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Abstract: The aim of this study is to perform an analysis of the different ANN methods employed to detect the 

saturation level in the magnetic core of a welding transformer. The magnetization level detector is a substantial 

component of a middle-frequency direct current (MFDC) resistance spot welding system (RSWS). The basic 

circuit of a resistance spot welding system consists of an input rectifier, an inverter, a welding transformer, and 

a full-wave rectifier which is mounted on the output of the welding transformer. The presence of unbalanced 

resistances of the transformer secondary windings and the difference in characteristics of output rectifier diodes 
can cause the transformers magnetic core to become saturated. This produces spikes in the primary current and 

finally leads to the over-current protection switch-off of the entire system. To prevent the occurrence of such a 

phenomena, the welding system control must detect and maintain the magnetic core saturation within certain 

limits. Previously, an Artificial Neural Network based detector was proposed to detect the saturation level. In 

this paper, we will take an in depth look at the different ANN methods that can be employed, analyze them and 

then decide which is the best method based on factors such as computational time, algorithm complexity, root 

mean square error and the gradient obtained. Three algorithms in total are evaluated including Resilient-Back 

propagation, Levenberg-Marquardt, Gradient-Descent. Based on the results obtained, the Levenberg-

Marquardt and the Resilient Back propagation were found to be the best algorithms but the Resilient Back 

propagation is preferred due to reasons such as computational time and algorithm complexity. In terms of 

RMSE both gave almost the same values. It is also shown that the Gradient Descent algorithm cannot be 

employed for this purpose. 

Keywords: Transformers, hysteresis, welding, neural network applications, controllers, gradient descent 
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I.      Introduction 
 The aim of this work is to develop and evaluate the best possible ANN training method to detect the 

magnetization level in the magnetic core of a welding transformer. This is done by considering factors such as 

computational time, algorithm complexity, mean square error and the gradients of the ANNs. The magnetization 

level detector is a substantial component of a middle-frequency direct current (MFDC) resistance spot welding 

system (RSWS), where the welding current and the flux density in the welding transformer’s magnetic core are 
controlled by two hysteresis controllers [1]. 

 The resistance spot welding systems described in different realizations [2]-[5], are widely used in the 

automotive industry. Although the alternating or direct currents (dc) can be used for welding, this work focuses 

on the RSWS (Fig. 2) with dc welding current. The resistances of the two secondary windings R2, R3 and 

characteristics of the rectifier diodes, connected to these windings, can slightly differ. References [6]-[9] show 

that combination of these small differences can result in increased dc component in welding transformer’s 

magnetic core flux density. It causes increasing magnetic core saturation with high impact on the transformer’s 

primary current i1, where current spikes eventually appear, leading to the over-current protection switch-off of 

the entire system. However, the problematic current spikes can be prevented either passively [6] or actively [7]-

[9]. 

 When the current spikes are prevented actively, closed-loop control of the welding current and 

magnetic core flux density is required. Thus, the welding current and the magnetic core flux density must be 
measured. While the welding current is normally measured by the Rogowski coil [10], the magnetic core flux 

density can be measured by the Hall sensor or by a probe coil wound around the magnetic core. In the latter, the 

flux density value is obtained by analogue integration of the voltage induce in the probe coil [7]. Integration of 

the induced voltage can be unreliable due to the unknown integration constant in the form of remnant flux and 

drift in analogue electronic components. The drift can be kept under control by the use of closed-loop 

compensated analogue integrator [9]. 
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 An advanced, two hysteresis controllers based control of the RSWS, where current spikes are 

prevented actively by the closed-loop control of the welding current and flux density in the welding 

transformer’s magnetic core, is presented in [9]. This solution requires measuring of the welding current, while 

instead of measured flux density only information about magnetization level in the magnetic core is required. 
 Some methods tested on welding transformer’s magnetic core, that can be applied for magnetization 

level detection are presented in [7], [8]. All these methods require Hall sensor or probe coils which make them 

less interesting for applications in industrial RSWS, due to the relatively high sensitivity on vibrations, 

mechanical stresses and high temperatures. In order to overcome these problems, an ANN based magnetic core 

magnetization level detector was presented previously in [11]. Its only (single) input is the measured 

transformer’s primary current. The ANN based magnetic core magnetization level detector is trained to 

recognize the waveform of the current spikes, which appear in the primary current when the magnetic core is 

approaching the saturated region. Upon detection of a spike, the ANN target signal makes it possible for the 

transformer supply voltage to change direction which also changes the magnetic flux density accordingly. This 

way, the system is controlled using the ANN detector and over-current protection switch-off is prevented. 

