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Abstract: A multiplier is one of the key hardware blocks in most digital and high performance systems   such as 

FIR filters, digital signal processors and microprocessors  etc. many researchers have tried and are trying to 

design multipliers which offer either of the following-  high speed, low power consumption,  less area, more 

accuracy or even combination of them in multiplier. 

This paper presents a simple and efficient logarithmic multiplier with the possibility to achieve a 

maximum accuracy with less area and low power Consumption through an iterative procedure with recursive 

logic. 

The proposed modified iterative logarithmic multiplier is based on the same form of number representation as 

Mitchell’s algorithm [1962], but for error correction it uses different  algorithm proposed by  Z. Babic, A. 

Avramovic , P. Bulic [2011]. And to make it more efficient instead of array of basic block proposed by Z. Babic, 

A. Avramovic , P. Bulic [2011] it contain only single basic block with recursive logic  which finds approximate 

product and also error correction terms. Due to that it is less area and power consuming in expense of slightly 

increase in delay. Because there is always trade off between Area and delay.  

In order to evaluate the performance of the proposed multiplier and compare it with previous works, we 

implemented four 16-bit multipliers proposed by Z. Babic, A. Avramovic , P. Bulic [2011]: a pipelined 

multiplier with no correction terms and three pipelined multipliers with one, two and three correction terms and 

one 16-bit proposed Modified iterative logarithmic multiplier on the Xilinx xc3s1500-5fg676 FPGA.  

Keywords:Field programmable gate array, Iterative, Logarithmic number system, Multiplier, Mitchell’s 

algorithm,  

 

I. INTRODUCTION  
Multiplier is an electronic circuit used in digital electronics as a key component. A system’s 

performance is generally determined by the performance of the multiplier because the multiplier is generally the 

slowest clement in the system. Furthermore, it is generally the most area consuming. Hence, optimizing the 

speed and area of the multiplier is a major design issue. However, area and speed are usually conflicting 

constraints so that improving speed results mostly in larger areas. As a result, many approaches are made 

towards designing multiplier which provides efficient result. But, Mitchell’s algorithm [1] is revolutionary in 

multiplier design because it utilizes binary logarithms in the operations of multiplication and division. The 

logarithms used in the arithmetic are approximations to the actual logarithms; because of the approximations, 

there will be errors in the results of operations using them. It is considered that the simplicity of the method of 

finding and using these logarithms may make the scheme valuable in some applications. Based on Michelle’s 

algorithm many improvements [2-7] are given to enhance the accuracy of multiplier. 

The iterative logarithmic multiplier was proposed by Z. Babic, A. Avramovic, P. Bulic [2].It simplifies 

the logarithm approximation introduced in [1] and introduces an iterative algorithm with various possibilities for 

achieving an error as small as required and the possibility of achieving an exact result. This work is further 

carried out in this paper and minor modification is done for low-power and area-efficient applications. 

  

II. LOGARITHMIC MULTIPLICATION METHODS BASED MULTIPLIER  
Logarithmic multiplication introduces an operand conversion from integer number system into the 

logarithm number system (LNS). The multiplication of the two operands N1 and N2 is performed in three 

phases, calculating the operand logarithms, the addition of the operand logarithms and the calculation of the 

anti-logarithm, which is equal to the multiple of the two original operands [2] as shown in block diagram Fig-1. 

The main advantage of this method is the substitution of the multiplication with addition, after the conversion of 

the operands into logarithms. LNS multipliers can be generally divided into two categories, one based on 

methods that use lookup tables and interpolations, and the other based on Mitchell’s algorithm (MA) [1], 

although there is a lookup-table approach in some of the MA-based methods [3]. Generally, MA-based methods 

suppressed lookup tables due to hardware-area savings. However, this simple idea has a significant weakness: 
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logarithm and anti-logarithm cannot be calculated exactly, so there is a need to approximate the logarithm and 

the antilogarithm [2]. The binary representation of the number N can be written as: 
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where, K is a characteristic number or the place of the most significant bit with the value of ‘1’,Zi is a 

bit value at the i
th

 position, X is the fraction or mantissa, and j depends on the number’s precision (it is 0 for 

integer numbers). The logarithm with the basis 2 of N is then:  
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The expression log2 (1+x) is usually approximated; therefore, logarithmic based solutions are a trade-

off between the time consumption and the accuracy. 

