Analytical approaches for Optimal Placement and sizing of Distributed generation in Power System

Mohit Mittal*, Rajat Kamboj**, Shivani Sehgal***

*Student of Electrical & Electronics Engg., Doon Valley Institute of Engg. & Technology, Karnal, India. **Assistant Professor, Department of EEE, Doon Valley Institute of Engg. & Technology, Karnal, India. *** Assistant Professor, Department of EEE, Doon Valley Institute of Engg. & Technology, Karnal, India.

Abstract- This work proposes a new algorithm which investigates the performance of Distribution system with multiple DG sources for the reduction in the line loss, by knowing the total number of DG units that the user is interested to connect. Strategic placement of multiple DG sources for a distribution system planner is a complex combinatorial optimization problem.

The new and fast algorithm is developed for solving the power flow for radial distribution feeders taking into account embedded distribution generation sources. Also, new approximation formulas are proposed to reduce the number of required solution iterations. Power flow techniques (PF) for calculating Network performance index (NPI), Genetic algorithm in search of best locations, with considering NPI as fitness function.

I. INTRODUCTION

The impact of DG in system operating characteristics, such as electric losses, voltage profile, stability and reliability needs to be appropriately evaluated. The problem of DG allocation and sizing is of great importance. The installation of DG units at non-optimal places can result in an increase in system losses, implying in an increase in costs and thereof having an effect of opposite to the desired. For that reason the use of an optimization method capable of indicating the best solution for a given distribution network can be very useful for the system planning engineer when dealing with the increase of DG penetration that is happening nowadays.

System Description

II. MATHEMATICAL FORMULATION

Consider a three-phase, balanced radial distribution feeder with n buses, I laterals and sublatera generations. Also, nDG distributed and nC shunt capacitors as shown in figure 3311s.

Fig. 1 : Redial Distribution feeder model including DG and Capacitor

The three recursive branch power flow equations are:

$$P_{i+1} = P_i - r_{i+1} (P_i^2 + Q_i^2) / V_i^2 - P_{Li+1} + \mu_p A P_{i+1}$$
(2.1 a)

$$Q_{i+1} = Q_i - x_{i+1} (P_i^2 + Q_i^2) / V_i^2 - Q_{Li+1} + \mu_p A Q_{i+1}$$
 (2.1 b)

$$V_{2i+1} = V_i^{2-2} (r_{i+1}P_i + x_{i+1}Q_i) + (r_{i+1}^2 + x_{i+1}^2) x (P_i^2 + Q_i^2) / V_i^2$$
(2.1 c)

The following terminal conditions should be satisfied [6]:

i. At the end of the main feeder, laterals and sublaterals as shown in fig.2.1:

$$P_n = Q_n = 0$$
 (2.2)
 $P_{km} = Q_{km} = 0$ (2.3)

ii. The voltage at bus k is the same voltage of its lateral i.e:

$$\mathbf{V}_{k} = \mathbf{V}_{k0} \tag{2.4}$$

The real and reactive power losses of each section connecting two buses are:

$$P_{\text{lossi+1}} = (P_i^2 + Q_i^2 / V_i^2)r_{i+1}$$
(2.5)

$$Q_{\text{lossi+1}} = (P_i^2 + Q_i 2 / V_i^2) x_{i+1}$$
(2.6)

III. DG SIZING ISSUES

For single DG case, The DG optimal Size will be done by using Analytical Method based on Exact Loss Formula.

The real power loss in a system is given by

$${}^{N} P_{L}^{N} - \sum_{i-1}^{N} \sum_{j=1}^{X} \left[x_{ij}(P_{i}Pj + Q_{i}Qj) + \beta_{ij}(Q_{i}P_{i} - PjQj) \right]$$
(2.7)

Where

$$X_{ij} = \frac{rg}{V_i V_i} \cos(\delta i - \delta j), \beta = \frac{nij}{V_i V_i} (\delta i - \delta j)$$

 $Ri + jx_{ij} = z_{ij}$ are the ij^{th} element of $[Z_{Bus}]$ matrix.

