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Abstract: In this paper, we consider the problem of characterizing nonlinear channels in real baseband OFDM 

communication systems. A novel method is proposed to estimate the frequency domain Volterra kernels of 

nonlinear channels using OFDM signals with spectral notches. In this method, the OFDM signal is arranged in 

a way that each full-spectral OFDM symbol frame is followed by copies of the same OFDM symbol frame but 

each has a spectral notch at a distinct frequency. A mathematical expression of the difference signal between 

the outputs of a full-spectral OFDM symbol frame and its corresponding OFDM symbol frame with a spectral 

notch is derived. We find that, through the use of OFDM symbol frames with spectral notches, the task of 
Volterra kernel estimation can be decomposed into independent subtasks with smaller numbers of kernel 

coefficients. Therefore, the estimation of the Volterra kernels in the subtasks can be accomplished with more 

accuracy and less computational complexity using the same amount of available input and output data. We 

show that, the proposed method has a computational complexity ofO(M
2
), while the conventional method would 

require a computational complexity ofO(M
4
).This indicates that a great saving in computation can be achieved 

by the proposed method without sacrificing the performance. The outperformance of the proposed method over 

the conventional method is justified by computer simulations. Real baseband OFDM systems, such as powerline 

and ADSL communications, can benefit from the proposed method.  

 

I.       Introduction 
Orthogonal frequency-division multiplexing(OFDM) [1] is a well-developed modulation scheme for 

wideband communication applications. It has been adopted by many wireline and wireless communication 

standards to achieve high-speed data transmissions. Examples of such include HomePlug for powerline 

communications (PLCs) [2], ITU G.992.1 for asymmetric digital subscriber line (ADSL) communications [3], 

IEEE 802.11a/g for wireless LANs [4], DAB for digital audio broadcasting [5], and DVB for digital video 

broadcasting [6]. A unique feature of the OFDM signal is its high peak-to-average power ratio (PAR) caused by 
possible constructive combination of the subcarriers. The high PAR makes the OFDM signal very sensitive to 

nonlinearities of power amplifiers in a communication link. As a result, the output OFDM signal from a power 

amplifier can be corrupted by in-band distortions and out-of-band radiations. This poses many problems in the 

design of the OFDM receiver. Therefore, characterizing the nonlinear communication channel to understand 

how the channel nonlinearities distort the OFDM signal is essential to the success of the OFDM system. 

One commonly used model for characterizing  nonlinear channels is the Volterra series [7], [8]. 

Modeling a nonlinear channel with a Volterra series involves identifying the time-domain or the frequency-

domain Volterra kernels of the channel. Note that the number of the required kernel coefficients is often very 

large even for a relatively low-order Volterra model. This makes the estimation of the Volterra kernel 

coefficients a challenging task. Early works on identifying Volterra kernels of nonlinear systems were based on 

the assumption that the input signal to the nonlinear system was Gaussian [9]–[11]. Although the  Gaussianity 
assumption on the input signal greatly simplifies the involved mathematics for estimating the Volterra kernels, 

whether a sufficiently Gaussian input signal can be generated for obtaining a satisfactory result is often in doubt. 

A more general approach which estimated the Volterra kernels by solving a minimum mean square error 

(MMSE) problem was later developed [12]–[14]. Although this approach can use a broader class of random 

signals as the input, it requires estimation of various higher-order auto-moments (or auto-moment spectra) [15], 

[16] of the input and calculation of an inverse matrix. This leads to great complexity in terms of implementation 

and computation, especially when the number of Volterra kernel coefficients is large.  