 

 
Figure -1: Logarithmic system block diagram 

 

III. MITCHELL’S ALGORITHM  
A logarithmic number system (LNS) [1] is introduced to simplify multiplication, especially in cases 

when the accuracy requirements are not rigorous. In LNS two operands are multiplied by finding their 

logarithms, adding them, and after that looking for the antilogarithm of the sum. One of the most significant 

multiplication methods in LNS is Mitchell’s algorithm [1]. An approximation of the logarithm and the 

antilogarithm is essential, and it is derived from a binary representation of the numbers (2.1). The logarithm of 

the product is 

 

)1(log)1(log)(log 221221212 XXKKNN      (2.1)  

 

The expression log2 (1+X) is approximated with X and the logarithm of the two numbers’ product is 

expressed as the sum of their characteristic numbers and mantissas: 

 

2121212 )(log XXKKNN         (2.2)  

 

The characteristic numbers K1 and K2 represent the places of the most significant operands’ bits with 

the value of ‘1’. For 16-bit numbers, the range for characteristic numbers is from 0 to 15. The fractions X1 and 

X2 are in range [0, 1). 

The final MA approximation for the multiplication (where PTRUE=N1∙N2) depends on the carry bit from 

the sum of the mantissas and is given by: 
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The final approximation for the product (2.3) requires the comparison of the sum of the mantissas with 

‘1’.The sum of the characteristic numbers determines the most significant bit of the product. The sum of the 

mantissas is then scaled (shifted left) by 
)( 212 KK 
or 

)1( 212 KK
, depending on the X1+X2. If (X1+X2) < 1, the 

sum of mantissas is added to the most significant bit of product to complete the final result. Otherwise, the 
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product is approximated only with the scaled sum of mantissas. The reported MA-based multiplication is given 

in Algorithm 1. 

 

Algorithm 1: (Mitchell’s algorithm [1]). 

1. N1, N2: n-bits binary multiplicands, PMA= 0:2n-bits approximate product 

2. Calculate K1: leading one position of N1 

3. Calculate K2: leading one position of N2 

4. Calculate X1: shift N1 to the left by (n-K1) bits 

5. Calculate X2: shift N2 to the left by (n-K2) bits 

6. Calculate K12=K1+K2 

7. Calculate X12=X1+X2 

8.  IF X12 ≥ 2n (i.e.X1+X2 ≥ 1): 

a. Calculate K12=K12+1 

b. Decode K12 and insert X12 in that position of Papprox 

else: 

a. Decode K12 and insert ‘1’ in that position of Papprox 

b. Append X12 immediately after this one in Papprox 

9. Approximate N1∙N2=PMA 

 

Numerous attempts have been made to improve the MA’s accuracy. Hall [5], for example, derived 

different equations for error correction in the logarithm and antilogarithm approximation. Abed and Siferd [11] 

derived correction equations with coefficients that are a power of two, reducing the error and keeping the 

simplicity of the solution. McLaren’s method [3], which uses a look-up table with 64 correction coefficients 

calculated in dependence of the mantissas values, can be selected as one that has satisfactory accuracy and 

complexity. A recent approach for the MA error correction, reducing the number of bits with the value of ‘1’ in 

mantissas by operand decomposition, was presented by Maralinga and Rangantathan [4]. 

 

IV. ITERATIVE LOGARITHMIC BASED MULTIPLICATION 
  This method [2] simplifies logarithm approximation introduced in (2.3) and introduces an iterative 

algorithm with various possibilities for achieving the multiplication error as small as required and the possibility 

of achieving the exact result. By simplifying the logarithm approximation introduced in (2.3), the correction 

terms could be calculated almost immediately after the calculation of the approximate product has been started. 

In such away, the high level of parallelism can be achieved by the principle of pipelining, thus reducing the 

complexity of the logic required by (2.3) and increasing the speed of the multiplier with error correction circuits. 

