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Abstract: 

This paper studies a resonant silicon sensor whose elementary sensing component is the E-type round 

diaphragm, and the final sensing component is the silicon beam resonator is attached to the E-type round 

diaphragm. the relationship between the basic natural frequency of the beam resonator and the measured 

acceleration are calculated and simulated by using the above finite element modeling in detail. Because of the 
fact that beam is located on the different position on the E-type round diaphragm and the length of the beam, 

the outer radius of the E-type round diaphragm are varied respectively. The related analyses and investigations 

are carried out. Some important results on the relationship between the basic natural frequency of the beam 

resonator and the measured acceleration are obtained. Finally, based on the differential output scheme of the 

resonant sensor and some related criteria, a set of appropriate parameters for the above sensing structure of the 

sensor is determined for measuring the acceleration. 

Key Words: acceleration, beam, resonator, E-type round diaphragm, micro sensor, frequency, finite element 

method (FEM) 

 

I.        Introduction 

Silicone resonant sensors have developed rapidly in past decade. Many experts in sensor paid special 
attention to this technology.  

The main advantage of the silicon microstructure resonant sensors is the advantage of generalized resonant 

sensors, such as direct digital output (without A/D converters), because the Sensors whose output is in the form 

of variable frequency are called quasi-digital because it is very easy to obtain a digital output from them. The 

output of digital sensors is in the form of discrete steps or states. The output of digital sensors does not require 

an Analogue to Digital convector and their output is easier to transmit than analog sensors. The output of digital 

sensors is also more repeatable, reliable, and has long-term stability. They have low hysterics and high 

repeatability  

which is often more accurate and precise .The advantages of silicon material is that they have excellent 

mechanical properties, posses high strength, no mechanical hysterics. Moreover they have ability to batch 

process at low cost and the compatibility of mechanical and electrical properties. Meanwhile, due to their high 

working frequency, the dynamic characteristics of silicon resonant sensors are much better than those of 
conventional resonant sensors.[1] 

 

II.     Structural Sketch and Sensing Mechanism of  Microstructure   Silicon Accelerometer 
 Fig.1 shows the structural sketch of a microstructure silicon resonant sensor for measuring 

acceleration. Fig 3.2 shows the mathematical model of the sensing structure. The preliminary sensing unit of the 

microstructure silicon accelerometer micro-sensor for measuring the acceleration is an E-type round diaphragm, 

where A is the outer radius, B is the inner radius, and H is the thickness of the diaphragm, respectively. .  

The measured acceleration within (-100,+100) 
2/m s  (a<0 F>0 ,a>0 F<0)  acts perpendicularly to the lower 

plane of the E-type round diaphragm and yields the radial and circular stresses of the diaphragm. The final 

sensing unit is one pair of beams (resonator beam1 and beam 2: L is the length of the beem, b is the width of the 

beem, and h is the thickness of the beem, see Fig. 2) which are attached to the upper plane of the E-type round 

diaphragm. The location of the beam 1 and beam2 are along the radial direction of the E-type round diaphragm. 

Beam 1 is located at the outer edge and beam 2 at the inner edge. 

As compared with the round or square diaphragm, the E-type round diaphragm is one of the advanced 

elementary sensing units in silicon microstructure resonant sensors. Its major advantages are such that the stress 

concentrations on the effective annular sensing area, flexible stress distribution designing, easier to achieve the 

differential measuring scheme in order to increase the sensitivity and reduce some disturbances such as 
temperature, random vibration, etc. In addition, the advantage of the above sensing structure is that the beam 

resonator of very high Q factor because they can be packaged within a vacuum housing. 
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   The location of beam 1 and beam2 are along the radial direction of the E-type round diaphragm (see Fig.1). beaml 

is located at the outer edge r(A-L~A) , and beam2 at the inner edge r(B~B+L). However, it is very important 

for the silicon resonant sensor to design and select the optimal parameters of the sensing structure to measure the 

different acceleration ranges. Based on the sensing mechanism of the sensor, the FEM model of the sensing 

structure is established in detail, in this Chapter in the first step.[2] 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Fig  1 The structural sketch of a silicon resonant sensor for measuring acceleration 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig 2 The mathematical model of sensing structure 

 

III.    Stresses on the upper plane of the E-type round diaphragm 
         The differential equation of the round diaphragm which is measuring by a acceleration can be 

written as following: 

                                                              

                                                      1 d dwd Q
r

r dr drdr D

  
  

