# **Optimal Operation of Wind-thermal generation using differential** evolution

Vishal Chaudhary<sup>1\*</sup>, Manjaree Pandit<sup>2</sup>, Hari Mohan Dubey<sup>3</sup> <sup>1\*, 2, 3</sup>(Department of Electrical Engineering, Madhav Institute of Technology and Science Gwalior M.P INDIA)

Abstract: Numerous optimization paradigms have been developed for power system optimization tasks till date but none has found the level of acceptance which is being received by evolutionary soft computing methods. Traditional methods are found to be inefficient for complex practical problems with equality and inequality constraints therefore the complexity of the task reveals the necessity for development of efficient algorithms to accurately locate the optimum solution. The present paper proposes to solve complex constrained optimization problems using differential evolution (DE) with multiple mutation strategies. The role of control parameters and mutation strategies of DE algorithm in achieving the global best result is critically explored. The depleting reserves of fossil fuel and growing concern about environmental protection dictates the integration of renewable power resources into the power grid. Including wind power with the conventional power has become very popular in recent years due to the rapid development of technology in this field. Modeling of wind-thermal system is required to find the optimal wind generator capacity that can be integrated into the existing system such that all operating constraints are satisfied. The developed algorithm is tested on a standard test system taking into consideration the wind uncertainty and ramp-rate limits of thermal power units. The results clearly demonstrate the effectiveness of the proposed method in finding feasible and efficient globally optimal solutions **Keywords** - Differential evolution, equality and inequality constraints, mutation strategies, wind-thermal economic dispatch.

#### **INTRODUCTION** I.

Nature inspired, evolutionary computation is applied to solve various single and multi-objective optimization problems, which cannot be solved using conventional optimization techniques because of high dimensionality, nonconvexity/non-smooth nature of objective function. In general, evolutionary computation techniques are composed of a set of different families of algorithms that iteratively improve a set of tentative solutions to obtain an optimal or a quasi-optimal solution to the problem. Evolutionary optimization techniques are being preferred over traditional methods for solving real-world engineering optimization problems because these methods do not depend on the nature of the problem and are able to model complex constraints with ease. The last decade has seen tremendous growth in the field of heuristic based optimization methods for NP complete problems. Many new nature inspired evolutionary optimization algorithms such as genetic algorithm (GA), particle swarm optimization (PSO), ant colony search (ACS), harmony search (HS), bacterial foraging (BF), biogeography based optimization (BBO) etc. were proposed for almost all the fields of engineering, science and management. The major advantages of these methods are i) population based random search mechanism ii) non-dependence on nature of objective function iii) ability to handle complex constraints iv) non-dependence on initial solution and v) simple implementation. The objective of solving the economic dispatch (ED) problem of electrical power systems is to find the optimal allocation of output power among the available generating units such that the system load is met and operating constraints are satisfied[1][2]. Alternate sources of power are continuously being explored to find a sustainable and economic solution to the ever increasing global power needs. A model based on differential evolution is proposed in this paper to include wind energy conversion systems (WECS) into the conventional power network. The most important factor associated with wind energy is that after the preliminary land and capital costs, there are almost no financial requirements in producing electrical power by harnessing wind energy. The wind energy system is environment friendly as compared to conventional fossil fuels. A number of research efforts can be found in literature where wind-thermal cost optimization has been carried out using numerical optimization methods. A model to include the wind energy conversion system (WECS) in the economic dispatch(ED) problem is presented using numerical solutions [3]. Both overestimation and underestimation of available wind power are analyzed. The stochastic nature of wind speed characterization is modeled using Weibull probability density function for a system having two conventional and two wind-powered generators. The economic dispatch problem for power systems which contain wind power generation plants is presented in [4]. The dynamic optimal dispatch takes into account of the coupling effect of system at different time moments, such as the limit on the climbing rate of a generator. Quantum genetic algorithm is adopted in this paper, the calculation of which is to borrow fully the concept and theory of Quantum computing [4]. The transformation of the multi-objective dispatch problem into a single-objective one to compromise different objectives is presented in [5] using, the optimal generation dispatch (OGD) model. Then the OGD is solved by a particle swarm optimization algorithm. The plant growth simulation algorithm (PGSA) is applied to solve the wind-thermal dispatch problem with different constraints like valve point loading effect, ramp rates, power loss and prohibited zones. Problem formulation of wind-thermal dynamic economic dispatch [6] A stochastic optimization method utilising a simulated annealing (SA) approach combined with an efficient constrained dynamic economic dispatch (CDED) is proposed in [7].

This paper proposes a DE based approach for wind-thermal scheduling problem in dynamic environment with complex constraints. A detailed analysis and comparison of the various DE mutation strategies is carried out. The proposed approach is found to be very effective in locating optimal solutions consistently.