Looking at the binary representation of the numbers in (2.1), we can derive a correct expression for the 

multiplication: 
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To avoid the approximation error, we have to take into account the next relation derived from (2.1): 
Kk NX 22                                   (2.6) 

The combination of (2.5) and (2.6) gives: 

)2()2(2)2(2)2(2

)(

21122121
2121

)(

21

KKKKKKKK

true

NNNN

NNP


 


          (2.7) 

Let  
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be the first approximation of the product. It is evident that 

)2()2( 21
21

)0( KK

approxtrue NNPP                                  (2.9) 

This method is very similar to Mitchell’s Algorithm. The error is caused by ignoring the second term in 

(2.9). The term )2()2( 21
21

KK NN    requires multiplication. If we discard it from (2.9), we have the approximate 

multiplication that requires only few shifts and add operations. Computational equation to MA multiplier (2.3) 

requires the comparison of the addend X1+X2 with 1. Instead of ignoring it and instead of approximating the 

product as proposed in (2.3), we can calculate the product )2()2( 21
21

KK NN   in the same way as )0(

approxP  and 

repeat the procedure until exact result is obtained. The evident difference between the proposed method and the 

method proposed by Mitchell is that the proposed method avoids the comparison of the addend X1+X2 with 1. In 

such a way, the error correction can start immediately after removing the leading ones form the both input 

operands N1 and N2. This is a key factor that allows further pipelining and reduces the required gates as we will 
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show lately. For this reason, an iterative calculation of the correction terms is proposed, as follows. The absolute 

error after the first approximation is 

)2()2( 21
21

)0()0( KK

approxtrue NNPPE                                           (2.10) 

Note that             . The two multiplicands in equation (2.10) are binary numbers that can be obtained 

simply by removing the leading ‘1’ in the numbers N1 and N2 so we can repeat the proposed multiplication 

procedure with these new multiplicands: 
)1()1()0( ECE                                             (2.11) 

Where C
(1)

 is the approximate value of E
(0)

 and E
(1)

 is an absolute error when approximating E
(0)

. The 

combination of (2.9) and (2.11) gives 
)1()1()0( ECPP approxtrue 
                           (2.12) 

We can now add the approximate value of E
(0) 

to the approximate product Papprox as a correction term 

by which we decrease the error of the approximation. 
)1()0()1( CPP approxapprox 
                           (2.13) 

 If we repeat this multiplication procedure with i correction terms, we can approximate the product a 
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The procedure can be repeated, achieving an error as small as necessary, or until at least one of the 

residues becomes a zero. Then the final result is exact: Papprox = Ptrue. The number of iterations required for an 

exact result is equal to the number of bits with the value of ’1’ in the operand with the smaller number of bits 

with the value of ‘1’.  

 

4.1. Reported algorithm for iterative logarithmic multiplier  

The iterative MA-based multiplication [2] is given in Algorithm 2. 

Algorithm 2: Iterative logarithmic multiplication based algorithm [2] with i correction terms 

1. N1, N2:n-bits binary multiplicands, 
)0(

approxP =0:2n-bits first approximation, C(i)=0: 2n-bitsi correction 

terms, approxP =0: 2n-bits product 

2. Calculate K1: leading one position of N1 

3. Calculate K2: leading one position of N2 

4. Calculate 21 2)2( 1
KKN  : shift )2( 1

1
KN  to the left by K2 bits 

5. Calculate 12 2)2( 2
KKN   shift )2( 2

2
KN  to the left by K1 bits 

6. Calculate K12=K1+K2 

7. Calculate )( 212 KK  : decode K12 

8. Calculate
)0(

approxP : add )( 212 KK  , 21 2)2( 1
KKN   and 12 2)2( 2

KKN  . 

9. Repeat i-times or until N1=0 or N2=0: 

(a) Set :N1= )2( 1
1

KN  , N2= )2( 2
2

KN   

(b) Calculate K1: leading one position of N1 

(c) Calculate K2: leading one position of N2 

(d) Calculate 21 2)2( 1
KKN  : shift )2( 1

1
KN  to the left by K2 bits 

(e) Calculate 12 2)2( 2
KKN  : shift )2( 2

2
KN  to the left by K1 bits  

(f) Calculate  K12=K1+K2 

(g) Calculate )( 212 KK  : decode K12 

(h) Calculate C
(i)

: add )( 212 KK  , 21 2)2( 1
KKN   and 12 2)2( 2

KKN   

10. )(i

approxP = )0(

approxP + ∑iC
(i)

 

One of the advantages of the solution [2] is the possibility to achieve an arbitrary accuracy by selecting 

the number of iterations, i.e., the number of additional correction circuits as shown in Fig-3, but more important 

is that the calculation of the correction terms can start immediately after removing the leading ones from the 

original operands, because there is no comparison of the sum of the mantissas with 1. 

