete recovery . 

As the incomplete recovery rate increases, the curves of the exposed class take much time to converge to zero  

   (b) The dynamics of infested population at different rates of incomplete recoveries. The incomplete recovery 

rate (𝛿) ranges from 0 to 0.9, where 𝛿 = 0 implies that there is no incomplete recovery . As incomplete 

recovery rate increases, the curves of the infested class take much time to converge to zero 

This indicates that when there is high incomplete rate, jiggers infestation will somehow persist in he population 

before eradication. 

 

 
Figure 3: The dynamics of infested population at different rates of treatments. 

 

Figure 3 shows the curves of the solutions of infested class at different rates of treatment. The 

treatment rate of 𝛾 = 0 represents no treatment. When 𝛾 = 0 the curve demonstrate that Jiggers infestation 

persists in the population. Also as the rate of treatment increases, Jiggers infestation decreases in the population. 
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Figure 4: The dynamics of human population at JFE 

 
Figure 5: The dynamics of sand flea population at JFE 

 

Figure 4 and 5 shows the local stability of jiggers-free equilibrium when 𝑅0 = 4.9827𝑒−13 < 1 as 

𝑡 → ∞ for susceptible population (a), exposed population (b), infested population (c) in humans whereas; flea 

eggs (a), sand fleas at larval and pupal stages (b) and adult fleas (c) in the flea segments.  From the Figure 4 

(a)-(c) and Figure 5 (a)-(c), it can be seen that the solution curves of various compartments tend to the JFE. That 

is, the solution curve of susceptible population tends to 
Λ

𝜇
 while other solution curves tend to zero. Thus, the 

theoretical results in Theorem 1 are similar to numerical simulation results. 

 

V. CONCLUSION 
A mathematical model of jiggers’ infestation with incomplete recoveries incorporating the flea 

population was developed in this research project. We conducted an analysis of the model taking into account 

the invariant region, and came to the conclusion that the model is well-posed and that the solution sets enter and 

remain in the region for all time to come. After examining the model’s positivity, it was determined that all state 

variables are positive for all time t. 

We computed the 𝑅0 using next generation matrix approach[16]. We also analyzed the local stability 

of Jiggers free equilibrium point and endemic equilibrium point by applying the Routh Hurwitz criterion [17] 

and Center manifold theory [19] respectively. This analysis depicted that, the Jiggers free equilibrium point is 

locally asymptotically stable when 𝑅0 < 1 and the endemic equilibrium point is locally asymptotically stable 

when 𝑅0 > 1. 

Numerical Simulation results showed that the given system approaches the Jiggers-free equilibrium 

(JFE) which is consistent with Theorem 1. It also showed that Jiggers infestation decreases with increase of 

treatment, in Muranga County, Kenya.  
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