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Abstract: This paper presents a method for automatic contingency selection and static security evaluation of 

electrical power systems. The method employs multi-layer Perceptron neural networks whose inputs are power 

flows and injections, while the outputs identify potentially harmful contingencies. The performance of the 

method is evaluated for different operating conditions using the IEEE 24 bus test system. It is shown that the 

neural network classifiers perform very well the contingency selection task and enables a previous 

classification of system operating state with respect to static security.. 
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I. Introduction 
During power system operation, it is important that load demands be met without violations of system 

operational constraints. Besides, for a given operating condition, the system should be capable of resisting the 

loss of any component, with no operational problems. Thus, contingency analysis plays an important role in 

real-time power system security evaluation. Contingency analysis comprises the simulation of a set of 

contingencies in which the system behavior is observed. Each post-contingency scenario is evaluated in order 

to detect operational problems and the severity of violations. The most common operational problems are 

transmission equipment overloads and inadequate voltage levels at system buses. In static security analysis the 

identification of operational constraints violation involves the solution of an AC load flow problem, described 

by a set of nonlinear equations, that has to be solved for each post-contingency scenario. This procedure leads 

to a high computational effort, which is not desirable for real-time applications. Some approximate models 

have been proposed for real-time power system static security evaluation [1]. These models reduce 

computational effort, but they may not classify system contingencies accurately. 

It is not possible to analyze system performance considering all contingencies. It is necessary to 

reduce the number of contingencies to only those that are more likely to occur. These form the critical 

contingencies set, which is in general defined based on system operation past experience and/or off-line 

simulations. The need for computational efficiency in real-time contingency analysis can make not possible the 

analysis even for the critical contingencies set. Then, it becomes necessary to select in the critical set the 

contingencies that can really lead the system to an emergency state, with operational constraints violations. It 

is important to note that, as system operating conditions change, the harmful contingencies may also change. 

Then, the potentially harmful contingencies have to be selected and updated in real-time. This selection, when 

based only on the operational experience of an utility, may be inadequate. Some models have been proposed for 

automatic contingency selection [2]. These models employ approximate methods, which may cause false 

alarms or miss to detect harmful contingencies. 

In the last few years artificial neural networks (ANNs) have been successfully applied for the solution 

of many problems associated with power systems operation and planning [3-6]. Applications of ANNs to 

security analysis indicate that this is a very promising research field [7-9]. Among other features, ANNs have 

the ability to learn from historical (or simulated) data and, once trained, exhibit a very fast response when 

executed. 

This work presents a method for power systems automatic contingency selection and static security 

evaluation. It is possible to identify potentially harmful contingencies in a very short computational time, being 

the risk of false alarms and contingency misses very reduced. The method is tested for many different 

operating conditions simulated with the IEEE 24 bus test system. Classification rates for contingency selection 

and static security evaluation are also provided. 

 

II. Static security analysis 
During power systems normal operating conditions the following constraints must be satisfied: 

Pknown - Pk (v,0) = 0, k = 1,..., n kknown 
k
 (1) Qk"own - Qk (v,q) = 0, k = 1,..., n 

Vk
mm < Vk < Vk

max, k = 1,...n k k k (2) I Pkm \ < P™ax, for every branch k – m 
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III. Proposed Methodology 
where: 

pknown and Qknown are the injected real and reactive power 

at bus k, respectively, 

0 and v are nodal voltage angle and magnitude vectors; 

Vk is the voltage magnitude at bus k, 

Pkm represents real power flow at branch k-m; and n is the number of system buses. 

Equation (1) corresponds to power balance requirements (power flow equations), while equation (2) 

corresponds to system operational constraints, represented by limits imposed to nodal voltage magnitudes and 

real power flow at system branches and transformers. 

System operating state is classified as secure if constraints (1) and (2) are satisfied for a given 

operating scenario (basic scenario) and also for operating scenarios derived from the occurrence of system 

contingencies, such as transmission lines outages, transformers outages, etc. (post-contingency scenarios). If 

constraint (1) and/or (2) are violated for at least one of the post-contingency scenarios, system operating state 

is classified as insecure [10]. Constraints (1) and (2), when referred to the postcontingency scenarios, are also 

known as security constraints. 

The evaluation of system performance for all possible post-contingency scenarios is not practical. 

Therefore it becomes necessary to define a set of finite contingencies to be tested, by considering only those 

that are more likely to occur. This set is usually built based on the utility’s operational knowledge and 

experience, and also on off-line simulations and analysis. 