The pipelined implementation of the basic block is shown in Fig. 2 and has four stages.  

The stage 1 calculates the two characteristic numbers K1, K2 and the two residues )2(),2( 21
21

KK NN  .  

The residues are outputted in stage 2, which also calculates K1+K2, 
21 2)2( 1

KKN   and 12 2)2( 2
KKN   

The stage 3 calculates two terms )( 212 KK   and 21 2)2( 1
KKN   + 12 2)2( 2

KKN   

0)0( E



Design and implementation of modified iterative logarithmic multiplier for low-power and area- 

www.iosrjournals.org                                                     38 | Page 

The stage 4 calculates the approximation of the product )0(

approxP . 
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 Figure -2: Pipelined basic block of iterative logarithmic multiplier 

The pipelined multiplier with one, two and three correction circuits is presented in Fig. 3. The multiplier is 

composed of the three pipelined basic blocks, of which the first one calculates an approximate product )0(

approxP , 

while the second and the third ones calculate the error-correction terms C
(1)

 and C
(2)

, respectively. The initial 

latency of the pipelined multiplier with two correction circuits is 6 clock periods, but after the initial latency, the 

products are calculated in each clock period. There are three multipliers implemented: with one error-correction 

circuit as shown in Fig-3(a), with two error-correction circuits as shown in Fig-3(b) and with three error 

correction circuits as shown in Fig-3(c). Each correction circuit is implemented as a basic block and is used to 

approximate the product according to (2.14). 

 

4.2. Error analysis of iterative logarithmic multiplier 

It is shown [2] that the maximum relative error decreases exponentially with a ratio of at least 2
-2i

, and 

it reaches 0 when one of the multiplicands is 0. Table-1 presents the maximum relative errors for different 

numbers of ECCs [2]. 

Table -1: Maximum relative errors per number of ECCs used 

ECCs Er,max(%)

0 25

1 6.25

2 1.56

3 0.39

4 0.097

5 0.02425

Maximum relative errors

per number of ECCs used.

 
Hence, by observing above table it is obvious that for achieving maximum accuracy we have to 

decrease relative error and that can be done by adding extra error correcting circuits (ECC’s). So, Depending 

upon requirement of application choice of ECC’s is done .but as we increase number of ECC’s size of hardware 

increases that is accuracy and area (size) are directly proportional hence, As increase in accuracy corresponding 

increase in area is inevitable. 
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(a)                                                                                        (b) 

 
(c) 

Figure -3: Pipelined iterative logarithmic multiplier (a) With one error correction circuit (b) With two 

error correction circuit (c) With three error correction circuit 

 
4.3. Limitation of iterative logarithmic multiplier 

As described in iterative logarithmic multiplier method[2] basic block is used for calculation of  an 

approximate product )0(

approxP , while for error correction circuits array of same basic block are used which calculate 

the error-correction terms C
(1)

, C
(2)

, ….C
(i)

 each from i
th

 block of error correction circuit depending upon 

accuracy required. As shown in error analysis [2] as requirement of accuracy increase no. of error correction 

circuit increases with in turn increase area and power consumption because each addition of error correction 

block consumes extra amount of power.  

Thus, designing multiplier as per [2] for application which required more accuracy also required more 

area and more power consumption which leads to some constrains over implementation. Hence proposed 

solution overcomes this limitation by using recursive logic for error correction circuit which substitute array of 

basic block by only single basic block with additional circuit. In proposed solution we modified iterative 

logarithmic multiplier using recursive logic for low-power and area-efficient applications.  