Analytical method is based on the fact that the power loss against injected power is a parabolic function and at minimum losses the rate of change of losses with respect to injected power becomes zero.

$$\frac{\partial \mathbf{P}_{\mathrm{L}}}{\partial \mathbf{P}_{\mathrm{i}}} = 2 \sum \left(x_{ij} P_j - \beta_i \mathbf{Q} \cdot_i \right) = 0 \right)$$
(2.8)

Where P_i is the real power injection at node I, which is the difference between real power generation and the real power demand at that node.

$$\mathbf{P}_{i} - (\mathbf{i}\mathbf{P}_{\mathrm{DG}i} \quad \mathbf{P}_{\mathrm{D}i}) \tag{2.9}$$

Where P_{dgi} is the real power injection from DG placed node I, and Pli is Load at node i. By combining equations results in to

$$P_{Dgi} - P_{Di} + 1/\alpha_{ij} [\beta_{ij} Q_i - \sum_{i=1 \neq i}^{N}](\alpha_{ij} P_j - \beta_{ij} Q_i)$$

The above equation gives the optimum size of DG for each bus I, for the loss to be minimum. Any size of DG other than P_{dgi} placed at bus I, will lead to higher loss. In calculating the optimum sizes of DG at various locations, using equation (2.10), it was assumed that the values of variable remain unchanged. This result in small difference between the optimum sizes obtained by this approach and repeated load flow.

(2.10)

IV. PROPOSED ALGORITHM

4.1 Algorithm for Single DG case

The developed algorithm is explained stepwise as follows:

- Step 1: First Read the Distribution Network Data and DG size.
- Step 2: Give Network Data to Power flow Algorithm to get base case power flow.
- Step 3: Save base case power flow for later use.
- Step 4: Calculate the Network performance for Different DG.
- Step 5: Insert the DG at which the NPI value closer to unity & optimize the DG size.
- Step 6: Evaluate NPI with the help of base case power flow and Power flow with single DG inserted case.
- Step 7: Print results and stop.

4.2 Algorithm for Multiple DG

The following Algorithm is developed with the help of New and Fast Power Flow

Solution Algorithm and Genetic Algorithm and is used to get the appropriate results. The developed algorithm is explained stepwise as follows:

- Step 1: First read the Distribution Network Data.
- Step 2: Give Network Data to New and Fast Powerflow Algorithm to get base case powerflow.
- Step 3: Save base case powerflow for later use.
- Step 4: Read Inserting Distributed Generators capacities. [Market available DG sizes 100KW, 220KW, 300KW, 500KW, 750KW, 1KW, 1.6MW]
- Step 5: Read Bus numbers for DG insertions from Genetic Algorithm. If this is first time GA will give Initial population, otherwise GA will give New Population.
- Step 6: Again apply powerflow for Distribution system with the inserted DG at the position from GA with the help of New and Fast powerflow Algorithm.
- Step 7: Evaluate Multi Objective Index with the help of Base case powerflow and powerflow with DG inserted.
- Step 8: Repeat step 6&7 for all combination of GA population.
- Step 9: Check for number.

TEST SYSTEM

5.1

- Step 10: Give NPI values as fitness values to the GA.
- Step 11: With the help of fitness function values GA will do the operations (Selection, Crossover, Mutation, and Elitism) and generate new population next go to step5.
- Step 12: Save the n best results and go to next Step
- Step 13: For every best result decrease the capacity of DG with fixed % of their individual capacities and do the same for the maximum number of iterations.
- Step 14: Lower limit of DG capacity will be 1% of Total load.
- Step 15: Run powerflow with for all combinations of new capacities of DG and calculate NPI.
- Step 16: Now compare these results with previously saved results fitness values, and print the results according to the best fitness values.
- Step 17: Stop Corresponding Flowchart is as follows:

V. CASE STUDY AND ANALYSIS

The radial system with 33 buses and 32 branches with the total load of 3.715 MW and 2.28 MVAR, 11KV is taken as test system. The single line diagram of 33bus distribution system is shown in Figure 6.1. System Data is given in appendix-B.

Fig.2. Single line diagram of 33 bus distribution system

5.2 GENETIC ALGORITHM SET UP

Representation

A Binary genetic algorithm (BGA) is employed to generate the combination of bus numbers.

Initialize Population

An initial population of size 30 is selected.

Selection

Tournament Selection is chosen for testing.

Reproduction

Two point Cross Over [0.8], [60% to 95% range] and Binary Mutation of ratio [0.05], [0.5% to 1% range] is used.

Generation-Elitism

Generation Elitism is taken 5, which copies the best chromosomes into next generation.

Fitness Evaluation

The network performance index for the distribution system with DG sources is aimed to be maximum and is selected for fitness evaluation.

Termination

The algorithm stops if the number of generations reaches 300, each simulation is a fairly lengthy process, but given that this process is a strategic one, the durations reasonable.

5.3 RELEVANCE FACTORS OF NPI

The NPI will numerically describe the impact of DG, considering a given location and size, on a distribution network. Close to unity values for the Network Performance Index means higher DG benefits. Table 6.0 shows the value for the relevance factors utilized in here, considering a normal operation stage analysis.

