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Abstract: The efficiency of a diagnosis system depends on the relevance of the information it can be retrieve 

from the diagnosed plant. The diagnostic system detects, localizes and assesses the damage which may be in the 

form of delimitation, crack, buckling etc. Optical sensors like Fiber Bragg Grating sensor may be used to 

determine the strain, temperature and other diagnostic parameters. In real world structural applications the 

numbers of sensors available are limited which thus requires the need for an efficient sensor optimization 

algorithm. This paper describes an approach in which a genetic algorithm is used to determine the optimum 

sensor positions for a diagnostic system.  The fundamental issue regarding any diagnostic systems is which data 

should be processed and how the sensors should be placed. GAs being general purpose optimization algorithms 

is extremely suitable for such sensor placement problems. In this work the GA is tested using fitness function 

based on an assigned weight matrix and is developed while setting up the problem to simulate the presence of 
an effective damage detection system. For initial testing of the GA, we consider that there exists a neural 

network based identification system for a plate with 20 potential sensors locations. 
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I. Introduction 
Fiber Bragg grating sensors obtain the strain data all along the optical fiber. This opens new 

possibilities for a diagnostic system. Formerly, only point sensors, as a strain gages or fiber Bragg grating, were 

available, and information about the response to loads was restricted only to those points on which the sensors 

were bonded. Unless a sensor was located near the damage initiation point, details about the failure initiation 

and growth were lost. With a distributed system, the information is given as an array of data with the position in 

the optical fiber and the strain or temperature data at that point. The efficiency of a diagnosis system depends on 

the information it can retrieve from the diagnosed plant. Obviously, if the information is insufficient, the 

diagnosis system is not able to perform its task. However, an increased number of sensors alone do not 

guarantee that the diagnosis system will have a better performance. The relevance of the information brought by 

an additional sensor must also be taken into account. In some cases, knowing the values of a given variable 

brings no information from the diagnosis point of view. Thus, the efficiency of a sensor system can be measured 

by the diagnosability degree it provides. However, the same diagnosability level may be obtained for different 
sensor configurations. Moreover, in some cases, the highest level of diagnosability might not be necessary. 

Therefore, economical issues may come into place. When designing a sensor system, one must search for those 

combinations of sensors that can provide a specified diagnosability level at lowest possible cost.  Taking the 

cost of sensors into account, it is uneconomical to install sensors on every part of a distributed system. For a 

limited number of sensors, two questions naturally arise: which type of sensor placement optimization 

performance index should be adopted, and which algorithm can be used? A placement optimization performance 

index based on damage detection and a genetic algorithm are presented to answer these questions. 

 A number of different optimisation techniques have been developed over the last decades. These 

include heuristic approaches, classical and combinatorial optimisation. Many early optimisation methods, so 

called ad hoc methods, are based on rough and ready ideas without much use of theoretical background. 

Stepwise techniques can add or remove one or more sensor at the time in order to find the best combination. A 

number of unconstrained (Newton methods) and constrained (linear and nonlinear programming) deterministic 
optimisation methods can be used for optimal sensor location. This includes countless methods based on the 

availability of gradients and Hessians. Simple deterministic techniques are sufficient for local search; 

constrained optimisation has a great degree of complexity. Recent years have seen the development of 

combinatorial optimisation methods based on biological and physical analogies. These include Genetic 

Algorithms (GAs), Simulated Annealing (SA), Tabu Search (TS) and a number of hybrids of these techniques. 

GAs is a search techniques simulating natural evolution. Possible candidate solutions are coded as 

chromosomes. Random operations based on natural selection are used to evolve the initial population. 

 Methods have been developed to place sensors in an optimal fashion to address the identification and 

control of dynamic structures by Udwadia and Garba [1] and Lim [2]. Kammer [3] proposed an effective 

independence algorithm based on the contribution of each sensor location to the linear independence of the 
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identified modes. The initial candidate set of sensor locations was quickly reduced to the number of available 

sensors. Hemez and Farhat [4] extended the effective independence method in an algorithm where sensor 

placement was achieved in terms of the strain energy contribution of the structure. Miller [5] computed a 

Gaussian quadrature formula using the functional gain as a weight function, and thought that the nodes of the 

quadrature formula gave the optimal locations for sensors. 
 