For identifying Volterra kernels of nonlinear channels in OFDM systems, methods based on the  

assumption that the OFDM signal is asymptotically i.i.d. complex Gaussian can be found in the literature [17], 

[18]. These methods were derived based on   properties of higher-order cumulants of the complex Gaussian 

signal. In practice, the cumulants are estimated by taking time averages over a realization of the input and output 

data. Therefore, the estimated higher-order cumulants of the OFDM signal can only satisfy the higher- order 
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cumulant properties of the complex Gaussian signal when the amount of data is sufficiently large. This suggests 

that a large amount of data is often required by these methods to obtain a satisfactory result. The demand for 

data can soon become intimidating when the number of involved Volterra kernel coefficients increases. 
In this paper, we propose to estimate the frequency-domain Volterra kernels of nonlinear channels in 

real baseband OFDM systems by deploying spectral notches in the OFDM signal. Signals containing spectral 

notches are commonly used in multitone power ratio (MTPR) tests for determining the signal-to-distortion ratio 

of a discrete multitone system [3]. By using the difference signal yielded from the channel outputs of two 

OFDM signals, one with a spectral notch and the other without, we show that a frequency-domain Volterra 

kernel estimation task involving a large number of kernel coefficients can be decomposed into independent 

kernel estimation subtasks, each involving a significantly smaller number of kernel coefficients. Due to the 

small number of kernel coefficients, each individual kernel estimation subtask can be solved with more accuracy 

and less computation. For a real baseband OFDM system with N = 2M (M a positive integer) subcarriers and a 

cubically nonlinear channel, the overall computational complexity required by the proposed method is O(M
2
), 

which is significantly less than the O(M
4
) for the conventional method described in [13], [14]. The goodness of 

the proposed method is also justified by computer simulations. 

 

II.       Real Baseband Ofdm Systems 
A baseband OFDM signal is defined as: 

𝑥 𝑛 =
1

𝑁
 𝑋 𝑚 𝑒𝑗2𝜋𝑛𝑚 𝑁 

𝑁−1

𝑚=0

, 𝑛 = 0,1,… . ,𝑁 − 1  (1) 

where {X(m)} are the complex data symbols and N is the number of subcarriers. For a sampling period of Ts, 

the above OFDM signal has a waveform duration of T = N Ts. The subcarriers are equally spaced and separated 

by Δf = 1/T. For wire line communications such as PLC and ADSL, the baseband OFDM signal is transmitted 

without further frequency up conversion. Therefore, the OFDM signal x(n) has to be real. To comply with this 

constraint, the symbols {X (m)} need to be conjugate symmetric with respect to the discrete frequency N/2 [1]. 

In addition, X (0) and X (N/2) need to be real. This implies that only N/2 – 1 independent complex data symbols 

can be transmitted in each frame of real OFDM signal with N subcarriers. The block diagram of a real OFDM 

system is shown in Fig. 1. In the transmitting end, the bit stream b[n] is first converted to parallel bit streams 

(via the serial-to-parallel (S/P) converter) according to the available subcarriers in the OFDM system. Each bit 
stream is further mapped to the symbol stream according to the chosen modulation scheme (e.g., PSK or QAM). 

Here the m-th symbol stream is denoted by X(m). The N parallel symbols for the N subcarriers are then 

processed by an inverse fast Fourier transform (IFFT) to obtain the time-domain baseband OFDM signal x(n). 

The baseband signal is filtered, converted to an analog signal (via the D/A), boosted by the power amplifier 

(PA), and then sent via the wire line channel. The OFDM receiver performs analog-to-digital conversion (A/D), 

filtering, and fast Fourier transform (FFT) to obtain the output symbols {Y (m)} for the N sub channels. The 

output symbols {Y (m)} are further detected to obtain the optimum estimates of {X(m)}, say, {Xˆ (m)}. Finally, 

the detected bit stream ˆ[n] can be obtained from {Xˆ (m)} through bit mapping and parallel-to-serial (P/S) 

conversion. 

 

 
Figure. 1. The block diagram of a real OFDM system. 
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III.        Mmse Estimate Of The Frequency-Domainvolterra Kernels 

Due to the existence of the PA in Fig. 1, the baseband OFDM communication channel may become 

nonlinear. Suppose that the subcarrier spam a bandwidth of W. Due to the possible bandwidth broadening 

characteristics of the nonlinear channel, the channel output may have a bandwidth as wide 3W [13]. If the input 

and output signals were sampled from aliasing, then the discrete frequency-domain third-order Volterra series 

representation of the OFDM system can be written as follows [13]: 

 