#### II. PROBLEM FORMULATION OF WIND-THERMAL DYNAMIC ECONOMIC DISPATCH

The objective function for wind-thermal economic dispatch includes minimization of the operating cost of thermal as well as wind power at any given time interval consisting of all sub-intervals. After the initial costs, the wind power farm does not consume fuel therefore power companies normally dispatch all wind power first. The objective of economic dispatch for power systems containing wind power farm can be formulated as:

$$MinF_{T} = \min \sum_{t=1}^{T} \sum_{i=1}^{N} F_{it}(P_{git}) + F_{cp}$$
(1)

Where  $F_T$  is the total cost for producing power for the N number of conventional generating units over time interval T; The active power output of the i<sup>th</sup> generator at time t is taken as  $P_{Git}$ ; the operating cost of individual thermal unit is expressed using the quadratic cost function as  $F_i(P_{Git})$  And for the t<sup>th</sup> time it can be expressed as:  $F_i(P_{Git}) = a_i + b_i P_{Git} + c_i P_{Git}^2$ (2)

Where  $a_i$ ,  $b_i$  and  $c_i$  are the fuel cost coefficients of the ith thermal generating unit. In the electricity market, the cost function due to environmental effects of thermal generation can also be included in the optimal wind-thermal system by defining the emission content in terms of additional coefficients based on the emission characteristics. The ecological cost of coal-fired generating units is added to the fuel cost of electricity generation. The environmental cost function  $F_{cp}$  can be given as:

$$F_{cp} = \sum_{t=1}^{m} M_{cpi} \times f_{di} \tag{3}$$

Where  $M_{cpi}$  is the cost coefficient for modeling environmental effect and  $f_{di}$  is the emission amount of the i<sup>th</sup> thermal generating unit. On the basis of the weight of the harmful pollutant gases discharged from the thermal units, the emission characteristics for each unit can be represented by emission per unit time as:

 $f_{di}(t) = \alpha_i + \beta_i P_{Git} + \gamma_i P_{Git}^2 + \delta_i \exp(\Theta_i \times P_{Git})$ 

Where  $\alpha_i$ ,  $\beta_i$ ,  $\gamma_i$ ,  $\delta_i$  and  $\theta_i$  are the emission characteristics coefficients for the i<sup>th</sup> thermal generating unit, which can be measured.

The objective function specified by (1) is to be minimized subject to the following constraints:

#### 2. 1 Power balance constraint

The total power generated by wind and thermal units at any given time should match the load plus losses at that time [1] [2].

$$\sum_{i=1}^{N} P_{Git} + \sum_{j=1}^{N_{W}} P_{Gjt}^{W} = P_{Dt} + P_{Lt}$$
(5)

Where  $N_w$  represents the total wind power plants in the system;  $P_{Gjt}$  is the output of active power for the j<sup>th</sup> wind power plant at time t;  $P_{Dt}$  is the load at time t.

2.2 Power losses

The power losses taking place at any particular time t can be expressed using the B-loss coefficient by applying the following expression [1]:

$$P_{Lt} = \sum_{i=1}^{N_T} \sum_{j=1}^{N_T} P_{Gi} B_{ij} P_{Gj} + \sum_{i=1}^{N_T} P_{Gi} B_{io} + B_{00}$$
(6)

 $P_{Lt}$  is the line loss for the  $N_C$  number of generators given by  $N+N_W$ ; The loss parameters  $B_{ij}$ ,  $B_{io}$  and  $B_{oo}$  are also called B parameters.

2.3 Unit operating limits constraint

The power outputs of generating units have to lie within the specified minimum and maximum values. This is due to the operating constraints on units.

$$P_{Git}^{min} \le P_{Git} \le P_{Git}^{max} \tag{7}$$

(4)

Where  $P^{min}$  and  $P^{max}$  are the upper and lower bound respectively for the active power output of the i<sup>th</sup> conventional unit at time t.

2.4 Ramp-rate limit of generators

 $-\varepsilon_{idown} \leq P_{Git} - P_{Gi(t-1)} \leq \varepsilon_{iup}$ 

(8)

Where  $\varepsilon_{idown}$  and  $\varepsilon_{iup}$  are the ramp down rate and the ramp up rate respectively for the i<sup>th</sup> conventional unit. These limits are applied because a unit cannot change its output beyond these values between two consecutive time intervals. The ramp-rate limits modify the operating limits of a unit for every time interval depending on the state of the preceding interval.

# 2.5 Nonconvex cost characteristics due to valve point loading

The valve-point effects cause ripples in the cost curves of thermal units and create discontinuous, nonconvex objective function which has multiple minima. For an accurate modeling of VPL effects, a rectified sinusoidal function [8] is added in the fuel input-power output cost function of the i<sup>th</sup> unit as given below

$$F_i(P_{Git}) = a_i + b_i P_{Git} + c_i P_{Git}^2 + d_i \sin\left(e_i \left(P_{Git}^{min} - P_{Git}\right)\right)$$
(9)

 $d_i$  and  $e_i$  all are the coefficient cost for evaluation for the  $i^{th}$  unit;  $P_{Git}$  is the minimum power output for the  $i^{th}$  unit.