 In this paper, we will take an in-depth look at the different ANN methods employed and perform a 

comparative study of each and finally decide the best method based on the various factors and parameters 
involved. 
 

II.     Artificial Neural Network 
 [12]and [13] described the basic theories of ANN modelling as the following paragraphs.An ANN is a 

biologically inspired computational model formed from several of single units, artificial neurons, connected 

with coefficients (weights) which constitute the neural structure. They are also known as processing elements 

(PE) as they process information. Each PE has weighted inputs, transfer function and one output. PE is 

essentially an equation which balances inputs and outputs. There are many types of neural networks designed by 

now and new ones are invented every week but all can be described by the transfer functions of their neurons, 

by the training or learning algorithm (rule), and by the connection formula. 

 A single-layer neuron is not able to learn and generalize the complex problems. The multilayer 

perceptron (MLP) overcomes the limitation of the single-layer perceptron by the addition of one or more hidden 

layer(s) (Fig. 1). The MLP has been proven to be a universal approximator [14]. In Fig. 1, a feedforward 
multilayer perceptron network was presented. The arriving signals, called inputs, multiplied by the connection 

weights (adjusted) are first summed (combined) and then passed through a transfer function to produce the 

output for that neuron. The activation (transfer) function acts on the weighted sum of the neuron’s inputs and the 

most commonly used transfer function is the sigmoid (logistic) function. 

 The way that the neurons are connected to each other has a significant impact on the operation of the 

ANN (connection formula). There are two main connection formulas (types): feedback (recurrent) and feed 

forward connection. Feedback is one type of connection where the output of one layer routes back to the input 

of a previous layer, or to same layer. Feed forward does not have a connection back from the output to the input 

neurons. 

 There are many different learning rules (algorithms) but the most often used is the Delta-rule or back 

propagation (BP) rule. A neural network is trained to map a set of input data by iterative adjustment of the 

weights. Information from inputs is fed forward through the network to optimize the weights between neurons. 
 Optimization of the weights is made by backward propagation of the error during training or learning 

phase. The ANN reads the input and output values in the training data set and changes the value of the weighted 

links to reduce the difference between the predicted and target (observed) values. The error in prediction is 

minimized across many training cycles (iteration or epoch) until network reaches specified level of accuracy. A 

complete round of forward-backward passes and weight adjustments using all input-output pairs in the data set 

is called an epoch or iteration. If a network is left to train for too long, however, it will be over-trained and will 

lose the ability to generalize. 

 

 

 

 
 

 

 

 

 

 

Fig. 1: Schematic representation of a multilayer perceptron feed forward network consisting of input, hidden and 
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output layers. 

 The number of PEs per layer, as well as the number of layers, greatly influences the prediction abilities 

of the MLP. Too few of them hinder the learning process, and too many of them can depress the generalizing 

abilities of the MLP through over-fitting or memorization of the training data set. 
 In this study, we have focused on the learning situation known as supervised learning, in which a set of 

input/output data patterns is available. Thus, the ANN has to be trained to produce the desired output according 

to the examples. 

 In order to perform a supervised learning we need a way of evaluating the ANN output error between 

the actual and the expected output. A popular measure is the mean squared error (MSE) or root mean squared 

error (RMSE): 

 

MSE = Σ(yi - oi )2 (1) 

n  

RMSE = (MSE)1/2 (2) 

  
Where yi is the predicted value, oi the observed value, and n is the number of data set. 

As previously mentioned, there are numerous algorithms, which can be used for training ANNs. The following 

algorithms were used in this study to train ANNs: 

 

(1)   Resilient Back propagation: 

 Multilayer networks typically use sigmoid transfer functions in the hidden layers. These functions are 

often called "squashing" functions, because they compress an infinite input range into a finite output range. 

Sigmoid functions are characterized by the fact that their slopes must approach zero as the input gets large. This 

causes a problem when you use steepest descent to train a multilayer network with sigmoid functions, because 

the gradient can have a very small magnitude and, therefore, cause small changes in the weights and biases, 

even though the weights and biases are far from their optimal values. 

 The purpose of the resilient back propagation (Rprop) training algorithm is to eliminate these harmful 
effects of the magnitudes of the partial derivatives. Only the sign of the derivative can determine the direction of 

the weight update; the magnitude of the derivative has no effect on the weight update. The size of the weight 

change is determined by a separate update value. The update value for each weight and bias is increased by a 

factor delt_inc whenever the derivative of the performance function with respect to that weight has the same 

sign for two successive iterations. The update value is decreased by a factor delt_dec whenever the derivative 

with respect to that weight changes sign from the previous iteration. If the derivative is zero, the update value 

remains the same. Whenever the weights are oscillating, the weight change is reduced. If the weight continues to 

change in the same direction for several iterations, the magnitude of the weight change increases. A complete 

description of the Rprop algorithm is given in [15]. 