𝑌 𝑚 = 𝑌1 𝑚 + 𝑌2 𝑚 + 𝑌3 𝑚 + 𝜀 𝑚 ,                   − 3𝑀 ≤ 𝑚 ≤ 3𝑀                                (2) 

𝑌1 𝑚 =  
𝐻1 𝑚 𝑋 𝑚 ,       𝑚 ≤ 𝑀
0,      𝑀 + 1 ≤  𝑚 ≤ 3𝑀

                            (3)  

𝑌2 𝑚 =  
 𝐻2 𝑖, 𝑗 𝑋 𝑖 𝑋 𝑗 ,    𝑚 ≤ 2𝑀

−𝑀≤𝑖 ,𝑗≤𝑀
 (𝑖+𝑗=𝑚 )

0,       2𝑀 + 1 ≤  𝑚 ≤ 3𝑀

  (4)  

𝑌3 𝑚 =  𝐻3 𝑖, 𝑗, 𝑘 𝑋 𝑖 𝑋 𝑗 𝑋 𝑘 ,  𝑚 ≤ 3𝑀                                               (5)
−𝑀≤𝑖 ,𝑗 ,𝑘≤𝑀
 (𝑖+𝑗+𝑘=𝑚)

 

where X(m) and Y(m) are the discrete Fourier transforms (DFTs) of the input and output, and  Y1(m), Y2(m), 

and Y3(m) are the linear, quadratic, and cubic responses of the system. The linear, quadratic, and cubic Volterra 

kernels of the systemare denoted by H1(m), H2(i, j), and H3(i, j, k), respectively, in (3)-(5). The modeling error is 

denoted by ε(m), and the maximum discrete frequency of X (m) with a non-zero value is denoted by M .  

     However, in an OFDM system like that shown in Fig. 1, the sampling frequency fsis often set to 2W instead 

of 6W . Under the circumstances, the resulting output data samples are aliased. According to the sampling 

theorem, those quadratic and cubic output terms that were  contributing to frequencies outside the range of m ∈ 

[−M, M ] in (4) and (5) will now wrapped around to show up in the range m ∈ [−M, M ] as aliases. Therefore, 
the total quadratic and cubic outputs, say, Yq (m) and Yc(m), in Y (m) can be written as follows [14]: 

𝑌𝑞  𝑚 = 𝑌2 𝑚 + 𝑌2 −𝑁 + 𝑚 ,   0 ≤ 𝑚 ≤ 𝑀    6  

𝑌𝑐 𝑚 = 𝑌3 𝑚 + 𝑌3 𝑚 + 𝑁 + 𝑌3 −𝑁 + 𝑚 , 0 ≤ 𝑚 ≤ 𝑀                                   (7) 
         Where Y2(−N+ m), Y3(m + N ), and Y3(−N + m) are the alias terms. In (6) and (7), only non-negative 

frequencies are considered because Yq(m) and Yc(m) are conjugate symmetric with respect to the frequency 0.  

   The above analysis suggests that, when the sampling frequency is 2W, the relation betweenX(m) and Y(m) 

described by (2) is no longer appropriate and should be modified as follows [14]: 
 

𝑌 𝑚 = 𝑌1 𝑚 + 𝑌𝑞 𝑚 + 𝑌𝑐 𝑚 + 𝜀 𝑚 ,                      

  0 ≤ 𝑚 ≤ 𝑀                                     (8)  
If we arrange all the involved Volterra kernel coefficients in (8) into a vector H(m), and all their corresponding 

input terms into a vector X(m), we can rewrite (8) as 

 
𝑌 𝑚 = 𝑋𝑇 𝑚 𝐻 𝑚 + 𝜀 𝑚 ,   0 ≤ 𝑚 ≤ 𝑀    9  

By minimizing the mean square error 𝐸  𝜀(𝑚) 2 in (9), one can obtain the optimal minimum mean square error 
(MMSE) estimate of H(m), say Hˆ (m), as follows: 

𝐻  𝑚 = 𝐸 𝑋∗ 𝑚 𝑋𝑇 𝑚  −1𝐸 𝑋∗ 𝑚 𝑌 𝑚  ,   
 0 ≤ 𝑚 ≤ 𝑀                      10  

Note that E[X∗(m)X
T
(m)] is composed of higher-order auto-moment spectra of X(m) up to 6th order, and 

E[X∗(m)Y (m)] is composed of higher-order cross-moment spectra between X(m) and Y (m) up to 4th order. 