 

V. MODIFIED ALGORITHM FOR ITERATIVE LOGARITHMIC MULTIPLIER. 

Modified Iterative logarithmic Multiplier with Recursive Logic is basically modified version of 

existing algorithm of iterative logarithmic multiplier [2] in which only step 2 is extra added, condition of step 10 

is slightly modified and in last step addition is carried out in recursive manner. Algorithm is as follows: 



Design and implementation of modified iterative logarithmic multiplier for low-power and area- 

www.iosrjournals.org                                                     40 | Page 

Algorithm 3: Modified Iterative logarithmic Multiplier 

1. M1, M2:n-bits binary multiplicands, )0(

approxP =0:2n-bits first approximation, C
(i)

=0: 2n-bits i correction 

terms, 
resultP =0: 2n-bits product 

2. N1, N2:n-bits binary output of select logic Block  

 Set: N1=M1 or )2( 1
1

KN  , N2= M2 or )2( 2
2

KN  Depending upon Select pin input 

3. Calculate K1: leading one position of N1 

4. Calculate K2: leading one position of N2 

5. Calculate 21 2)2( 1
KKN  : shift )2( 1

1
KN  to the left by K2 bits 

6. Calculate 12 2)2( 2
KKN   shift )2( 2

2
KN  to the left by K1 bits 

7. Calculate K12=K1+K2 

8. Calculate )( 212 KK  : decode K12 

9. Calculate
)0(

approxP : add )( 212 KK  , 21 2)2( 1
KKN   and 12 2)2( 2

KKN  . 

10. Repeat until N1=0 or N2=0: 

(a) Set :N1= )2( 1
1

KN  , N2= )2( 2
2

KN   

(b) Calculate K1: leading one position of N1 

(c) Calculate K2: leading one position of N2 

(d) Calculate 21 2)2( 1
KKN  : shift )2( 1

1
KN  to the left by K2 bits 

(e) Calculate 12 2)2( 2
KKN  : shift )2( 2

2
KN  to the left by K1 bits  

(f) Calculate  K12=K1+K2 

(g) Calculate )( 212 KK  : decode K12 

(h) Calculate C
(i)

: add )( 212 KK  , 21 2)2( 1
KKN   and 12 2)2( 2

KKN   

11. 
resultP = )0(

approxP + ∑iC
(i)

 using Recursive Adder. 

 

5.1. Hardware implementation of modified algorithm for iterative logarithmic multiplier 

The proposed modified iterative logarithmic multiplier hardware implementation is basically modified 

version of existing iterative logarithmic multiplier’s basic block [2].in modified version only single basic block 

is used instead of array of basic block that used in [2] this can be done using recursive logic .The detail 

description of Hardware implementation of proposed modified iterative logarithmic multiplier is as follows. 

 

5.2. Implementation of select logic block 

To implement Modified iterative logarithmic multiplier with only one basic block[2] for  calculations 

of  first approximate of product )0(

approxP  and error correction terms C
(i)

 to be added in approximate value in 

successive cycles to get exact product 
trueP  select logic block is necessary. We use two Select logic block each 

one has two 16 bit input operand, one select line, one status signal output which indicate one of the operand is 

zero this is important because it indicate no further error correction require and observing this signal we can 

load our next operands and other 16 bit output which is selection between two input operand depending upon 

select line data this output then work as input to one of basic block LOD. 
Suppose, M1, M2: n-bits binary multiplicands, )(

2

)(

1 , ii NN :n-bits binary output of select logic Block after i
th

 

iterations )2(),2(
)(

2)(

2

)(
1)(

1

i
i

i
i KK

NN  :n-bits binary residue of basic block after i
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1)1(

1


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i
i K

N , )(

2
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)1(

2)1(

2






i
i K

N  Depending upon Select line input. Initially select pin 

input is high and there are no residue terms which makes )0(

1N =M1 and )0(

2N =M2 and then until either of residue 

become zero it assign )(

1

iN = )2(
)1(

1)1(
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

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i
i K

N and )(

2
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)1(

2)1(
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i
i K

N .after becoming either of residue zero it waits 

till next operands are not loaded. 
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Figure -4: Block Diagram of select logic 
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5.3. Implementation of Basic Block (BB) 

A basic block (BB) is the existing multiplier [2] with no correction terms. The task of the basic block is 

to calculate one approximate product according to (2.8). This basic block consists of two 16-bit leading-one 

detectors (LODs), two encoders, two 32-bit barrel shifters, a decoder unit and two 32-bit adders. Two input 

operands are given to the LODs and the encoders. The LOD units are used to remove the leading one from the 

operands, which are then passed to the barrel shifters. The LOD units also include zero detectors, which are used 

to detect the zero operands. The LOD units and the zero detectors are implemented as in [1], while the barrel 

shifters are used to shift the residues according to (2.8). The decoder unit decodes K1+K2, i.e. it puts the leading 

one in the product. The leading one and the two shifted residues are then added to form the approximate 

product. The basic block is then used in subsequent implementations to implement correction circuits. 