#### 2.6 The Weibull Probability distribution of wind power

The wind power W and wind speed V share a highly nonlinear relation. V is the wind speed (m/sec), which varies randomly with time however the data collected from field have shown that V approximately follows [9]  $E_{r}(v) = 1 - \exp\left[-\frac{v}{r}\right]^{k}$ 

$$F_{v}(v) = 1 - \exp\left[-(\frac{-}{c})^{n}\right]$$
 (v≥0) (10)

Where c and k are referred to as the scale factor and shape factor, respectively. Correspondingly, the probability density function of V is:

$$f_{v}(v) = \frac{\kappa}{c} (\frac{v}{c})^{k-1} \exp\left[-(\frac{v}{c})^{k}\right]$$
(11)

The relation between the input wind power and the output electric power depends on many factors, like the efficiencies of generator, wind rotor, gearbox, and inverter, depending on what kind of turbine is being employed. The generic relation between wind power and wind speed can be given as [9]:

$$W = \begin{cases} 0; & (V < v_{in} \text{ or } V \ge v_{out}) \\ w_r; & (v_r \le V < v_{out}) \\ \frac{(V - v_{in})w_r}{v_r - v_{in}} & (v_{in} \le V < v_r) \end{cases}$$
(12)

Where  $v_r$ ,  $v_{in}$ ,  $v_{out}$ : Rated, cut-in, and cut-out wind speeds; W is the power generated by the wind generating unit; Wr is the rated power of the wind generating unit; c is the scale factor and k is the shape factor of the Weibull distribution.

#### **III. DIFFERENTIAL EVOLUTION**

Researchers the world over are proposing evolutionary methods as alternate approaches for solving power system optimization and other problems, because these methods are nature inspired and hence are more robust and suitable for practical problems having a real world flavor. This section presents an i) in-depth review and comparison of various DE strategies ii) impact of tuning parameters. The DE results are analyzed using reliable performance metrics such as convergence behavior, consistency and solution quality for solving the CHPED problem.DE is a population-based stochastic function minimizer/maximizer based on evolutionary computation. It's simple yet powerful and straightforward features make it very attractive for numerical optimization. DE differs from classic genetic algorithms in the manner of using the vector differential of two randomly chosen parameter vectors; a concept borrowed from the operators of Nelder and Mead's simplex optimization technique. The DE algorithm was first introduced by Storn and Price in 1995 [10] and was successfully applied in the optimization of complex and nonlinear, non-convex and non-differentiable, and functions. Optimization using DE is carried out by three operations known as mutation, crossover and selection.

#### 3.1 Mutation

Mutation is an operation that adds a vector differential to a population vector of individuals according to the chosen variant. Three issues are central to DE, first, the method for selecting the parent population member which is used for creating the mutated population, second, the number of difference vectors that will be used form the mutant vector and third issue is which crossover method is used to create the offspring population. The notation used for these three concepts is known as DE,  $/\alpha/\beta/\delta$ . Most published work has explored the variant DE / rand / 1 / bin which means, random selection, one difference vector and binomial crossover [Storn

et al]. The best performing variant is found to be problem specific and needs detailed investigation. The donor or mutant vector for each population member is generated for different variants in classic DE as given by

Mutant vector generation using DE/rand/1: MS-I  

$$Z_{i}(t+1) = x_{i,r1}(t) + f_{m}[x_{i,r2}(t) - x_{i,r3}(t)]$$
(13)  
Mutant vector generation using DE/best/1: MS-II  

$$Z_{i}(t+1) = x_{i,best}(t) + f_{m}[x_{i,r2}(t) - x_{i,r3}(t)]$$
(14)  
Mutant vector generation using DE/rand-to-best/1: MS-III  

$$Z_{i}(t+1) = x_{i}(t) + f_{m}[x_{i,best}(t) - x_{i}(t)] + f_{m}[x_{i}r_{1}(t) - x_{i}r_{2}(t)]$$
(15)  
Mutant vector generation using DE/best/2: MS-IV  

$$Z_{i}(t+1) = x_{ibest}(t) + f_{m}[x_{i,r1}(t) - x_{i}r_{2}(t)] + f_{m}[x_{i}r_{3}(t) - x_{i}r_{4}(t)]$$
(16)  
Mutant vector generation using DE/rand/2 : MS-V

$$Z_{i}(t+1) = x_{ir5}(t) + f_{m}[x_{i,r1}(t) - x_{i}r_{2}(t)] + f_{m}[x_{i}r_{3}(t) - x_{i}r_{4}(t)]$$
(17)

Where i = 1, 2, ..., R is the individual population member's index, t is the iteration count; r1, r2, r3, r4 and r5 and are random integers generated by using the randperm (R) command. These integers should be different and not the same as the integer i.To implement the mutation operation, a parameter called mutation factor, fm in the range [0, 2] is taken which controls the amplification of the difference between two individuals so as to avoid search stagnation.