The reader is referred to [14] for further details. 

     Note that calculation of an inverse matrix is required in (10). The computational complexity of inverting a K 

× K matrix is O(K
3
) [19]. By taking into account the symmetry properties of the Volterra kernel, we see 

that there are about M quadratic kernel coefficients involved in (6), and about M
2
cubic kernel coefficients 

involved in (7). Since the cubic kernel coefficients dominate the vector H(m), the size of the vector H(m) (and 

hence X(m)) is approximately M
2
. This suggests that the computation of the inverse matrix in (10) has an O(M

6
) 

complexity. We will refer to (10) as the general input method hereafter. 

 

IV.    The Spectral Notch Method 
In this section, we present a novel method to estimate the frequency-domain Volterra kernels of 

nonlinear channels in OFDM systems using OFDM signals with spectral notches. In this method, each OFDM 

symbol frame with a full spectrum is followed by M + 1 copies of the same OFDM symbol frame, but the p-th 

copy (p = 0, 1, . . . , M) has a missing spectral component at the p-th subcarrier. Here we imply that the spectral 
component at the (N-p)-th subcarrier is also missing in the p-th copy. This is due to the fact that the OFDM 
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signal is real and it’s spectrum must be conjugate symmetric with respect to the frequency N/2. An OFDM 

symbol frame with a full spectrum is shown in Fig. 2(a) (denoted by X(m)). The same OFDM symbol frame 

with the spectral line at the p-th subcarrier missing is shown in Fig. 2(b) (denoted by X(p)(m)). As we can see in 
Fig. 2(b), the missing spectral line yields a spectral notch at the discrete frequency p in the spectrum of the 

OFDM signal. Therefore, the method presented here is referred to as the spectral notch method.  

Figure. 2. (a) The OFDM symbol frame with a full spectral and (b) 

the same OFDM symbol frame with the spectral line at the p-th 
subcarrier missing 

 

   Passing the OFDM symbol frame X (m) in Fig. 2(a) through the nonlinear channel in Fig. 1 may yield an 

output Y (m) like that shown in Fig. 3(a), where Y (m) and X (m) are related by (8). Similarly, passing the 

OFDM symbol frame X(p)(m)in Fig. 2(b) through the nonlinear channel in Fig. 1 may yield an output Y(p)(m)like 

that shown in Fig. 3(b). Note that, due to the spectral notch at frequency p in Fig. 2(b), the spectral line appears 

at frequency p in Fig. 3(b) is completely owing to nonlinear distortions (and perhaps plus noise) of the channel. 

Since X(p)(m) and X(m) are basically the same except at frequency p, the relation between Y(p)(m)and X(m) can 

be obtained by modifying (8) as follows: 

𝑌 𝑃  𝑚 = 𝑌1
 𝑃  𝑚 + 𝑌2

 𝑝  𝑚 + 𝑌2
 𝑝  −𝑁 + 𝑚 + 𝑌3

 𝑝  𝑚 + 𝑌3
 𝑝  𝑚 + 𝑁 + 𝑌3

 𝑝  −𝑁 + 𝑚 

+ 𝜀 𝑝  𝑚      (11) 
Where 

𝑌1
 𝑝  𝑚 =  

𝐻1 𝑚 𝑋 𝑚 ,    𝑚 ≤ 𝑀 ,  𝑚 ≠ 𝑝

0,         𝑀 + 1 ≤  𝑚 ≤ 3𝑀
  12  

𝑌2
 𝑝  𝑚 =  

 𝐻2 𝑖, 𝑗 𝑋 𝑖 𝑋 𝑗 ,  𝑚 ≤ 2𝑀
−𝑀≤𝑖 ,𝑗≤𝑀

 𝑖+𝑗=𝑚 , 𝑖 , 𝑗  ≠𝑝 

0,    2𝑀 + 1 ≤  𝑚 ≤ 3𝑀

  13  

𝑌3
 𝑝  𝑚 =  𝐻3 𝑖, 𝑗,𝑘 𝑋 𝑖 𝑋 𝑗 𝑋 𝑘 ,

−𝑀≤𝑖 ,𝑗 ,𝑘≤𝑀  
 𝑖+𝑗+𝑘=𝑚 , 𝑖 , 𝑗  , 𝑘 ≠𝑝 

 

 𝑚 ≤ 3𝑀                      (14) 
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Figure. 3. (a) The output spectrum Y(m) for theOFDM symbol frame X(m). 