 

5.4. Implementation with recursive logic for error correction 

To increase the accuracy of the multiplier, we implemented multipliers with error-correction circuits 

(ECC). The error correction circuit is used to calculate the term C
(1)

  in (2.12) and thus approximates the 

term )2()2( 21
21

KK NN    in (2.7).To implement the proposed multiplier, we used the recursive logic along with  

basic block[2]. A block diagram of the proposed logarithmic multiplier with recursive logic circuit is shown in 

Fig-5.  
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Figure -5: Block Diagram of Modified Pipelined iterative logarithmic multiplier 

The proposed multiplier is composed of basic block [2], which initially calculates the first 

approximation of the product )0(

approxP , while in next cycle it calculates the error correction terms C
(i)

 with the help 

of residue and Using recursive and select logic. This error correction terms are then added with first 

approximate of product )0(

approxP  till either of residue become zero. For adding we use recursive adder circuit. 

Hence, we implemented error correction circuit using same basic block and is used to approximate the product 

according to (2.14). 

The pipelined multiplier with recursive logic for error correction is presented in Fig-5. The initial 

latency of the pipelined multiplier with recursive logic for error correction is 4 clock cycles for 1st approximate 

product )0(

approxP , but after the initial latency, the approximate products )(i

approxP  are calculated in every clock cycle 

but due to single block for error correction calculation overall clock cycles required to get final result 
resultP  is 

depends upon how many times error correction required means after how many iteration either of residue 

become zero. Hence, total period vary from minimum 1 clock cycle to maximum 7 clock cycles. as delay factor 
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is variable and depends on how many iteration required overall delay is not much affected by our modification 

but power consumption and area decreases considerably. 

 

VI. SIMULATION RESULTS 
This covers the results and simulation from synthesizing the 16-bit pipelined iterative logarithmic 

multiplier [2] with no error-correction terms, three multipliers with one, two and three error-correction terms 

and proposed modified iterative multiplier as shown in Fig-6. The tool used for the simulation and comparison 

of result was XILINX ISE 14.3. The Hardware implementation has been done on Xilinx xc3s1500-5fg676 

FPGA.  

The complete hardware coding has been done in Verilog HDL. For power and timing analysis, we have used the 

XPower and Timing Analyzer tool of Xilinx. 

 

 
 (a) 

 

 
 (b) 

 

 
 (c) 
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 (d) 

 
 (e) 

 Figure -6: Simulation waveform of (a) Pipelined iterative logarithmic multiplier with no ECC (b)With one 

ECC (c) With two ECC (d) With three ECC (e) Modified Pipelined iterative logarithmic multiplier 

 

VII. COMPARATIVE EVALUATION  
In order to evaluate performance of the proposed multiplier and compare it with reported multiplier, we 

consider following performance parameters which gives us idea about which multiplier is comparatively better 

than other with respect to  area, speed ,power and accuracy. 

 

7.1. Device utilization of implementations 

The device utilization expressed in terms of no. of basic building blocks utilized by circuit 

implemented. The basic building blocks utilization is expressed in terms of the number of slices, the number of 

4-in-put look-up tables (LUTs) and the number of input–output blocks (IOBs). This ultimately gives how much 

area it occupies on the chip. Device utilization for all implemented multipliers is given in Table-2. 

This shows that modified multiplier utilize slightly more device than basic block [2] but it occupy 

considerably less device than that of with error-correction circuits (ECC). Hence, we can say that modified 

multiplier is area-efficient. 