IL _p W ₁	$IL_Q W_2$	IVD _Q W ₃	IVR W ₄	VSI W5		
0.33	0.10	0.15	0.10	0.32		

 Table.1.NPI Relevance factors

5.4. Results and analysis

A series of simulations were run to evaluate the performance of Distribution System With a defined number of potential DG units. The capacities of DGs are considered in two ways with constant capacity and with tuned capacity. These were for the best set of 1,3 and 5 DG units located within the 32 possible sites and the corresponding Distribution system performance results.

Base case

PLOAD	QLOAD	PLOSSES	QLOSSES	PUTILITY	QUTILIITY	VSI			
3.715MW	2.28MVAR	210.3KW	137.3KVAR	3.916MW	2.417MVAR	0.675			
	T-11. 2 Dave Grant and 1 Grant Deta								

Table.2 Base System load flow Data

Bus Number	Voltage
	(p.u)
1	1.0000
2	0.9972
3	0.9836
4	0.9763
5	0.9691
6	0.9511
7	0.9475
8	0.9339
9	0.9276

10	0.9217
11	0.9208
12	0.9193
13	0.9132
14	0.9109
15	0.9095
16	0.9088
17	0.9067
18	0.9067
19	0.9061
20	0.9967
20	0.9931
21	0.9924
22	0.9918
23	0.9801
24	0.99734
25	0.9701
26	0.9491
27	0.9466
28	0.9351
29	0.9269
30	0.9234
31	0.9192
32	0.9183
33	0.9180

 Table 2.1
 Base case Voltage Profile

Fig. 3. Base case Voltage Profile Plot

Single DG Case The Following table represents the IVD, IVR values for best combination IVD IVR

Analytical approaches for Optimal Placement and sizing of Distributed generation in Power System

٦

		0.954	199	0.95393				
NPI	Bus Number	PDG (KW)	P _{Loss} (KW)	Q _{Loss} (KVAR)	VSI	PUTILITY (KW)	Qutlity (KVAR)	
0.5489	31	1296.190	105.496	78.833	0.7971	2524.298	2378.832	
0.5477	32	1244.690	105.718	79.501	0.7923	2576.028	2379.506	
0.5411	33	1183.540	107.125	82.370	0.7865	2638.548	2382.369	
0.5328	30	1471.350	108.178	80.041	0.8134	2351.828	2380.041	
0.5331	6	1491.520	108.671	80.375	0.7923	13332.152	2380.376	

Table 2.2. Single DG Test Result with 5 best combinations

Bus Number	Voltage
	(p.u)
1	1.0000
2	0.9988
3	0.9936
4	0.9925
5	0.9917
6	0.9877
7	0.9844
8	0.9713
9	0.9652
10	0.9596
11	0.9587
12	0.9573
13	0.9514
14	0.9492
15	0.9478
16	0.9472
17	0.9452
18	0.9446
19	0.9982
20	0.9947
21	0.9940
22	0.9933
23	0.9900
24	0.9834
25	0.9802
26	0.9875
27	0.9874
28	0.9852
29	0.9840
30	0.9848
31	0.9889
32	0.9881
33	0.9878

Table 2.3 Voltage Profile with Single DG at bus 31

Fig.4. Voltage Profile plot with Single DG at bus 31

3DG Case

The following table represents the IVD, IVR values for best combination.

IVD	IVR
0.9675	0.95657

Without Tuning

DG sizes are 1000 KW, 750 KW, and 500 KW

NPI	Bus	DG	PDG	PLoss	Q _{Loss}	VSI	PUTILIT	Q _{UTILI}
	Number	(KW)	(Total)	(KW)	(KVAR)		Y	TY
			(KW)				(KW)	(KVAR)
	31	1000						2251 62
0.79106	14	750	2250	69.339	51.6276	0.9176	1534.339	2551.02
	25	500						5
	30	1000		70 8066				2351.06
0.78828	25	750	2250	/0.8900	57.962	0.9104	535.890	2551.90
	16	500		9				Z
	29	1000						2252 40
0.78611	15	750	2250	71.741	52.3996	0.89038	1536.743	2552.40
	16	500						0
	11	1000						2354 01
0.77022	31	750	2250	75.8641	54.9118	0.89486	1540.665	2554.91
	4	500						2
	30	1000						2255.96
0.7644	9	750	2250	77.088	55.8658	0.86670	1542.087	2333.80
	25	500						U

 Table 2.4.
 3DG test Results without Tuning 5 best combinations.