 (b) The output spectrum Y(p)(m) for theOFDM symbol frame X(p)(m) 
 (c) The difference spectrum Z(p)(m) between Y(p) and Y(p)(m) 

 

Basically, 𝑌1
 𝑝 

(𝑚), 𝑌2
 𝑝 

(𝑚) and  𝑌3
 𝑝 

(𝑚) are obtained from Y1(m), Y2(m), and Y3(m), respectively, 

by eliminating those terms involving X (p) and X (−p) in (3)-(5). One can compare (12)-(14) to (3)-(5) to see the 

differences. Next we subtract Y
(p)(m) from Y(m) to obtain their difference spectrum Z

(p)
(m). The result would be 

like that shown in Fig. 3(c). Note that all the spectral lines in Fig. 3(c) are completely owing to nonlinear 

distortions related to the spectral lines X(p) and X(−p) in Fig. 2(a). The difference spectrum Z
(p)

(m) can be 
mathematically expressed as: 

𝑍 𝑝  𝑚 = 𝑍1
 𝑝  𝑚 + 𝑍2

 𝑝  𝑚 + 𝑍2
 𝑝  −𝑁 + 𝑚 + 𝑍3

 𝑝  𝑚 + 𝑍3
 𝑝  𝑚 + 𝑁 + 𝑍3

 𝑝  −𝑁 + 𝑚 

+ 𝜑 𝑝  𝑚          (15) 
Where 

𝑍1
 𝑝  𝑚 =  

𝐻1 𝑚 𝑋 𝑚 ,    𝑚 = 𝑝
0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

  16  

𝑍2
 𝑝  𝑚 =  

 𝐻2 𝑖, 𝑗 𝑋 𝑖 𝑋 𝑗 ,     𝑚 ≤ 2𝑀
−𝑀≤𝑖 ,𝑗≤𝑀 

 𝑖+𝑗=𝑚 ,    𝑖 , 𝑗  =𝑝 

0,     2𝑀 + 1 ≤  𝑚 ≤ 3𝑀

        (17)   

𝑍3
 𝑝 

(𝑚) =  𝐻3 𝑖, 𝑗,𝑘 𝑋 𝑖 𝑋 𝑗 𝑋 𝑘 ,  𝑚 ≤ 3𝑀        (18)
−𝑀≤𝑖 ,𝑗 ,𝑘≤𝑀

(𝑖+𝑗+𝑘=𝑚 ,    𝑖 , 𝑗  ,𝑜𝑟   𝑘 =𝑝

 

Note that the right-hand sides of (16)-(18) in fact contain only those terms involving X(p) or X(−p) in (3)-(5), 

respectively. The error term 𝜓 𝑝 (𝑚) in (15) is defined as 𝜓 𝑝 (𝑚) = ε(m) − 𝜀 𝑝 (𝑚) 

     By arranging all the Volterra kernel coefficients in (15) into a vector 𝐻 𝑝 (𝑚), and all their corresponding 

input terms into a vector 𝑋 𝑝 (𝑚) we can rewrite (15) as 

𝑍 𝑝  𝑚 = 𝑋 𝑝 𝑇 𝑚 𝐻 𝑝  𝑚 + 𝜓 𝑝  𝑚        (19) 

By minimizing the mean square error E 𝜓 𝑝 (𝑚) 
2
, one can obtain the optimum MMSE estimate of H

(p)
(m) as 

follows: 

 