II. Genetic algorithms 
 In this optimization method, information about a problem, such as variable parameters, is coded into a 

genetic string known as a chromosome (individual). Each of these chromosomes has an associated fitness value, 

which is usually determined by the objective function to be maximized or minimized. Each chromosome 

contains substrings known as genes, which contribute in different ways to the fitness of the chromosome. The 

genetic algorithm proceeds by taking a population, which is comprised of different chromosomes with highest 

fitness, and increasing the average fitness of each successive generation. Only the fittest chromosomes pass to 

successive generations. Now we introduce some basic concepts and operators of GAs before the description of 

the suggested algorithm. 

 

III. Coding 
 An essential characteristic of a GA is the coding of the variables that describe the problem. A binary 

coding method can be used. The method is to transform the variables to a binary string of specific length. If 

there are n optional degrees of freedom to place sensors, the coding length of a string is n. If the value of the ith 

bit position of a string is 1, this denotes that a sensor is located on the ith degree of freedom; in contrast, if the 

value of the ith bit position is 0, this denotes no sensor on the ith degree of freedom. For example, 001001100100 

denotes that sensors are located on the third, sixth, seventh, and tenth degrees of freedom. 

 

IV. Initial population 

 GA starts from an initial population of individuals as initial variable. Each individual in the initial 

population should meet the constraint. Thus, it is easy for GAs to reach the global optimum solution. 

 

V. Selection 
 The selection procedure used by GAs is based on the fitness of each individual. There is a number of 

reproduction schemes commonly used in GAs. These include proportionate reproduction, ranking selection, 
tournament selection, steady state selection, and greedy over-selection. Tournament selection can be used. 

 

VI. Crossover 

 Crossover is the operator that produces new individuals (offspring) by exchanging some bits of a 

couple of randomly selected individuals (parents). The general form of the operator is one-point crossover, 

described as follows. First, a cutting position is chosen at random between the first and the last bit of the parents, 

and the parents are thus divided into two parts by the cutting. Then, the two offspring are generated by each 

taking the first part from one parent and the second from the other. For example, the constraint is q = 4; assume 

a number 4 is chosen at random as the cutting position. The one-point crossover operation is shown in figure 1. 

We can find that even if the parent strings satisfy the constraint, the generated offspring still violate the 

constraint. Therefore, we will improve the crossover operator in the following section. 
 

VII. Mutation 

Mutation operates on a single individual with a small probability. With this operation, one or more bits are 

chosen at random from the individual and changed into a different symbol. This is shown in figure 2. 

 

   Parent 1  

    Parent 2 

    Offspring 1 

    Offspring 2 

 
Figure1. Sketch of one-point crossover 

 

   Parent 3 

   Offspring3 

 

Figure2. Sketch of basic mutation 

 

0 1 0 0 1 1 0 0 1 1 

1 0 1 0 0 0 1 0 1 0 

0 1 0 0 0 0 1 0 1 0 

1 0 1 0 1 1 0 0 1 0 

0 1 0 0 1 1 0 0 1 0 

0 1 0 0 0 1 0 0 1 0 



Genetic Algorithm Approach for Placement Optimization of FBG Sensors for a Diagnostic System 

www.iosrjournals.org                                                           20 | Page 

Similarly, in order to meet the constraint, the mutation operation should be improved, too. In order to apply a 

genetic algorithm to the sensor optimization placement problem, we have the following steps. 

(1) Create an initial population randomly, and calculate the fitness values of the strings. 

(2) Select the fittest individuals according to fitness values, and apply the crossover operation and mutation 

operation. 

(3) Calculate the fitness values of the new strings. 

(4) Repeat (2) and (3) until the termination criterion is met. 