 

(2)   Gradient Descent: 
 This algorithm is one of the most popular training algorithms in the domain of neural networks. It 

works by measuring the output error, calculating the gradient of this error, and adjusting the ANN weights (and 

biases) in the descending gradient direction. Hence, this method is a gradient descent local search procedure 

[16]. This algorithm includes different versions such as: (2a) standard or incremental back propagation (IBP): 

the network weights are updated after presenting each pattern from the learning data set, rather than once per 

iteration [17]; (2b) batch back propagation (BBP): the network weights update takes place once per iteration, 

while all learning data pattern are processed through the network [18]; (2c) quick propagation (QP): QP is a 

heuristic modification of the back propagation algorithm. It is proved much faster than IBP for many problems. 

QP is also defined as: mixed learning heuristics without momentum, learning rate optimized during training 

[19]. 

(3)   Levenberg-Marquardt: 

 The Levenberg–Marquardt algorithm was designed to approach second-order training speed without 
having to compute the Hessian matrix [20]. When the performance function has the form of a sum of squares (as 

is typical in training feed forward networks), then the Hessian matrix can be approximated as 

 

H=JTJ (3) 

and the gradient can be computed as  

g=JTe (4) 

 

 where J=Jacobian matrix, which contains first derivatives of the network errors with respect to the 
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weights and biases, and e=vector of network errors. The Jacobian matrix can be computed through a standard 

back-propagation technique that is much less complex than computing the Hessian matrix. 

                                      Xk+1 = Xk – [JT J + µI]-1 JT e                                                         (5) 

 When the scalar µ is zero, this is just Newton’s method, using the approximate Hessian matrix. When µ 
is large, this becomes gradient descent with a small step size. Newton’s method is faster and more accurate near 

an error minimum, so the aim is to shift  

 To ward Newton’s method as quickly as possible. Thus, µ is decreased after each successful step 

(reduction in performance function) and is increased only when a tentative step would increase the performance 

function. In this way, the performance function will always be reduced at each iteration of the algorithm. The 

application of Levenberg-Marquardt to neural network training is described elsewhere in [21]. 

 

III.      Dynamic Model Of The RSWS 
 The RSWS, shown in Fig. 2, consists of an input rectifier, an H-bridge inverter, a single phase 
transformer and a full-wave output rectifier [9]. The three-phase alternating current (ac) voltages u1, u2, u3, 

supplied from the electric grid, are rectified in the input rectifier in order to produce the direct current (dc) bus 

voltage. This voltage is used in the H-bridge inverter, where different switching patterns and modulation 

techniques can be applied, to generate ac voltage uH, required for supply of the welding transformer. The 

welding transformer has one primary and two secondary windings. They are marked with indices 1, 2 and 3, 

respectively. The currents, the number of turns, the resistance and the leakage inductances of the primary and 

two secondary welding transformer’s windings are denoted by i1, i2, i3, N1, N2, N3, R1, R2, R3, and Lσ1, Lσ2, Lσ3. 

 The effects of the eddy current losses are accounted by the resistor RFe. R1 and L1 are the resistance and 

inductance of the load. The output rectifier diodes D1 and D2 are connected to both transformers’ secondary 

coils. They generate the dc welding current i1 which has a dc value a few times higher than the amplitudes of ac 

currents i2 and i3 that appear in the transformer’s secondary coils without the rectifier diodes. 

 
 

 

 

 

 

 

                                                  

Fig. 2: Schematic presentation of the RSWS 

 

 The supply voltage of the primary coil of the transformer could be generated in different ways. In the 

existent system, widely spread in the automotive industry, this voltage is generated by the H-bridge inverter 
applying pulse width modulation (PWM) at switching frequency of f = 1 kHz.  

 Within the welding system, the resistances of the secondary windings R2, R3 and the characteristics of 

the rectifier diodes could be slightly different. These differences can cause DC component in welding 

transformer’s iron core flux density, which causes increasing iron core saturation with the essential impact on 

the transformer’s primary current i1, where current spikes appear, leading to the over-current protection switch-

off of the entire system. Aforementioned phenomena could be confirmed by the appropriate dynamic model of 

the complete resistance spot welding system. In this work the model is built with the programme package 

Matlab/Simulink based on the schematic presentation shown in Fig. 2 and the following set of equations (6)-

(14). The results and the values obtained from this dynamic model are provided as inputs to each of the 

Artificial Neural Networks employed later. 