𝐻  𝑝  𝑚 = 𝐸 𝑋 𝑝 ∗ 𝑚 𝑋 𝑝 𝑇 𝑚  
−1
𝐸 𝑋 𝑝 ∗ 𝑚 𝑍 𝑝  𝑚  , 0 ≤ 𝑚 ≤ 𝑀, 0 ≤ 𝑝 ≤ 𝑀           20  

After taking into account the symmetry properties of the Volterra kernels, we see that there are at most 

2 distinct quadratic kernel coefficients and M distinct cubic kernel coefficients involved in (17) and (18), 

respectively. Since the cubic kernel coefficients dominate the vector H
(p)(m), the size of the vector H

(p)(m) (and 

hence X
(p)(m)) is approximately M . This suggests that the complexity of inverting the matrix in (20) is O(M

3
). 

Note that H
(p)(m) only includes those kernel coefficients contributing to Y (m) and excited by X(p) or X (−p). 

By varying p from 0 to M , we can cover all the kernel coefficients contributing to Y (m). This implies that, to 

get estimates for all the kernel coefficients contributing to Y (m), the computational complexity required by the 

spectral notch method is M × O(M
3
) = O(M

4
). This is a significant saving compared to the O(M

6
) required by 
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the general input method. Furthermore, as we vary p from 0 to M , some of the kernel coefficients included in 

H
(p)(m) may have already appeared in H

(r)(m) (r ∈ [0, p)) and been estimated earlier. These kernel coefficients 

don’t need to be estimated again in H
(p)(m). For example, the cubic kernel coefficient H (0, 1, 2) is excited by 

X(0), X (1), and X (2), therefore, it would show up inH
(0)

(3), H
(1)

(3), and H
(2)

(3). Since this coefficient would 

have been estimated in H
(0)

(3), it doesn’t need to be estimated again when estimating H
(1)

(3) and H
(2)

(3). 

Therefore, for those kernel coefficients in H
(p) (m) that have already been estimated earlier, we can substitute 

their estimated values into (19) and eliminate them from H
(p)(m). As a result, the size of the vector H

(p)(m) is 

reduced. That is, the size of H
(p)(m) will keep decreasing as we vary p from 0 to M . This further reduces the 

computational complexity of the spectral notch method. 

 

V.      Simulation Results 
To demonstrate the goodness of the spectral notch method, we conducted simulations using the 

following cubically non-linear system [14]: 

𝑦 𝑛 =   −0.64𝑥 𝑛 + 𝑥 𝑛 − 2 + 0.9𝑥2 𝑛 + 𝑥2 𝑛 − 1 + 0.6𝑥3 𝑛 − 0.3𝑥3 𝑛 − 1 + 𝑒 𝑛    (21) 
The frequency-domain Volterra kernels of this system are given by 

𝐻1 𝑚 =   −0.64 + 𝑒−𝑗4𝜋𝑚 𝑁  22  

𝐻2 𝑖1 , 𝑖2 =    0.9 + 𝑒−𝑗2𝜋 𝑖1+𝑖2 𝑁  23  
𝐻3 𝑖1 , 𝑖2 , 𝑖3 =  0.6 − 0.3𝑒−𝑗2𝜋 𝑖1+𝑖2+𝑖3 𝑁  24  

The input x(n) to the nonlinear system was an OFDM signal generated using (1) with N = 32. The complex 

symbols used in subcarriers 1 to 15 were 16 QAM. To ensure x(n) to be a real signal, the complex symbols for 

subcarriers 17 to 31 were the conjugate symmetric copies of those in subcarriers 1 to 15, and the symbols for 

subcarriers 0 and 16 were real random numbers. The additive noise e(n) was a zero-mean, white, and Gaussian 

random signal. The signal to noise ratios (SNRs) were set to 0, 10, and 20 dB.  

For the input signal used in the general input method, every OFDM symbol frame had a full spectrum. A total of 

18000 frames of the input and output data were collected and used by the general input method. The normalized 

mean square errors (NMSEs) of the estimated Volterra kernels (including linear, quadratic, and cubic kernels) 

achieved by the general input method (GEN) using 900, 1800, 9000, and 18000 frames of data and under the 

SNRs of 0, 10, and 20 dB are shown in Fig. 4 (denoted by ×). The NMSE of the Volterra kernel estimate was 

defined as: 

𝑁𝑀𝑆𝐸 =
 𝑐 − ℎ 2

 𝑐 2
      (25) 

Where c and h are vectors including all the actual and estimated Volterra kernel coefficients, respectively, and 

||·|| is the norm operator.  