The need for efficiency in real-time power system contingency analysis can make the analysis of all 

contingencies not feasible even for the pre-selected set. Then it is still necessary to choose, among the pre-

selected contingencies set, the potentially harmful ones, i.e., those which occurrence can really drive the 

system to an emergency condition (violation of constraints (1) and/or (2) in the post-contingency scenario). It 

is important to observe that, as system operating conditions change, the harmful contingencies also change. 

Then, the critical contingencies set should be dynamically constructed during real-time operation. The 

contingency selection based only on the utilities operational experience may be inadequate. Methods for 

automatic contingency selection have been proposed. These methods employ approximate models, which may 

increase the risk of false alarms or miss to select contingencies that are really critical. 

As discussed in Section 2, real-time contingency analysis may be time-consuming or even unfeasible, 

particularly for large-scale power systems with too many contingencies. 

In the proposed method, artificial neural networks are employed for automatic selection of potentially 

harmful contingencies. The power flows and injections observed for a basic operating scenario are used as 

input variables to an ANN that identify in the output the potentially harmful contingencies. 

The ANN model adopted is the multi-layer perceptron (MLP-ANN), which has been extensively 

employed for the solution of pattern recognition problems. The MLP-ANN, illustrated in Figure 1 with only 

one hidden layer, is a feed forward ANN that employs supervised learning and is capable of approximating any 

decision region. The neuron model most commonly employed uses a sigmoid activation function [12]. 

input output 

 

 
Figure 1 - Multi-Layer Perceptron 
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For large-scale power systems the number of input variables may be extremely large, which would 

make the training process not feasible. However, it is known that the occurrence of a given contingency does 

not affect all system components in the same way. It is expected that those that are electrically close to the 

contingency under consideration will be most affected. This local characteristic may be explored by assuming 

that the power system is decomposed into areas, in which different ANNs will perform the contingency 

classification. In this case, contingencies in one area will be classified by a specific artificial neural network, 

whose input variables are the power flows and injections observed in the area and in network branches and 

buses at the area boundaries. This strategy reduces the number of input variables used for each ANN, while 

preserving the necessary information for the classification task. System areas may be obtained following 

heuristic criteria, such as: clustering of important contingencies, limitation of ANNs input vector dimensions, 

etc. 

In this work the input vectors for each area are the power flows at the area branches and the power 

injections at the area generation buses. The power flows at network branches connected to the area boundary 

buses and the power injections at the terminal buses of these branches are also used as input variables. This 

may improve the performance for the evaluation of contingencies involving branches close to the area 

boundary. The input variables chosen are usually available as measurements and may be processed in real-time 

using the state estimator results or even raw measurements. 

Each ANN is trained to identify potentially harmful contingencies based only on the information 

obtained from the basic operating scenario. The input vector dimension is strictly related to the area size. The 

number of neurons in the output layer corresponds to the number of contingencies to analyze. Each neuron 

output classifies a given contingency as potentially harmful or not harmful. The contingencies selected as 

potentially harmful can be further processed by a conventional method in order to analyze the severity of 

constraints violations. 

The proposed methodology can be divided into two phases: 

Phase 1: Classifiers construction (off-line) 

• identification of contingencies to be considered (by system operation experts); 

• simulation of contingency analysis for many different operating conditions (using conventional analytical 

methods); 

• definition of system areas; 

• selection of input variables for each area and construction of the training set; 

• ANNs training. 

Phase2: Real-time classification 

• input variables observation (from state estimation results); 

• ANNs execution and identification of the potentially harmful contingencies. 

 

IV. Tests and results 
The proposed method has been tested with the IEEE 24 bus test system [13] for many different 

operating conditions. This system is illustrated in Figure 2, where two different areas and the boundary buses 

are represented. 

 
Figure 2 - IEEE 24 bus system 

 

4.1 Description of simulation 

Contingency analysis has been carried out for the system of Figure 2 by using a conventional load flow 

program and considering 10 contingencies randomly chosen for each area. During the simulation, 100 

different operating scenarios (basic scenarios) have been considered. Contingency analysis has been performed 

for each basic scenario and the results obtained have been used to build the training sets for the ANNs. Each 

training pattern consist of power flows and injections observed for the basic scenario and the corresponding 

outputs, which are defined based on the analysis of each post-contingency scenario. 

According to the proposed methodology, one ANN has to be trained for each area. As stressed in 
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Section 3, the input variables adopted for each ANN are: the power flows at the area branches, the power 

injections at the area generation buses and also external power flows at branches connected to the boundary 

buses, and power injections at the terminal buses of these branches. 