Table -2: Device utilization of implemented multipliers 
Multiplier 4-input LUTs Slices Slice FFs IOBs 

BB   424 219 198 67 

BB + 1 ECC     857 454 423 67 

BB + 2 ECC   1255 657 643 67 

BB + 3 ECC   1649 858 858 67 

Modified Multiplier 463 238 231 67 

7.2. Estimated Power Consumptions of implementations 

The power consumption is estimated at a clock frequency of 25 MHz with a signal (toggle) rate of 

12.5%. With the Xilinx XPower Analyzer we have estimated the three main power components: Quiescent 

power, logic and signals power and the IOBs power. Quiescent power (also referred to as leakage) is the power 

consumed by the FPGA powered on with no signals 

The estimated power consumptions for the implementations are given in Table-3. 
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Table -3: Maximum operating frequency of implemented multipliers 

Multiplier Logic and signals (mW) 
IO Blocks 

(mW) 
Quiescent (mW)  Total (mW) 

BB   3.74 34.32 150.26 188.32 

BB + 1 ECC 5.97 34.35 150.45 190.77 

BB + 2 ECC    8.66 34.67 150.86 194.19 

BB + 3 ECC     13.07 34.95 151.12 199.14 

Modified Multiplier 4.22 34.43 150.42 189.07 

 

This shows that power consume by proposed modified multiplier is less than that of basic block with 

one error correction circuits (ECC). Hence, proposed modified multiplier is also low-power consuming. 

 

7.3. Maximum Operating Frequency of implementations 

Maximum Operating Frequency is very important parameter in design because speed of operation is 

depends upon it. In Xilinx to get it we have to use timing Analyzer which will give minimum period through all 

possible path and also provide maximum operating frequency. Maximum Operating Frequency for all 

implemented multipliers are given in Table-4. 

This shows that due to addition of extra select logic block in basic block which will increase the delay 

factor and reduce operating frequency to 146.434 MHz from 179.921MHz. As we know that there is always 

tradeoff between delay and area. Hence, as area reduces the delay is going to increase. 

 

Table -4: Maximum operating frequency of implemented multipliers 

 
Multiplier   Max. frequency(MHz) 

BB  179.921 

BB + 1 ECC 179.921 

BB + 2 ECC  179.921 

BB + 3 ECC  179.921 

Modified Multiplier 146.434 

 

7.4. Maximum Relative errors of implementations 

A maximum Relative error is very important parameter in design because accuracy of operation is 

depends upon it. To calculate it we used expression of error analysis [2]. 

Maximum Relative error for all implemented multipliers are given in Table-5 

 

Table -5:  Maximum relative errors of implemented multipliers 

Multiplier   
Maximum relative errors  

Er,max(%) 

BB  25 

BB + 1 ECC 6.25 

BB + 2 ECC  1.56 

BB + 3 ECC  0.39 

Modified 
Multiplier 

0 

 

This shows that as number of ECC’s increases max .relative error decreases hence accuracy increases. 

but in modified multiplier utilize recursive logic because of that error-correction circuits (ECC) can be 

recursively used till one of operand becomes zero and finally gives accurate result. Hence, we can say that 

modified multiplier having zero relative error and result is accurate. 

 

VIII. CONCLUSION  
One of the most significant multiplication methods in logarithmic number system is Mitchell’s 

algorithm [1] which is revolutionary in multiplier design. Based on this many improvement are proposed [2-7] 

among them Iterative logarithmic multiplier algorithm [2] uses same number system but for error correction it 

uses iterative method which has limitation such as with increase in accuracy power consumption and area will 

increases. To overcome it Modified Iterative logarithmic multiplier algorithm is proposed. 

In this, we have investigated and proposed a new approach which requires less logic resources for its 

implementation i.e. efficient and this can achieve maximum accuracy and this is useful in low-power 

consumption and area-efficient applications. We have shown that the calculation of the correction terms can be 
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performed using single block with the help of recursive logic. After the initial latency, the approximate products 
)0(

approxP  are calculated in every clock cycle but due to single basic block for error correction calculation overall 

clock cycles required to get final result 
resultP  is depends upon how many times error correction required means 

after how many iteration either of residue become zero. Hence, total period to get final result vary from 

minimum 1 clock cycle to maximum 7 clock cycles. This shows that for large amount data delay is balanced and 

overall delay minimized. 

The comparative evolution of proposed approach shows it improves the accuracy, area efficiency and 

consumes significantly less power in expense of slight increase in delay due to addition of extra select logic 

block in basic block [2] which will reduced maximum operating frequency to 146.434 MHz from 179.921MHz. 

Hence, proposed modified iterative logarithmic multiplier has been proved good for low-power and area-

efficient applications 
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