 

 
Figure. 4. The NMSEs of the Volterra kernel estimates achieved by the generalinput method (GEN) and the spectral notch 

method (NOT) under the SNRsof 0, 10, and 20 dB using various number of OFDM symbol frames. 

 

 For the input signal used in the spectral notch method, every OFDM symbol frame with a full 

spectrum was followed by 17 copies of the same OFDM symbol frame, but each copy had a distinct spectral 

notch at the frequency p ∈ [0, 16]. The system output of each copy was subtracted from that of the 

corresponding full-spectral OFDM symbol frame to obtain the Z
(p)(m) in (15). We conducted cases with 50, 100, 
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500, and 1000 full-spectral OFDM symbol frames, which leaded to total OFDM symbol frames (including those 

with spectral notches) of 900, 1800, 9000, and 18000, respectively. The NMSEs of the estimated Volterra 

kernels achieved by the spectral notch method (NOT) for the 4 cases under the SNRs of 0, 10, and 20 dB are 
also shown in Fig. 4  

(denoted by ◦).  

 
Figure. 5. The amplitude response of the actual quadratic Volterra kernel. 

 
Figure. 6. The amplitude response of the estimated quadratic Volterra kernal 

From Fig. 4 we see that, under the same SNR and number of data frames, the spectral notch method 

achieved a smaller NMSE than the general input method. One possible reason for this is that, in the general 

input method, all the Volterra kernel coefficients contributing to the output at a frequency m are jointly 

estimated. On the other hand, through the use of spectral notches, the Volterra kernel coefficients contributing to 

the output at the frequency m are decomposed into disjoint groups in the spectral notch method. Compared to 

the general input method, each group in the spectral notch method only involves a relatively small number of 
Volterra kernel coefficients, hence the spectral notch method can estimate the Volterra kernels more accurately 

given the same amount of data. The result shown in Fig. 4 also seems to suggest that the performance 

discrepancy between the spectral notch and general input methods would increase with the number of available 

OFDM symbol frames.  

 The NMSEs of the estimated total, linear, quadratic, and cubic Volterra kernels achieved by the 

spectral notch method using 18000 frames of data and under SNR=20 dB are 4.97 ×10−4 ,3.48×10−2
,9.91×10−5, 

and 7.43×10−5, respectively. The actual and the estimated quadratic Volterra kernels in the estimation region are 
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shown in Figs. 5 and 6, respectively. 

 We also conducted a simulation with 256 subcarriers for the same system described by (21). In this 

case, the general input method couldn’t even be executed on our computer due to its extremely high demand on 
memory. The spectral notch method, on the other hand, achieved a NMSE of 1.20 × 10−3 under SNR=20 dB and 

using 65000 frames of data. 

 

VI.      Conclusion 
In this paper, we have proposed a practical methodology to estimate nonlinear channels in OFDM 

systems by deploying spectral notches in the OFDM signal. By exploring the mathematical expression for the 

difference signal between the outputs of a full-spectral OFDM symbol frame and its corresponding OFDM 

symbol frame with a spectral notch, we have shown that the Volterra kernel coefficients contributing to the 

output at any given frequency can be decomposed into disjoint groups with smaller numbers of kernel 
coefficients. As a result,Volterra kernel coefficients belonging to different groups can be estimated 

independently. Since each group involves only a relatively small number of Volterra kernel coefficients, the 

Volterra kernels can be estimated more accurately by the proposed method using the same amount of available 

input and output data. Furthermore, due to the smaller number of Volterra kernel coefficients involved in each 

group, the proposed spectral notch method requires significantly less computation than the conventional general 

input method. Specifically, we have shown that, the conventional general input method has a computational 

complexity of O(M
6
), while the proposed spectral notch method only requires a computational complexity of 

O(M
4
). The advantage of the proposed spectral notch method over the conventional general input method has 

been justified by the computer simulations. 
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