# 3.2 Crossover Operation

The crossover operation is performed after the mutation operation is completed for the set of population. Recombination is employed to generate a trial vector Ui by replacing some attributes of the target vector (xi) with the corresponding parameters of the randomly generated donor or mutant vector (Zi) as per the following logic:

$$U_{ij}(t+1) = \begin{cases} Z_{ij}(t+1), \dots, if(rand(j) \le CR) or(j = rand \operatorname{int}(i)) \\ x_{ij}(t), \dots, \dots, if(rand(j) > CR) or(j \neq rand \operatorname{int}(i)) \end{cases}$$
(18)

In the above, rand (j) is the j<sup>th</sup> assessment of a random number generated in the range 0-1; *CR* is a crossover rate. The effectiveness of a DE algorithm is normally decided by the population size N, the mutation rate  $f_m$  and the crossover factor *CR*.

# 3.3 Selection

Selection is the procedure of producing better progeny. For a continuously evolving population, each member of the trial vector is compared to its parent target vector. If it is found to be better, then it replaces the concerned target vector in the population as expressed below.

$$x_{i}(t+1) = \begin{cases} U_{i}(t+1)....if(u(t+1) < f(x_{i}(t))) \\ x_{i}(t),...otherwise \end{cases}$$
(19)

Selection helps in maintaining a stable convergence.

# IV. RESULTS AND ANALYSIS

# 4.1 Desription of Test Cases

4.1.1 Case 1:- The DE mutation strategies are compared using a model ten thermal generating units system [7]. The system unit data and the load demand are given in Tables 1 and 2. Optimal dispatch is computed for the thermal system alone for the given loads without considering wind and ramp rate limit.

4.1.2 Case 2:- Thermal and wind dispatch is computed taking fixed wind generation of 400 MW without ramp rate limits.

4.1.3 Case 3:- Thermal and wind dispatch is computed taking random distribution for wind power. In this case ramp rate limits are also considered.

| Unit | $P_{ir}^{min}$ , | $P_{i,r}^{max}$ , | $a_i$ , | $b_i$ , | $c_i$ ,  | Ramp  |
|------|------------------|-------------------|---------|---------|----------|-------|
| No.  | MW               | MW                | \$      | \$/MW   | $MW^{2}$ | Rate  |
|      |                  |                   |         |         |          | Limit |
| 1    | 10               | 60                | 15      | 2.2034  | 0.00510  | 10    |
| 2    | 20               | 80                | 25      | 1.9161  | 0.00396  | 15    |
| 3    | 30               | 100               | 40      | 1.8518  | 0.00393  | 20    |
| 4    | 25               | 120               | 32      | 1.6966  | 0.00382  | 25    |
| 5    | 50               | 150               | 29      | 1.8015  | 0.00212  | 50    |
| 6    | 75               | 280               | 72      | 1.5354  | 0.00261  | 80    |
| 7    | 120              | 320               | 49      | 1.2643  | 0.00289  | 100   |
| 8    | 125              | 445               | 82      | 1.2163  | 0.00148  | 125   |
| 9    | 250              | 520               | 105     | 1.1954  | 0.00127  | 130   |
| 10   | 250              | 550               | 100     | 1.1285  | 0.00135  | 150   |

TABLE II.LOAD DEMANDS FOR 24 HOURS

| Hour | Loa    | d(MW)       | Hour |        | d(MW)       |
|------|--------|-------------|------|--------|-------------|
| 01.1 | Case I | Case II,III |      | Case I | Case II,III |
| 1    | 2000   | 2000        | 13   | 1200   | 1390        |
| 2    | 1980   | 1980        | 14   | 1160   | 1400        |
| 3    | 1940   | 1940        | 15   | 1140   | 1440        |
| 4    | 1900   | 1900        | 16   | 1160   | 1418        |
| 5    | 1840   | 1840        | 17   | 1260   | 1375        |
| 6    | 1870   | 1870        | 18   | 1380   | 1380        |
| 7    | 1820   | 1820        | 19   | 1560   | 1560        |
| 8    | 1700   | 1700        | 20   | 1700   | 1700        |
| 9    | 1510   | 1510        | 21   | 1820   | 1820        |
| 10   | 1410   | 1410        | 22   | 1900   | 1900        |
| 11   | 1320   | 1355        | 23   | 1950   | 1950        |
| 12   | 1260   | 1370        | 24   | 1990   | 1990        |
|      |        |             |      |        |             |

# **4.2** To find the best strategy and F & CR values

It has been reported that the results obtained using the DE algorithm are highly dependent on i) selected mutation strategy(MS) ii) value of mutation rate iii) value of crossover rate [11]. This observation was found to be true for the wind-thermal optimal power dispatch problem also. Table 3 and Table 4 present the mean and standard deviation obtained out of 50 trials using strategy I and strategy V.

