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Abstract: In this paper, we present the systematic design and implementation of quick prototype design and 

hardware-in-the-loop real-time test of the embedded control system of Unmanned Rotorcraft. The control law is 

of backstepping type, the sensory system consists of a marker-based vision system outside the helicopter in radio 

connection with the embedded controller and a 3D inertial measurement unit (IMU) on the helicopter. Extended 

Kalman filters solve the state estimation problem. Brushless DC motors serve as actuators. For quick prototype 

design of the embedded controller MATLAB, Simulink, Real-Time Workshop and the MPC555 Target Compiler 

were used. More specifically, the onboard hardware system is designed to fulfill the image processing 

requirements by using the commercial off-the-shelf products. Real-time vision software is developed, which is 

running on the real-time operating system QNX.  

Keywords: Unmanned Aerial Vehicles (UAV), Embedded Controller, Real-time realization, Marker-based 

vision and IMU sensors, Extended Kalman filters, Backstepping control. 

 

I. INTRODUCTION 
The identification of the unknown nonlinear dynamical systems has received considerable attention in 

recent years, since it is an indispensable step toward controller design of nonlinear systems. Many systems, 

especially aircraft, have dynamics that vary considerably over the operating regime, effectively bringing the 

issue of time varying parameters (or nonlinearity) into the design [2]. Controllers for aircraft have been designed 

predominantly by classical control techniques [9].  

While this tradition has produced many highly reliable and effective control systems, recent years have 

seen a growing interest in the use of robust, nonlinear adaptive control theory for flight control [3], [4], [6]. For 

instance, the concept of multiple models with switching, according to a change in dynamics, has been an area of 

interest in control theory in order to simplify both the modeling and the controller design [3], [7], [8]. 

System identification methods fall into two broad categories: global and local. Global approximations can be 

made with various function representations, e.g., polynomials, rational approximation, and multilayer 

perceptrons (MLPs) [9]. To approximate a function , a model should be capable of representing its many 

possible variations. If is complicated, there is no guarantee that any given representation will approximate 

equally well across all space. 

The dependence on representation can be reduced using local approximation where the domain of is 

divided into local regions and a separate model is used for each region [5].Local modeling is based on nearest-

neighbors in the operating space where a simple model is constructed using only the neighboring samples. The 

rationale behind this approach is basically that it is easier to develop local models (or controllers) because the 

dynamics are simpler locally than globally [3].  

For instance, if the system phenomena or behavior changes smoothly with the operating point, then, a 

linear model (or controller) will always be sufficiently accurate locally, provided that the operating regime is 

sufficiently small, even though the system may contain complex nonlinearities when viewed globally. In these 

methods, the global dynamics is approximated by a preset number of local linear models that need to be 

specified by the user. The added difficulty in local modeling is the switching among models, but recently the 

approximation properties of multiple models have been examined in detail [1].  

Under mild conditions, it has been shown that multiple models can uniformly approximate any system on a 

compact subset provided a sufficient number of local models are given [7]. Finally, with this approach, the 

model/controller structure is easy to understand and interpret [3]. 

 

II. ROTOTCRAFT MODEL 
 Multicomponent robotic systems can be well described using coordinate systems (frames). Denote KW 

= KH0 the helicopter frame in the stop state (world or base inertial frame), KH the moving frame of the 

helicopter center of gravity and KS the sensor frame of IMU fixed to the helicopter. For simplicity the vision 

frame is assumed to be equal to KW , hence the vision system measures the position and orientation of KH 

relative to KW . The relative position and orientation between frames can be described by a homogeneous 

transformation T whose orientation and positions parts are A and p , respectively. The graph of the used frames 

is shown in Fig. 1  
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In order to develop the kinematic and dynamic models the results of flight control systems [6] and 

mini-flying machines [7] can be applied. The position and the orientation of the helicopter with respect to the 

base frame are denoted by ξ = (x, y, z)T and η = (Φ ,Θ ,Ψ )T respectively where Φ ,Θ ,Ψ are the Euler angles and 

the A(Φ,Θ,Ψ) orientation matrix is  

 
 