  

                                       (3.1) 

 

                           

212(1 )

EH
D 



                                  

2

F
Q

r


  

                             F ma               
2 2m H B HAs  

 
 

      

Where W is the normal displacement of the E-type round diaphragm, D is the flexural rigidity of the diaphragm, 

Q is the shearing force of the circle of radius r of the diaphragm, r is radial coordinate of the diaphragm in polar 

coordinate, F is the inertial force caused by the measured acceleration a ,m is the effective sensing mass, Hs is 

the height of the sensing cylinder and E ,ρ, μ are Young’s modulus density  and Poisson ratio of the sensing 
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structure, respectively. It should be pointed out that the positive direction of the measured acceleration a and the 

corresponding inertial forces are shown in fig 2. If the amount of the above both variables is appositive, the 

actual direction of the above variable is the same with that in fig 2. And if the amount of the above both 

variables is a negative, the actual direction of the above variable is opposite from that in fig.2.[4] 

  The boundary conditions at the inner and outer edges of the E-type diaphragm are as follows:                                                       
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From equation (3.1) and (3.2), the normal displacement of the E-type round diaphragm w can be obtained. Then 

the radial stress  r r and circular stress  r  of the E-type round diaphragm can be obtained as follows : 
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3.3 Reckoning Model of the Beam 

 

 

 

 

 

 

 

 

 

Fig 3 The mathematical model of the beam 

Fig 3 shows the mathematical model of the beam. The axial and normal vibrating displacements u(s,z,t) and 

w(s,t) of beam at an arbitrary point in Cartesian coordinate can be written as: 
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Where s , z are axial and normal coordinates of the beam in Cartesian coordinate, ω [rad/s], w(s) are natural 

frequency and its corresponding vibrating shape along the axial direction of the beam.  

Energy expressions of the beam resonator are as follows : 
 

The potential energy 
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Where S is the integrated length of the beam. 
 

 

 The kinetic energy  

 

                             
2 2

, , ,1
2

u s z t w s t
T dv

t tv


 
     
    
       

  

 
   

 

 

                                 
2 2 2sin
2

bh t
w s ds

s

  
 
                     (3.6)                               

  Where ρ is density of the sensing structure. 

     

     In addition, the initial potential energy of the beam, which is caused by  0

s s , is 
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From fig 3.2 and equation (3.3), according to the above analyses, 
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Then the total potential energy of the beam is  
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    In equation (3.7) if  0

s s  is a constant, we can directly obtain the analytic relationship between the 

frequency and the initial axial stress can be directly obtained from equation (3.10). In this thesis, we present the 

FEM equation to solve the relationship between the natural frequency of the beam resonator and the measured 

acceleration. 
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Beside on the above related equation we can divide the element along the axial direction of the beam (Fig 3.4, N 

is the total number of the beam element.) Introducing the dimensionless length:   ,js S   /  

 10.5 .j jS S     Then map of domain  1,j js S S 
    is  1, 1    . For the displacement of the jth 

element, introducing the second order Hermite interpolation.  
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Fig 4 Dividing element along the beams axial direction 
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From equation (3.5) ~ (3.9),(3.11) we can obtain the element potential energy, kinetic energy and initial 

potential energy caused by the initial stress, in the domain  1,j js S S 
   : 
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Then we obtain the element stiffness matrix: 
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The element mass matrix: 
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The element initial stiffness matrix: 
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The element total stiffness matrix: 

 

                                
j j j

T oK K K                                                 (3.18)                                                        

 

From equation (3.18) and (3.16), we can obtain the assembly stiffness matrix K and assembly mass matrix M in 

the local domain  0,Ls  . Then the finite element equation is the follow: 

                               2 a 0K M                                                      (3.19) 

                      

Where the assembly nodal vector a consists of all a j . 

        For actual structural feature of fig 3.2, the boundary conditions of beam are as follows: 
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From equation (3.19) and (3.20), we can obtain the natural frequency and the corresponding vibrating 
shapes.[5,6,7] 

 

CALCULATIONS THE LOCATION OF THE BEAM 
the main investigations are the varying laws of the measured acceleration -frequency relationship for 

the beam resonator as the thickness H, outer radius A for the E-type round diaphragm and the corresponding 

length of the beam L are varied accordingly. In order to get some generalized results of the measured 

acceleration frequency relationship for the beam resonator, some related parameters are selected follows: 

Referenced value for the inner radius of the E-type round diaphragm is as 
31.4 10B m   

Referenced values for the width and the thickness of the beam are as 
650 10b m     and 

65 10h m  .And the thickness of the E-type round diaphragm is as H=
630 10 m 

The sensor is made of silicon, E= 1.3 x
1110 pa, ρ = 2.33xl03 kg/

3 ,m μ =0.17.  