For both these mutation strategies it can be observed that as value of CR is increased the cost and standard deviation both increase. Fig. 1 and Table 4 show that global convergence with consistent zero standard deviation is obtained for strategy 5 for F=0.7 & CR=0.9. Strategy 3 and 4 do not produce very good convergence, however the results are always near global best value. Fig. 2 shows that best results are found with F=0.1. Fig. 3 shows the effect of wind power integration in reducing the operating cost.

Table 5 shows the relationship of cost with wind generation for three cases, without wind, with fixed wind power and with random wind power. The cost is least when a fixed wind power is continuously available.

| F   | CR=0.1    | CR=0.2    | CR=0.3    | CR=0.5    | CR=0.7    | CR=0.9    |
|-----|-----------|-----------|-----------|-----------|-----------|-----------|
| 0.1 | 4245.5618 | 4245.3554 | 4243.5223 | 4245.0187 | 4254.2811 | 4255.5376 |
|     | (7.9812)  | (8.9979)  | (8.4924)  | (22.5795) | (31.0444) | (36.9009) |
| 0.2 | 4240.3521 | 4246.4940 | 4243.6239 | 4245.5773 | 4248.8850 | 4243.5450 |
|     | (9.1937)  | (8.3769)  | (11.4629) | (20.3567) | (21.0925) | (28.6233) |
| 0.3 | 4250.8266 | 4246.980  | 4242.2202 | 4246.3093 | 4246.2946 | 4248.5935 |
|     | (12.3743) | (9.7107)  | (12.9055) | (17.9767) | (23.7051) | (22.4571) |
| 0.5 | 4238.2065 | 4245.2676 | 4246.0359 | 4245.3787 | 4252.6645 | 4248.1615 |
|     | (10.3236) | (12.3595) | (11.9931) | (19.8149) | (23.5366) | (23.9279) |
| 0.7 | 4245.0439 | 4249.4871 | 4254.3232 | 4256.5425 | 4254.1127 | 4245.8025 |
|     | (11.6658) | (13.1986) | (8.9480)  | (19.0788) | (26.1179) | (21.1863) |
| 0.9 | 4251.0841 | 4251.6762 | 4254.9534 | 4265.5998 | 4259.3879 | 4258.7923 |
|     | (11.2567) | (10.4748) | (14.8966) | (14.2520) | (18.9648) | (23.5657) |

TABLE III. EFFECT OF MUTATION FACTOR AND CROSS OVER RATE ON MEAN AND S.D.IN DE (10-UNIT SYSTEM; 50 TRIALS) MS I

| F   | CR=0.1    | CR=0.2    | CR=0.3    | CR=0.5    | CR=0.7    | CR=0.9    |
|-----|-----------|-----------|-----------|-----------|-----------|-----------|
| 0.1 | 4246.0109 | 4241.2656 | 4241.0371 | 4245.326  | 4238.1201 | 4240.7255 |
|     | (9.4674)  | (7.1350)  | (9.4932)  | (10.4868) | (11.9217) | (11.0542) |
| 0.2 | 4244.5245 | 4242.8636 | 4252.0133 | 4244.2131 | 4237.2133 | 4236.6224 |
|     | (8.4043)  | (8.2025)  | (9.8261)  | (7.9309)  | (5.9029)  | (5.7266)  |
| 0.3 | 4248.6550 | 4244.8860 | 4249.7958 | 4246.1348 | 4235.5954 | 4235.7111 |
|     | (11.9355) | (10.0549) | (11.0522) | (9.7759)  | (1.5268)  | (2.9054)  |
| 0.5 | 4255.9395 | 4290.0304 | 4252.0294 | 4263.1457 | 4235.6405 | 4235.5686 |
|     | (11.5898) | (13.1865) | (13.3577) | (15.7834) | (0.3725)  | (0.0001)  |
| 0.7 | 4247.7355 | 4246.4361 | 4264.0642 | 4268.9442 | 4237.7463 | 4235.5686 |
|     | (15.3737) | (13.1480) | (12.7686) | (16.9026) | (18.4848) | (3.638)   |
| 0.9 | 4248.2908 | 4264.9099 | 4256.1083 | 4252.0886 | 4238.7265 | 4235.5697 |
|     | (14.9995) | (13.7498) | (17.3706) | (17.3034) | (28.2241) | (28.9507) |

TABLE IV. EFFECT OF MUTATION FACTOR AND CROSS OVER RATE ON MEAN AND S.D.IN DE (10-UNIT SYSTEM; 50 TRIALS) MS V

| TABLE V.  | EFFECT OF WIND GENERATION AND RAMP LIMITS ON COST |            |            |  |  |  |  |  |
|-----------|---------------------------------------------------|------------|------------|--|--|--|--|--|
| Case 1    |                                                   | Case 2     | Case 3     |  |  |  |  |  |
| 81280 358 | 7                                                 | 63752 1045 | 71700 3775 |  |  |  |  |  |



Figure 1. Effect of mutation & crossover rates on convergence (MS II)



Figure 2. Effect of mutation & crossover rates on convergence (MS III)







Figure 4. Convergence characteristics for differet wind powers The stable convergence behavior of the proposed method is shown in Fig. 4 for different wind power values.