The angular velocity can be written in the form ω =Γη where ω =Γη+Γη and 

 
 

The helicopter has 4 actuators, each actuator exerts a lift force proportional with the square of the 

angular velocity of the rotor (fi = bΩ
2

i) . Each actuator is a brushless DC motor with own controller whose 

reference signal can be programmed in Ωi [2]. The resulting lift force (u) and driving torque (τ ) are defined by 

 
 

Where l,b,d are helicopter and motor constants. The gyroscopic effect can be modeled as 

 
 

Where Ir is the rotor inertia and k is the third unit vector. Denote I the inertia matrix of the helicopter 

then the differential equation of the helicopter is 

 
 

Where Fext and τ ext are the external force and torque, respectively, in KH and T Fg = (0,0,−mg) is the 

gravity force in KW . We assume in the sequel that I = diag(Ix , I y , Iz ) and Φ ,Θ ≈ 0 , Γ ≈ I3 (unite matrix), ω ≈ 

(Φ,Θ,Ψ )
T
 . Hence the differential equation of the helicopter can be written in the simplified form 

 
 

From the differential equations the state equations can be easily written down if the state is chosen as  
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The back stepping controller has the form shown in Fig. 2. In the block scheme the indices d , m and e 

refer to the desired, measured and estimated values, respectively. The controller was implemented on Freescale 

MPC555 processor having floating point instructions. 

 

III. Selection of Operating Regimes With A SOM 
Building local mappings in the full operating space is a time and memory consuming process, which 

led to the natural idea of quantizing the operating regimes and building local mappings in positions given by 

prototype vectors obtained from running the plant. The training algorithm is simple, robust to missing values, 

and it is easy to visualize the map. These properties make SOM a prominent tool in data mining [4]. 

In most of the papers discussing local linear models for system identification, the SOM has been used with a 

first order expansion around each PE in the output space.  

The SOM transforms an incoming signal pattern of arbitrary dimension into a one or two-dimensional 

discrete map, and performs this transformation adaptively in a topologically ordered fashion [8]. For an 

autonomous system, it is reasonable to assume that the future behavior of the system can be predicted over some 

finite interval from a finite number of observations of past outputs.  

In contrast, for predictions of the behavior of a non autonomous system, we have to consider two 

different dynamics: One for the state space and the other for the control input space. Consequently, the most 

important difference is how to capture the dynamics in the input–output joint space, which is fundamental for 

identifying the unknown non autonomous system. Several options are possible and we have been investigating 

them. 

First, we tried to find the local models by quantizing the input–output joint space by embedding not 

only the outputs but also the control inputs using one SOM. This modification is essential because the purpose is 

to characterize the system dynamics that exist in the input–output joint space.  

However, we encountered some difficulties such as normalization of the joint space and large 

dimensionality of the space involved (many degrees of freedom and large dynamic range of parameters) [2].  

As input feature vectors from a training set are presented to the network, unsupervised learning is used to create 

a topology-preserving (Kohonen) map of the input data while, at the same time, supervised learning is used to 

associate an appropriate output feature vector with each PE on the map.  

Since the output at each PE is just the average output for all of the feature vectors that map to that 

point, local models might be created for better approximation using the quantization error in the input space and 

the average output. 

 
Figure.2 Controller structure based on back stepping method 

 

 
Figure.3 Block diagram of SOM-based modeling for non autonomous system. 
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Figure.4 The simplified scheme of the distributed system 

 
Figure.5 Test results during spiral-formed path 

 

IV. EMBEDDED DESIGN 
An embedded system is a special-purpose computer system designed to perform some dedicated 

functions, often with real-time constraints. It is usually embedded as part of a complete device, in our case the 

indoor UAV, including hardware and mechanical parts. Embedded controller of a rotorcraft integrates 

microcontrollers, actuators, vision and inertial sensors. Earlier small indoor UAVs were realized using 8-bit 

microcontrollers, limited degree of freedom gyroscope and accelerometer (MEMS), serial servo controllers, R/C 

transmitter and receiver and lightweight rechargeable battery allowing approximately 15 minutes flight duration 

[8].  