 

4.2 ANNs training 

The ANNs training phase is performed offline and only once. The training set must contain samples 

that represent many different operating scenarios. These samples can be obtained by offline simulation and/or 

extracted from historical data about system operation. This work considered operating scenarios where the total 

system load ranges from 50% to 100% of its peak value. Different system topologies have also been considered. 

The system peak load is 2850 MW and 100 training samples have been used. 

During the training phase, many different ANN topologies have been investigated. Among those, the 

ANN with one hidden layer containing 10 neurons presented the best performance. 

As discussed before, the output yk of each output neuron classifies each contingency as potentially critical 

or non-critical. The following target outputs have been used for each output neuron during the training phase: 

• ydk = 0.1, if contingency k is not critical; or 

• ydk = 0.9, if contingency k is critical. 

The values 0.1 and 0.9 were used to represent the binary output instead of 0.0 and 1.0 in order to avoid the 

saturation regions of the sigmoid activation functions employed for modeling the ANN neurons [12]. 

 

4.3 Tests and training validation 

The trained ANNs are employed for contingency classification for new 200 operating scenarios (not 

used during the training phase). The input variables observed for the new operating conditions are then 

presented to the ANNs and the computed outputs classify the contingencies according to the following criteria: 

• 0.0 < yk < 0.3 ® contingency kis not critical 

• 0.7 < yk < 1.0 ® contingency kis critical 

• 0.3 < yk < 0.7 ® unable to classify contingency k 

The thresholds above have been heuristically defined. The performance of the ANNs is evaluated for the 

new operating scenarios using the following indexes: 

% of false alarms - cases in which a non-critical contingency has been classified as critical. 

% of misses - cases in which a critical contingency has been classified as non-critical. 

% of undetermined classification - cases in which a contingency classification could not be obtained. 

False alarms or undetermined classifications do not bring any harm to power system operation. Whenever 

a false alarm occurs, a non-critical contingency is classified as critical and selected for severity evaluation 

through a conventional contingency analysis algorithm. This analysis will reveal that the contingency is not 

critical. In case of undetermined contingency classification, it is recommended that the contingency be selected 

for further analysis, when its effect in system operation may be then evaluated. 

 

On the other hand, when critical contingencies are missed, their effects on system operation are not 

known. Decisions made based on contingency analysis may not be effective to prevent problems due to the 

occurrence of the missed contingencies. 

 

The new samples used for testing the ANNs have been further analyzed through a conventional 

contingency analysis program in order to evaluate the performance of the proposed method. Table 1 presents 

the results obtained. 

Table 1 - ANNs performance 

Number of tested samples 200 

Number of contingencies tested 4000 

False alarms 0.2% 

Contingency misses 0.1% 

Undetermined classifications 3.6% 

The results in Table 1 show that the ANNs presented excellent performance, with very few 

occurrences of false alarms or missed contingencies. Then, the ANNs may not only select potentially harmful 

contingencies but also provide a classification of system state with respect to static security (secure or 

insecure). The following indexes can be used to measure system operating state classification accuracy: 

% of secure misclassifications - cases in which system operating state is classified as secure, while it lies in 

an insecure region. 
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% of insecure misclassifications - cases in which system operating state is classified as insecure, although it 

is a secure operating point. 

% of unknown state classifications - cases in which it is not possible to determine if the system operating 

state is secure or insecure. 

 

Table 2 presents the operating state classification rates for the same samples used to obtain the indexes 

shown in Table 1. The ability to classify system operating state has been confirmed. 

 

Table 2 - Security analysis performance 

Number of tested samples 200 

Secure misclassifications 1.0% 

Insecure misclassifications 1.0% 

Unknown state classifications 3.0% 

It is also important to remark that the computational burden for contingency analysis through the trained 

ANNs is negligible. Due to the local strategy adopted, the proposed methodology can be easily implemented for 

large-scale power systems. The local ANNs act as independent classifiers. These ANN classifiers can still be 

executed in a parallel/distributed environment in order to achieve better results in real-time. 

 

V. Conclusions 
This work presented a method that employs artificial neural networks for automatic contingency 

selection during power systems static security assessment. The contingency analysis is viewed as a local 

problem and the power system is decomposed into areas for which specific artificial neural networks are 

responsible for contingency classification. The multi-layer perceptron artificial neural network is used. The 

input variables are power flows and injections, while the outputs identify the potentially critical contingencies. 

Tests have been performed using the IEEE 24 bus test system, considering many different operating scenarios. 

Test results show that the neural classifiers are able to select as potentially critical contingencies those that 

really lead to system operational problems. The classification accuracy indicate that the automatic contingency 

selection performed may serve also to classify system operating state with respect to static security. The 

artificial neural networks generalization capability has been also confirmed for the tested samples. 
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