 

uH = R1i1+Lσ1(di1/dt)+ N1(dφ /dt)…………………………………………..……......................(6) 
0 = R2i2+Lσ2(di2/dt)+ N2(dφ /dt)+dip1+ RLiL+LL(d(i2+ i3)/dt)…….............……........................(7) 

0 = R3i3+Lσ3(di3/dt)- N3(dφ /dt)+dip2+ RLiL+LL(d(i2+ i3)/dt)…….............……….....................(8) 

N1ip+N2i2- N3i3 = H(B)lic+2δB/μ0…………………………………………..……........................(9) 

iL = i2+ i3……………………………………………………………..………….........................(10) 

i1 = iFe+ iP………………………………………………………………...……….......................(11) 

iFe = N1(dφ /dt)/RFe………………………………………………………...…….........................(12) 

φ = BAFe……………………………………………………………….…………........................(13) 

θ = N1i1+ N2i2-N3i3.............................................................................................................................(14) 

 

 In set of equations (6) – (14) φ stands for magnetic flux, dip1 and dip2 are nonlinear characteristics of 
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the output rectifier diodes D1 and D2, H(B) is the magnetizing curve of the iron core material, δ is the air gap, B 

is the iron core flux density, μ0 is the permeability of the vacuum, lic is the average length of the magnetic flux 

line in the iron core, AFe is the cross-section of the transformer’s iron core and θ is the magneto-motive force. 

Parameters that appear in (6) – (13) are shown in Table 1 and in Table 2. These are generally the values 
employed. The Dynamic Model employed in this work also utilizes the same values presented below: 

 

Table 1: Parameters of RSWS Dynamic Model 

Parameter Value Unit 

   

AFe 0.001385 m2 

δ 10 μm 

   

lic 0.313 m 

f 1000 Hz 

   

R1 0.01357 Ω 

R2 20 μΩ 

   

R3 20 μΩ 

   

RL 100 μΩ 

Lσ1 0.035 mH 

   

Lσ2 1 nH 

Lσ3 1 nH 

   

LL 1 μH 

N1 55 / 

   

N2 1 / 

   

N3 1 / 

 

Table 2: Nonlinear characteristics of the output rectifier diodes D1 - (dip1) and D2 - (dip2) 

 

dip1-i(A) dip1-u(V) dip2-i(A) dip2-u(V) 

    

0 0 0 0 

    

0.003 0.6 0.011 0.6 

    

0.014 0.65 0.053 0.65 

    

0.059 0.7 0.25 0.7 

    

0.247 0.75 1.17 0.75 

    

1.05 0.8 5.52 0.8 

    

4.43 0.85 25.9 0.85 

    

18.75 0.9 121.5 0.9 

    

79.3 0.95 570 0.95 

    

335 1 2675 1 

    

1418 1.05 12555 1.05 

    

6000 1.1 58912 1.1 
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25378 1.15 400416 1.15 

    

107334 1.2 1297043 1.2 

    

    

The results of simulations, obtained by the dynamic model of the RSWS, show that small difference in 

resistances R2, R3 and in characteristics of the rectifier diodes D1 and D2 can cause unbalanced time behaviour 

of the magnetic core flux density B and the current spikes in the primary current i1, shown in Fig.3. The a) 

graph in Fig. 3 shows the variation of flux with time. It can be seen that after a certain point, the flux begins to 
rise and goes on to reach the saturation levels. The b), c) and d) graphs in Fig. 3 show the variation of primary 

current in different time scales. As the core begins to saturate and the flux increases beyond the limits, the 

current spikes start to appear in the welding transformers primary current. From Fig. 3(c), it can be clearly seen 

that the spikes begin to appear  at around 0.075s. These spikes start to gradually increase with time and finally 

become sufficient to cause over-current protection switch-off of the entire welding system. In order to prevent 

this, we must first detect these spikes using an appropriate method and then suppress the detected spikes. 