Basic Natural Frequency for zero acceleration a = 0 

Table 1and fig 5 shows the basic natural frequency f(0)of beam with the measured zero acceleration a = 0. From 

this Table and fig, we can get results: the basic natural frequency of the beam, for the zero acceleration a = 0, 

decreases with increasing the length of the beam L as the inner radius of the E-type round diaphragm B is a constant. 
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Table 1 the basic natural frequency of the beam with a=0 for the different L 

L
310 m     0.40    0.45    0.50   0.55    0.60 

f(0)( Hz) 244745 189134 153561 126914 106648 

 

  
Fig 5 basic natural frequency of beam with a=o for different L 

 

Then, the length of the beam L should be increased if it is required to decrease the basic natural frequency 

for the zero acceleration a = 0. 

From the below Tables and the below Figures, we can get the following results: 

The variation of the basic natural frequency of the beam decreased with increasing the length of the beam, while 

the relative variation (sensitivity) of the basic natural frequency increases with increasing the length of the beam 

for the given parameters of the E-type round diaphragm 

The variation of the basic natural frequency of the beam and the relative variation (sensitivity) of the basic 

natural frequency of the beam is increased with increasing the outer radius of the E-type round diaphragm as the 

inner radius of the E-type round diaphragm is constant. 

The variation of the basic natural frequency of beam2 is more than that of beam1 And the above tendency 

decreases with increasing the ratio B/A and decreases with increasing the length of the beam. [8,9] 
 

Table 2 The variation frequency (Hz) of Beam1 for the different A,L 
  

310A m

 

              THE LENGTH OF THE BEAM (
310L  m) 

   0.4     0.45     0.50     0.55    0.60 

    3.5 4354 4123 3790 3654 3498 

    3.6 4489 4240 3878 3719 3567 

    3.7 4521 4387 4115 3968 3811 

    3.8 4611 4456 4343 4190 4047 

 

Table 3 The variation frequency (Hz) of Beam2 for the different A,L 
 

310A m

 

          THE LENGTH OF THE BEAM (
310L  m) 

   0.4     0.45     0.50     0.55    0.60 

    3.5 -4867 -4732 -4587 -4310 -4165 

    3.6 -5032 -4898 -4778 -4521 -4282 

    3.7 -5499 -5389 -5181 -4942 -4679 

    3.8 -5921 -5765 -5594 -5352 -5083 
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Table 4The relative frequency variation (sensitivity) of Beam1 for the different A,L 
    

310A m

 

         THE LENGTH OF THE BEAM (
310L  m) 

   0.4     0.45     0.50     0.55    0.60 

    3.5 1.778% 2.150% 2.487% 2.879% 3.279% 

    3.6 1.834% 2.240% 2.525% 2.930% 3.345% 

    3.7 1.847% 2.319% 2.680% 3.127% 3.573% 

    3.8 1.884% 2.356% 2.828% 3.301% 3.795% 

 

    Table 5 The relative frequency variation (sensitivity) of Beam2 for the different A,L 
    

310A m

 

               THE LENGTH OF THE BEAM (
310L  m) 

   0.4     0.45     0.50     0.55    0.60 

    3.5 -1.988% -2.501% -2.987% -3.396% -3.905% 

    3.6 -2.056% -2.601% -3.112% -3.562% -4.015% 

    3.7 -2.246% -2.849% -3.374% -3.894% -4.387% 

    3.8 -2.634% -3.048% -3.643% -4.217% -4.766% 

 

          Table 6 The variation frequency (Hz) of Beam1 for the different A,L 

310A m

 

              THE LENGTH OF THE BEAM (
310L  m) 

   0.4     0.45     0.50     0.55    0.60 

    3.5 -4277 -4167 -3822 -3755 -3532 

    3.6 -4310 -4245 -3987 -3858 -3716 

    3.7 -4576 -4378 -4234 -4114 -3980 

    3.8 -4789 -4567 -4489 -4364 -4236 

      

 

       Table 7 The variation frequency (Hz) of Beam2 for the different A,L 
 

310A m

 

          THE LENGTH OF THE BEAM (
310L  m) 