The development of the control algorithm has been carried out in MATLAB Simulink environment, 

since code generation to the target processor can be done in a convenient way with its additional components 

(Real-Time Workshop and Target Language Compiler). 

In order to validate the control algorithm, i.e. check if it can operate at the desired frequency, hardware-

in-the-loop tests were performed that involved the emulation of the Rotorcraft helicopter’s model and the flow 

of the sensory data. 

 

V. SOFTWARE REALIZATION 
Since the backstepping based algorithm realizes a point-to-point control, the rotorcraft is able to follow 

a path defined by a series of points in the Cartesian coordinate system using an additional path tracking 

algorithm. The tracking algorithm is responsible for providing the control algorithm with the actual reference 

signals (3D position coordinates and yaw angle) and for keeping the helicopter in continuous motion. Sudden 

changes in the reference signals may cause numerical instability, therefore the reference signals are smoothed by 

third order filters, which ensure that the second derivatives of the state variables remain smooth. 

 Due to the high complexity of the control algorithm the planned 10 ms sampling time couldn’t be realized, 30 

ms was used during the tests instead. 

 

VI. TEST RESULTS 
Several tests have been performed to investigate the capabilities of the proposed control algorithm for 

paths of different kind including maneuvers in horizontal plane consisting of straight lines and special spiral-

formed paths. 

Fig. 5. shows the results of a test of the latter type of path. The crosses show the waypoint coordinates 

while the helicopter’s trajectory is signed with continuous line.  
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VII. CONCLUSION 
In this paper the theoretical foundations and the real-time realization of the embedded control system of a 

Rotorcraft (UAV) were presented. The control law is of backstepping character, the state estimation is based on 

two stage extended Kalman filter. The hardware-in-the-loop real-time test was presented which emulated the 

helicopter and the sensory system of the Rotorcraft during the test. Communication happened using CAN 

protocol among the system components.  

 

REFERENCES 
[1] S. Bouabdallah and R. Siegwart, “Backstepping and Sliding-Mode Techniques Applied to an Indoor Micro Quadrotor”, Proc. Int. 

Conf. Robotics and Automation , Barcelona, Spain, pp. 2247-2252, 2005.  
[2] D. M. Wolpert and M. Kawato, “Multiple paired forward and inverse models for motor control,” Neural Netw., vol. 11, pp. 1317–

1329, 1998. 

[3] T.Kohonen, Self-Organizing Maps. NewYork: Springer-Verlag, 1995. 
[4] J. Walter, H. Ritter, and K. Schulten, “Nonlinear prediction with selforganizing maps,” in Proc. Int. Joint Conf. Neural Networks 

(IJCNN) , vol. 3, 1990, pp. 589–594. 

[5]  E. A. Wan and A. A. Bogdanov, “Model predictive neural control with applications to a 6 DoF helicopter model,” in Proc. 
American Control Conf. (ACC), vol. 1, 2001, pp. 488–493. 

[6] Sz. Matusik, “Real-Time Position and Orientation Determination Module for the Indoor Work of a Quadrotor Helicopter”, MSc 

Thesis, Budapest University of Technology and Economics, Department of Control Engineering and Information Technology, 2007. 
[7] S.D. Hanford, L.N. Long and J.F. Horn, “A Small Semi-Autonomous Rotary-Wing Unmanned Air Vehicle (UAV)”, AIAA 

InfoTech Aerospace Conference, Washington D.C., 2005, AIAA Paper N0. 2005-7077. 

[8] T. Madani and A. Benallegue, “Control of Quadrotor Mini-Helicopter via Full State Backstepping Technique", Proc. IEEE 
Conference on Decision and Control, pp. 1515-1520, 2006. 

[9] J. Cho, J. Lan, G. Thampi, J. C. Principe, and M. A. Motter, “Identification of aircraft dynamics using a SOM and local linear 

models,” in Proc. IEEE Int. Midwest Symp. Circuits Systems (MWSCAS), vol. 2, 2002, pp. 148–151. 