 

 

 

 

 

 
 

                

                     

                     

 

 

3(a): Time behaviour of Flux B                                                    3(b) 

 

 

 

 
 

 

  

                                        

 

                                    3(c)                                                                                   3(d)                                                           

 

                                           

                                 Fig. 3( b),3(c),                                          3(d): Time behaviour of primary current i1    

                     

IV  Results and Discussion 

    In each of the mentioned ANN training algorithms, the only input to the ANN is the primary current of 

the welding system obtained from the above established dynamic model. Based on whether there is a spike 

occurring or not, the output of the ANN is obtained. Whenever, a spike is detected, the output of the ANN is set 

to 1. Then, a Hysteresis Controller which operates in conjunction with the ANN based detector performs a 

closed-loop control of the transformers’ primary voltage. With this, the flux and hence the primary current are 

reduced and brought back within their operating limits. Whenever a spike is detected, the transformers’ primary 

voltage reverses its polarities and hence the flux changes its direction towards the other peak. The simulations 

for each of the training algorithms of the ANN were performed by considering various architectures. Also, the 

total number of samples of input and output were around 4800. In this paper, we will present the results obtained 

for up to 1100 of these samples. From the simulations, the two best architectures for the ANNs were found be 

three layered networks with 30 neurons in the input, 7 neurons in the hidden, one neuron in the output layer and 
50 neurons in the input, 8 neurons in the hidden and one neuron in the output layer respectively. The results of 

the learning signals of the ANNs for each of the specified algorithms and architecture are shown below. 

Alongside these, the expected output signal is also shown. 
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Fig. 4(a): Learning Signal of ANN with RBP Algorithm      Fig. 4(b): Learning Signal of ANN with RBP 

Algorithm with 30-7-1 architecture                                                  with 50-8-1 architecture 

 

 

 

 
 

 

 

 

        

      

 

 

 

  Fig. 4(c): Learning Signal of ANN with LM Algorithm        Fig. 4(d): Learning Signal of ANN with LM       

Algorithm with 30-7-1 architecture                                                   with 50-8-1 architecture  
 

 

 

 

 

 

 

        

 

 

Fig. 4(e): Learning Signal of ANN with GD Algorithm         Fig. 4(f): Learning Signal of ANN with GD 

Algorithm with 30-7-1 architecture                                               with 50-8-1 architecture  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4(g): ANN Expected Target Signal obtained after completion of all the training cycles for any of the above 

mentioned algorithms 

 

 From the above graphs it is clear that the ANN employed with the Levenberg-Marquardt algorithm 

produces the best results. While the results of Resilient Back propagation Algorithm are good enough and its 
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results are relatively close to the Levenberg-Marquardt algorithm, the results of Gradient Descent algorithm are 

very poor and hence, it is clear that Gradient Descent cannot be employed for this purpose. The order of the best 

possible algorithms on the basis of the above learning signals is Levenberg-Marquardt > Resilient 

 Backpropagation > Gradient Descent. However, the Resilient Back propagation is comparatively easier 
to employ considering factors such as time taken for the training process and the relative complexities of each of 

the algorithms. The tables (1) and (2) below show the training times, gradients and the root mean squared errors 

for each of the algorithms for the architectures 30-7-1 and 50-8-1 respectively. 

 

Table. 3:  Table depicting a comparison of training times (s), RMSE values and gradients for the three 

algorithms for an ANN with the architecture 30-7-1 

 
TRAINING 

ALGORITHM 

TRAINING TIME (sec) RMSE GRADIENT 

Resilient Backpropagation 98 0.1018 0.34436 

Levenberg-Marquardt 503 0.0641 0.11137 

Gradient Descent 103 0.1890 0.0021649 

 

Table. 4: Table depicting a comparison of training times (s), RMSE values and gradients for the three 

algorithms for an ANN with the architecture 50-8-1 

 
TRAINING ALGORITHM TRAINING TIME (sec) RMSE GRADIENT 

Resilient Backpropagation 118 0.1176 0.0040654 

Levenberg-Marquardt 983 0.0934 0.0062879 

Gradient Descent 120 0.1118 0.0013543 

 

V.      Conclusion 
 The aim of this work is to present the best possible ANN training algorithm and architecture employed 

to detect the magnetization level in the magnetic core of a welding transformer. The best possible method is 

determined by considering factors such as computation time (training time), algorithm complexity, RMSE 

values and the gradients obtained. Based on the extensive analysis performed and the results obtained, the 

following conclusions are made: 

1) Levenberg-Marquardt algorithm gave the least RMSE values and the output signal obtained was closest to 
the target signal required.  

2) The Gradient Descent algorithm gave the worst RMSE and the output signal obtained was far away from 

the required target signal.  

3) The Resilient Back propagation algorithm gave RMSE values close to the Levenberg-Marquardt algorithm 

and the output signal obtained was pretty close to the required target signal.  

4) The neural network architecture 30-7—1 was found to be the best possible architecture for the purpose.  

 Considering all the factors such as RMSE, computational time, algorithm complexity and the gradients 

obtained, it is concluded that the Resilient Back propagation algorithm is the most suitable method that can be 

employed to detect the magnetization level in the magnetic core of welding transformer. 
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