   0.4     0.45     0.50     0.55    0.60 

    3.5 5076 4954 4312 4211 4034 

    3.6 5134 5099 4620 4342 4270 

    3.7 5376 5177 4994 4719 4452 

    3.8 5743 5470 5378 5085 4814 

 

      Table 8 The relative frequency variation (sensitivity) of Beam1 for the different A,L             
    

310A m

 

         THE LENGTH OF THE BEAM (
310L  m) 

   0.4     0.45     0.50     0.55    0.60 

    3.5 -1.747% -2.203% -2.487% -2.964% -3.311% 

    3.6 -1.761% -2.244% -2.596% -3.040% -3.484% 

    3.7 -1.869% -2.314% -2.757% -3.242% -3732% 

    3.8 -1.956% -2.414% -2.923% -3.439% -3.972% 

 

Table 9 The relative frequency variation (sensitivity) of Beam2 for the different A,L 
    

310A m

 

               THE LENGTH OF THE BEAM (
310L  m) 

   0.4     0.45     0.50     0.55    0.60 

    3.5 2.073% 2.619% 2.808% 3.317% 3.782% 

    3.6 2.097% 2.695% 3.009% 3.421% 3.826% 

    3.7 2.196% 2.737% 3.252% 3.718% 4.175% 

    3.8 2.346% 2.892% 3.502% 4.007% 4.514% 
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Fig 6 the relationship between the relative frequency variation (sensitivity) of beam1  and the length of beam 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7 the relationship between the relative frequency variation (sensitivity) of beam1and the outer radius of 

diaphragm A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8 the relationship between the relative frequency variation (sensitivity) of beam2 

                                                            and the length of beam 
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        Fig 9 the relationship between the relative frequency variation (sensitivity) of beam2 

                                                      and the outer radius of diaphragm 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10 the relationship between the relative frequency variation (sensitivity) of beam1 

                                                             and the length of beam 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 11 the relationship between the relative frequency variation (sensitivity) of beam1                                       

and the outer radius of diaphragm A 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 12 the relationship between the relative frequency variation (sensitivity) of beam2                                                            

and the length of beam 
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Fig 13 the relationship between the relative frequency variation (sensitivity) of beam2                                                  

and the outer radius of diaphragm A 

 

Conclusion 

The modeling and simulation for a novel resonant silicon micro-sensor are carried out in this thesis. 

The elementary sensing component of the micro-sensor is the E-type round diaphragm and its final sensing 
component is the beam resonator which is attached to the E-type round diaphragm. 

The sensor is made of silicon, E=  
111.3 10 pa, 

3 32.33 10 /kg m   , 0.17  . The inner radius is as 

B=
31.4 10 m  and the thickness of the E-type round diaphragm is as

630 10H m  . The width and 

thickness of the beam are 
650 10b m   and 

65 10h m  . Assuming the measured 

acceleration   2100, 100 /a m s   , corresponding inertial force are 

  21.300, 1.300 10F N    , to   21.304, 1.304 10F N     as the outer radius of the E-

type round diaphragm are 
3(3.5,3.6,3.7,3.8) 10A m   and the frequencies of the beam are ƒ(0) = 

(244745,189134,153561,126914,106648)Hz for measured acceleration 0a   as the length of the beam L= 

(400, 450, 500, 550, 600) 
610 m respectively. 

Then the simulation results are as follows: 
the frequency range for Beam1 is (149327~ 157675)Hz  which located at the outer edge the measured 

acceleration as within (-100,+100) 
2/m s   

the frequency range for Beam2 is (158555~ 148380)Hz  which located at the inner edge the measured 

acceleration as within (-100,+100) 
2/m s  

 In addition to the variation and relative variation or the sensitivity of the basic natural frequency of the beam1  

Δf(-100
2/m s )=-4234 Hz, Δf(+100

2/m s )=4115 Hz, β(-100
2/m s )=-2.757%, β(+100

2/m s )=2.680%, 

ƒ(0)=153561Hz. And the variation and relative variation or the sensitivity of the basic natural frequency of the 

beam2  Δf (-100
2/m s ) =4994Hz, Δf(+100

2/m s )=-5181 Hz, β(-100
2/m s )=3.252% 

β(+100
2/m s )= -3.374% ƒ(0)=153561Hz. Moreover, as the differential frequency output of the above 

accelerometer between Beam1 and Beam2 is (-9228, 9295)Hz 
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