Now Table 6 and Table 7 Show the Results of Dynamic Wind-Thermal Dispatch Without and With Ramp rate limits respectively.

TABLE VI. RESULTS OF DYNAMIC WIND-THERMAL DISPATCH WITHOUT RAMP-RATE LIMITS (CASE2)

|          |         |         |         |         |         |          |            |          |          | /        |
|----------|---------|---------|---------|---------|---------|----------|------------|----------|----------|----------|
| Hours    | P1      | P2      | P3      | P4      | P5      | P6       | <b>P</b> 7 | P8       | P9       | P10      |
| 1        | 10.1241 | 32.2304 | 41.3279 | 60.6746 | 87.9600 | 122.8163 | 156.0564   | 321.3068 | 383.3139 | 384.1891 |
| 2        | 10.2259 | 30.5843 | 38.6318 | 59.8634 | 85.7910 | 119.0273 | 156.0679   | 317.9959 | 381.7270 | 380.0855 |
| 3        | 10.0616 | 29.3797 | 36.5640 | 57.4834 | 81.5896 | 116.4904 | 151.4629   | 311.3940 | 373.7024 | 371.8720 |
| 4        | 10.0374 | 25.1429 | 34.9088 | 55.3644 | 75.1075 | 114.1009 | 146.3256   | 304.1235 | 366.5463 | 368.8720 |
| 5        | 10.2625 | 23.4146 | 32.7697 | 49.7228 | 69.9999 | 107.2960 | 142.0494   | 296.6334 | 355.9466 | 351.9052 |
| 6        | 10.1088 | 23.9920 | 31.1159 | 54.0503 | 74.4789 | 110.8419 | 146.0381   | 298.9805 | 359.1044 | 361.2892 |
| 7        | 10.0874 | 20.9905 | 31.3249 | 49.5938 | 67.9151 | 104.9691 | 143.4529   | 293.2094 | 343.2853 | 355.1717 |
| 8        | 11.0097 | 20.3938 | 30.7079 | 43.0457 | 50.2686 | 93.5034  | 133.7501   | 269.2190 | 320.9524 | 327.1495 |
| 9        | 10.3535 | 21.7885 | 30.1843 | 27.9831 | 51.0365 | 79.2274  | 121.7503   | 223.2066 | 265.3608 | 279.1092 |
| 10       | 10.2975 | 20.0921 | 31.8955 | 26.1353 | 50.4659 | 76.0604  | 120.7615   | 170.7271 | 250.0032 | 253.5616 |
| 11       | 10.0000 | 20.0000 | 30.0000 | 25.0000 | 50.0000 | 75.0000  | 120.0000   | 125.0000 | 250.0000 | 250.0000 |
| 12       | 10.1887 | 20.0005 | 30.0946 | 25.1656 | 50.0006 | 75.3430  | 120.3825   | 138.0891 | 250.5574 | 250.1781 |
| 13       | 10.1363 | 20.8266 | 30.4593 | 25.4508 | 50.0000 | 75.5239  | 120.0000   | 155.5460 | 252.0574 | 250.0000 |
| 14       | 10.5055 | 20.3754 | 30.5707 | 26.7557 | 50.3095 | 75.3405  | 120.5217   | 163.1997 | 251.7731 | 250.6480 |
| 15       | 11.3232 | 21.0645 | 30.4750 | 26.1829 | 50.2465 | 76.7985  | 120.0000   | 196.8776 | 256.9495 | 250.0824 |
| 16       | 10.2490 | 20.0139 | 30.2717 | 25.9472 | 50.8486 | 75.2593  | 120.2287   | 178.7047 | 250.2606 | 256.2165 |
| 17       | 10.1581 | 20.0061 | 30.0018 | 25.0000 | 50.4529 | 75.1375  | 120.3175   | 143.6895 | 250.0000 | 250.2365 |
| 18       | 10.0296 | 20.3159 | 30.7416 | 25.7181 | 51.0144 | 75.7101  | 120.4836   | 153.2583 | 250.3258 | 252.4026 |
| 19       | 11.0756 | 20.9214 | 31.3611 | 35.1528 | 51.3796 | 75.5911  | 123.0253   | 242.1978 | 285.0025 | 284.2926 |
| 20       | 10.1623 | 20.5473 | 30.5745 | 43.9331 | 57.9229 | 97.4479  | 130.9950   | 265.5514 | 321.7890 | 321.0766 |
| 21       | 10.0995 | 20.8042 | 30.4232 | 50.5478 | 64.0962 | 104.9610 | 144.7019   | 290.4163 | 345.6265 | 358.0766 |
| 22       | 10.0463 | 27.8279 | 34.2389 | 55.7261 | 74.4423 | 113.3448 | 149.1164   | 303.9575 | 361.5272 | 369.3235 |
| 23       | 10.0984 | 30.2833 | 35.8721 | 58.5202 | 80.7029 | 114.9145 | 153.6597   | 312.1325 | 375.1063 | 378.7099 |
| 24       | 10.2043 | 32.5758 | 40.8187 | 62.9482 | 84.7210 | 118.9810 | 157.3232   | 320.1809 | 379.5930 | 382.6538 |
| Total Co | ost(S)  | 63752.1 | 045     |         |         |          |            |          |          |          |