With Tuning	Vith Tuning							
NPI	Bus Numbe r	DG (KW)	PD _G (Total) (KW)	P _{Loss} (KW)	Q _{Loss} (KVAR)	VSI	P _{UTILIT} Y (KW)	Q _{UTI} LITY (KVA R)
0.79612	31 14 25	899.977 678.183 449.838	2027.69 9	68.4845	48.2754	0.9273	1755.786	2348.2 76
0.78903	30 25 16	955.671 724.049 480.026	2159.98	69.031	49.207	0.9138	1624.328	2349.0 21
0.78657	29 15 16	955.744 713.188 477.872	2146.80 5	70.181	49.479	0.9119	1638.377	2349.4 8
0.77024	11 31 4	980 731.25 490	201.25	72.1742	51.4284	0.8987	1585.924	2351.4 28
0.7625	30 9 25	931.994 706.110 465.997	2104.10 2	74.52	52.297	0.88297	18685.421	2352.2 98

Table 2.5.3DG test Results with Tuning 5 best combinations.

Bus Number	Voltage
	(p.u)
1	1.0000
2	0.9995
3	0.9980
4	0.9974
5	0.9971
6	0.9942
7	0.9918
8	0.9871
9	0.9861
10	0.9874
11	0.9858
12	0.9861
13	0.9874
14	0.9879
15	0.9865
16	0.9859
17	0.9840
18	0.9835
19	0.9989
20	0.9954
21	0.9947
22	0.9940
23	0.9959
24	0.9922
25	0.9918
26	0.9936
27	0.9930
28	0.9889
29	0.9863
30	0.9862
31	0.9884

32	0.9876
33	0.9873

Table2.6 Voltage Profile with 3DGs at bus 31, 14, 25

5 DG Case

The Following table represents the IVD, IVR values for best combination.

			IV	/D	D IVR			
			0.9	949	0.98	852		
NPI	Bus Number	PDG (KW)	P _{DG} (Total) (KW)	P Loss (KW)	Q _{Loss} (KVAR)	VSI	PUTILITY (KW)	QUTLITY (KVAR)
0.7877	24 18 33 8 9	1000 250 750 300 500	2800	74.9616	51.5129	0.91643	989.9644	2351.515
0.7847	32 25 2 15 12	1000 250 750 300 500	2800	75.2615	53.1826	0.91241	990.262	2335.184
0.7761	3 12 13 32 31	1000 250 750 300 500	2800	78.5738	78.5738	54.9075	0.89104	2354.902
0.7664	30 25 14 27 21	1000 250 750 300 500	2800	86.984	86.984	60.672	0.88.632	2360.675

Table. 2.7. 5DG Test Results without tuning 5 best combinations

NPI	Bus	PDG	P _{DG}	P Loss	Q Loss	VSI	PUTILITY	QUTLITY
	Number	(KW)	(Total)	(KW)	(KVAR)		(KW)	(KVAR)
			(KW)					
	24	868.4808						
	18	222.6871						
0.79027	33	671.4525	2465.813	687794	47.6779	0.92094	1317.967	2374.678
	8	264.5321						
	9	438.6601						
0.78721	32	922.604						
	25	324.181						
	2	695.465	2593.151	71.703	50.63	0.91868	1193.553	2350.631
	15	279.598						
	12	461.302						
0.7772	3	940.3366						
	12	237.7294						
	13	709.5862	2650.359	71.9391	50.8451	0.908348	1136.580	2350.845
	32	283.8345						
	31	477.8723						
0.77432	30	821.808	2207 264	72 400	51 145	0.01200	1500 224	2351.145
	25	206.4949	2207.204	12.488	51.145	0.91399	1300.224	

14	603.998			
27	244.058			
21	410.904			

Table. 2.8.	5DG Test	Results	with	tuning	5 t	pest combination
1 uoie. 2.0.	500 1050	results	**1111	tuning	20	Jost combination

Bus Number	Voltage				
	(p.u)				
1	1.0000				
2	1.0001				
3	0.9989				
4	0.9996				
5	1.0007				
6	1.0009				
7	0.9985				
8	0.9939				
9	0.9929				
10	0.9924				
11	0.9925				
12	0.9929				
13	0.9941				
14	0.9946				
15	0.9933				
16	0.9927				
17	0.9908				
18	0.9902				
19	1.0001				
20	1.0012				
21	0.0018				
22	1.0012				
23	0.9961				
24	0.9910				
25	0.9891				
26	1.0007				
27	1.0006				
28	0.9966				
29	0.9940				
30	0.9939				
31	0.9900				
32	0.9892				
33	0.9889				

Table 2.9 Voltage Profile with 3DGs at bus 24,18,33,8,9

In table 2, the base system load data, losses, voltage, voltage stability index and utility generated real and reactive power are given. The base case voltage profile and corresponding voltage profile plot are in table 2.1 and fig.3, the single DG case results are given for best five combinations in NPI priority order. This is the case in which the user wants to connect single DG unit to utility in order to reduce loss and to improve voltage profile and voltage stability index of the distribution system. The voltage improvement and voltage profile plot with this case is shown in table 2.4 and fig.4.