TABLE VII. RESULTS OF DYNAMIC WIND-THERMAL DISPATCH WITH RAMP-RATE LIMITS (CASE3)

| Hours    | P1      | P2        | P3      | P4      | <b>P</b> 5 | P6       | P7       | P8       | P9       | P10      | P <sub>WIND</sub> |
|----------|---------|-----------|---------|---------|------------|----------|----------|----------|----------|----------|-------------------|
| 1        | 10.5866 | 48.8894   | 58.1659 | 78.8240 | 117.7763   | 146.6953 | 180.7396 | 367.5720 | 435.5530 | 435.4822 | 119.7             |
| 2        | 10.0403 | 34.0971   | 44.5404 | 66.1763 | 93.0612    | 126.1242 | 160.7994 | 331.4178 | 394.9659 | 395.8997 | 322.9             |
| 3        | 10.0117 | 28.3564   | 37.2568 | 58.6674 | 82.3718    | 116.1523 | 150.8686 | 313.0228 | 373.6134 | 375.4572 | 394.2215          |
| 4        | 10.0110 | 30.7525   | 39.7065 | 59.7584 | 85.7983    | 119.7272 | 155.4829 | 317.8397 | 381.7342 | 381.6482 | 317.5410          |
| 5        | 10.0050 | 33.4306   | 40.3906 | 62.1227 | 87.4834    | 122.3147 | 156.9870 | 322.8948 | 384.5318 | 385.8994 | 233.9400          |
| 6        | 10.0758 | 43.9530   | 52.7707 | 75.1804 | 109.1207   | 140.0127 | 173.1564 | 355.8250 | 420.1329 | 420.3804 | 69.3920           |
| 7        | 10.0078 | 29.1910   | 34.0579 | 52.9432 | 69.8801    | 108.2080 | 143.7561 | 298.1851 | 354.6420 | 350.0603 | 369.0685          |
| 8        | 10.0730 | 20.1408   | 30.3580 | 46.1157 | 60.0198    | 97.9512  | 137.4032 | 281.3803 | 336.3414 | 344.6957 | 335.5208          |
| 9        | 10.3407 | 20.7061   | 30.1473 | 27.2027 | 51.0011    | 76.3543  | 120.3207 | 233.3522 | 270.9073 | 279.4313 | 390.2363          |
| 10       | 10.0476 | 20.2933   | 30.4798 | 31.1506 | 50.9081    | 79.5077  | 124.8444 | 240.6764 | 298.1009 | 300.6240 | 223.3670          |
| 11       | 10.3483 | 20.1578   | 30.5843 | 25.2811 | 52.2240    | 76.4021  | 123.2361 | 184.0931 | 250.0070 | 251.1882 | 331.4782          |
| 12       | 10.0798 | 20.3545   | 30.0251 | 42.9932 | 51.7814    | 88.7082  | 130.8282 | 267.9821 | 322.2525 | 321.5037 | 83.4914           |
| 13       | 10.1196 | 20.0930   | 30.1340 | 40.6613 | 53.2116    | 91.1157  | 129.2644 | 267.0326 | 319.5225 | 319.0459 | 109.7994          |
| 14       | 10.0636 | 21.0380   | 30.3509 | 37.1227 | 51.0270    | 87.1163  | 129.4386 | 263.5969 | 316.4582 | 322.3871 | 131.4007          |
| 15       | 10.3134 | 21.8411   | 30.2545 | 27.4569 | 50.6198    | 78.6289  | 121.7429 | 230.7271 | 284.4342 | 291.1099 | 292.8712          |
| 16       | 10.0333 | 20.7222   | 30.3358 | 44.7157 | 56.2659    | 98.7586  | 136.6555 | 278.3158 | 330.9107 | 342.8309 | 68.4556           |
| 17       | 10.0625 | 20.1359   | 30.0784 | 25.3594 | 50.0000    | 75.6729  | 120.2245 | 164.0185 | 250.0000 | 250.0000 | 379.4479          |
| 18       | 10.1254 | 21.4366   | 31.7584 | 26.7904 | 50.8122    | 77.6576  | 121.5151 | 209.0503 | 260.9480 | 267.5155 | 302.3905          |
| 19       | 10.0708 | 20.8885   | 30.1060 | 38.1765 | 50.3470    | 88.1248  | 127.2781 | 262.5320 | 317.4512 | 322.2192 | 292.8058          |
| 20       | 10.1135 | 20.6515   | 30.6684 | 47.2868 | 57.5848    | 99.1706  | 135.4947 | 282.8630 | 336.9967 | 343.8143 | 335.3558          |
| 21       | 10.0218 | 34.5734   | 42.1728 | 64.1358 | 92.0183    | 125.5016 | 159.8571 | 329.2988 | 392.0251 | 392.9079 | 177.4874          |
| 22       | 10.0165 | 38.4531   | 46.9190 | 68.4853 | 98.0814    | 130.0206 | 165.3935 | 338.0079 | 403.4625 | 403.9285 | 197.2317          |
| 23       | 10.0277 | 48.3209   | 57.3500 | 78.6037 | 117.5754   | 146.9741 | 178.8337 | 366.3960 | 435.2884 | 434.4735 | 76.1566           |
| 24       | 10.0882 | 46.5777   | 55.0064 | 77.3670 | 114.4870   | 144.4415 | 177.5976 | 361.0266 | 429.4758 | 428.9710 | 144.9613          |
| Total Co | ost(\$) | 71700.377 | 75      |         |            |          |          |          |          |          |                   |

# V. CONCLUSION

The effect of wind power generation in reducing the operating cost of power grid having conventional thermal power plants has been presented. Differential evolution based optimization model has been built to solve the complex constrained optimization problem. The results show the efficiency of the proposed method in producing optimal schedules with satisfaction of equality and inequality constraints. The paper also explores the dependence of the DE algorithm on the five DE mutation strategies and mutation & crossover rates in achieving global convergence. The results are very encouraging and consistent.

# Acknowledgements

The authors sincerely acknowledge the financial support provided by UGC under major research project entitled Power System Optimization and Security Assessment Using Soft Computing Techniques, vide F No.34-399/2008 (SR) dated, 24th December 2008. The second author acknowledges UGC, New Delhi financial support for PD work sanctioned vide (F-30-120(SC)/2009 (SA-II)). The authors also thank the Director, M.I.T.S. Gwalior for providing facilities for this work.

#### REFERENCES

- [1] A.J. Wood and B.F. Wollenberg, Power Generation, Operation and Control, New York: Wiley, 1984.
- [2] D.P. Kothari and I.J. Nagrath, Power system engineering, Tata McGraw-Hill, New Delhi 2008
- [3] John Hetzer, David C. Yu, Kalu Bhattarai, "An Economic Dispatch Model Incorporating Wind Power" *IEEE Transactions on Power System*, Vol. 23, No. 2, June 2008, pp. 603-611.
- [4] Jia-Chu Lee, Whei-Min Lin, Gwo-Ching Liao, Ta-Peng Tsao, "Quantum genetic algorithm for dynamic economic dispatch with valve-point effects and including wind power system" *Electrical Power and Energy Systems*, Vol. 33, 2011, pp. 189–197.
  [5] C.X. Guo, Y.H. Bai, X. Zheng, J.P. Zhan, Q.H. Wuc, "Optimal generation dispatch with renewable energy embedded using multiple
- [5] C.X. Guo, Y.H. Bai, X. Zheng, J.P. Zhan, Q.H. Wuc, "Optimal generation dispatch with renewable energy embedded using multiple objectives", *International Journal of Electrical Power and Energy systems*, Vol. 42, No. 3, March 2011, pp. 440-447.
- [6] H. T. Jadhav, Harsh Bhandari, Yaman Dalal, Ranjit Roy, "Economic Load Dispatch Including Wind Power Using Plant Growth Simulation Algorithm" 11<sup>th</sup> International Conference on Environment and Electrical Engineering (EEEIC), 2012, pp. 388 – 393.
- [7] C.L.Che,n "Simulated annealing-based optimal wind-thermal coordination scheduling" *IET Gener. Transm. Distrib.* Vol. 1 No. 3, 2007, pp. 447–455.
- [8] D.C. Walter and G. B. Sheble, "Genetic algorithm solution of economic load dispatch with valve point loading", IEEE Transactions on Power Systems, Vol. 8, Aug 1993, pp.1325-1332.
- [9] G. M. Masters, Renewable and Efficient Electric Power Systems, John Wiley & Sons, 2004.
- [10] R. Storn and K. Price, "Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces," *International Computer Science Institute*, Berkeley, CA, Tech. Rep. TR-95-012, 1995.
- [11] M. Sharma, Manjaree Pandit and L. Srivastava, "Reserve Constrained Multi-Area Economic Dispatch Employing Differential Evolution with Time-Varying Mutation, *International Journal of Electrical Power and Energy systems*, Vol. 33, No. 3, March 2011, pp.753-766.