In the table 2.4, the 3DG case results are given for best five best combinations in NPI priority order. This is the case in which the user wants to connect 3DG with market available DG capacities to utility in order to reduce loss and to improve voltage profile, voltage stability index and hence the NPI of the distribution system from the previous single DG case. The voltage improvement and voltage profile plot with this case is shown in table 2.6 and table 2.5, represents the 3DG case results for five best combinations with tuning of market available DG sizes, which results reduction in losses, improvement in voltage stability index and hence NPI of Distribution system from case of fixed DG capacities.

Similarly in the 5DG case results are given for best five combinations are given in the tables 2.7 and 2.8 with market available DGs and with tuning of market available DGs. These cases results reduction in losses improvement in voltage profile, voltage stability index of system and hence NPI.

VI CONCLUSION

This work present a method of combining a new and fast power flow and genetic algorithms with an aim to provide a means of finding the combination of sites within a distribution network for connecting a predefined number of DGs. The network performance index is used in finding best combination of sites within network. In doing so it evaluates the distribution system performance with DG capacities and maximizes the Network Performance index. Voltage stability index is used to determine the weak branches in the distribution network. Its use world be to enable Distribution System Planner to search a network for the best sites to strategically connect a small number of DGs among a large number of potential combinations in order to improve Distribution system performance.

This work concentrated on the technical constraints on DG development like voltage limits, thermal limits and especially the loss reduction (DG impacts on losses is an area that is being extensively researched at present).

This work can be easily being adapted to cope with variable energy sources.

REFERENCES

- H. B. Puttgen, P. R. Mac Gergor, F. C. Lambert, "Distributed generation: Semantic hype or the dawn of a new era?", power & Energy Magazine, IEEE, Vol.1, Issue. 1, pp.22-29, 2003
- W. EI-Khattam, M.M.A. Salama, "Distributed generation technologies definitions and benefits, Electric Power Systems Research, vol.71, issue 2, pp. 119-128, October 2004.
- Thomas Ackermann, Goran Andersson, Lennart Soder, "Distributed generation: a definition", Electric power system research, vol. 57 Issue 3, pp. 195-204-20 April 2001.
- [4] J.L. Del Monaco, "The role of distributed generation in the critical electric power infrastructure", power engineering society winter meeting, 2001, IEEE, vol. 1, pp. 144-145,2001.
- Xu. Ding, A.A. Girgis, "Optimal load shedding strategy in power systems with distributed generation", Power engineering Society Winter Meeting, 2001, IEEE vol.2, pp, 788 – 793, 2001.
- [6] N.S. Rau and Yih Heui Wan, "Optimum Location of resources in distributed planning", IEEE Transactions on Power Systems, vol. 9, issue. 4, pp. 2014-2020, 1994.
- [7] J.O. Kim, S.W. Nam, S. K. Park, C. Singh, "Dispersed generation planning using improved Hereford ranch algorithm", Electric Power Systems Research, vol. 47, issue 1, pp. 47-55, October 1998.
- [8] T. Griffin, K. Tomsovic, D. Secrest, A. Law, "Placement of dispersed generation systems for reduced losses", Proceedings of the 33rd Annual Hawaii International Conference on System Science, 2000, IEEE, Jan 2000.
- K. Nara, Y. Hayashi, K. Ikeda, T. Ashizawa, "Application of tabu search to optimal placement of distributed generators", Power Engineering Society Winter Meeting, 2001, IEEE, vol. 2, pp.918 – 923, 2001.
- [10] Caisheng Wang, M.H.Nehrir,, "Analytical approaches for optimal placement of distributed generation sources in power systems", IEEE Transactions on power Systems, vol. 19, issue 4, pp.2068 – 2076, 2004.
- [11] T. Gozel, M. H. Hocaoglu, U. Eminoglu, A. Balikci, "Optimal placement and sizing of distributed generation on radial feeder with different static load models", international Conference on Future Power Systems, IEEE, pp. 1-6, issue. Now. 2005.
- [12] Naresh Acharya, Pukar Mahat, N. Mithulananthan, "An analytical approach for DG allocation in primary distribution network", Electrical Power and energy systems, vol.28 pp.669-678, feb.2006.