 

VIII. Implementation of GA: 
 The potential solution for this sensor optimization problem is a vector of integers such that each integer 

specifies the position of sensor. For example the kth individual of the population pool could be given as, 

 

 Ik = {3; 7; 10; 14; 18}   (1) 

 

The above individual represents the sensor distribution such that sensors are present at locations 3, 7, 10, 14 & 

18 on the plate out of twenty possible sensor locations. Note that the vector for each member of the population is 
ordered such that multiple vectors do not correspond to the same solution, e.g. {3, 7, 10, 14, 18} and {3, 14, 10, 

7, 18}. As new members of the population are created through crossover and mutation, their vectors are 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

              

 

Figure 3: Sensor placement problem 

 

 Ordered, before they are included in the population for the optimization procedure. The dimension of 

the individual can be set according to the subset desired (five in this case) during analysis for sensor 
optimization problem. So a gene in this representation (encoding) technique refers to the position of sensor. 

 

It was assumed in this work that a maximum number of sensors are given as a constraint for the optimization 

problem. Therefore, the optimal solution to the problem allowing five possible sensors could actually have only 

four or three sensor locations for example. Therefore an alternative approach was considered to allow these 

other solutions, allowing the vector Ik to vary in dimension from 1 to 5.This approach was not chosen however, 

for two reasons: 

 it significantly complicated the operator of crossover within the GA; 

 it is more efficient to perform the GA procedure over each search space (e.g. vectors of dimension 5, vectors 

of dimension 4 etc.) individually and then compare the optimal result of each one, than to perform the GA 

search over the entire search space. 
 

 An arbitrary weight function is used as the fitness function for this problem. A weight matrix was 

assigned to the sensor positions (locations) such that the position number of each sensor has a weight 

corresponding to the element number of the weight matrix as its position number, as shown in figure 1. The 

fitness function is the sum of respective weights of all the sensors for a particular individual. In this problem, the 

higher the fitness value betters the individual. For example, the fitness function for the individual (potential 

solution) given in equation (1) is given as, 

 

F (Ik) = W3 +W7 +W10 +W14 +W18 = 2.9       (2)  
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 The modifications in this problem are that a new operator called the inversion operator is applied, 

discrete crossover is used instead of uniform arithmetical crossover and a penalty function is employed along 

with the fitness function to discard infeasible sensor configurations.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. Basic genetic algorithm 
 

 Due to the randomness involved during initialization of the population, we may have individuals which 

repeat sensor locations (for example, I = {4; 4; 10; 12; 16}). To avoid such individuals from further participating 

in the search process we applied static penalty functions which decrease their fitness value by a constant and 

thus eventually lead to their elimination from future populations [6]. For infeasible solutions the penalized 

objective function would then be the unpenalized objective function minus a penalty (constant) for this 

maximization problem, since the search is driven by maximization of F. The value of the penalty (constant, C1) 

depends on the deviation from a feasible configuration (which is five unique sensor locations here). For 

example, an individual I = {4; 4; 4; 9; 16} with three unique sensors is penalized more as compared to an 

individual I = {4; 4; 9; 13; 16} which has four unique sensors. A tuning of penalty constants is desirable for 

effective exploration of possible solutions. In discrete crossover, for each position i of the first offspring we 
choose (with fixed probability, 0.5 for this case) the parent whose ith gene will be transmitted to this descendent. 

The respective position of the second offspring will be completed with the value of corresponding gene from the 

other parent. For example, 

 

P1 = {2; 5; 9; 11; 15} 

P2 = {3; 7; 10; 13; 18} 

………………………… 

O1 = {2; 5; 10; 11; 18} 

O2 = {3; 7; 9; 13; 15} 

 

 The process of mutation is carried out using the Michalewicz non-uniform mutation. However, in this 
problem, a new operator called the inversion operator is used to improve the performance of the GA. This 

operator selects two genes on the chromosome string of an individual according to the user defined probability 

called the probability of inversion, pin [7]. The values of these two genes are then mutually exchanged. This 

operator improved the convergence of the GA and is suitable for cases where discrete representations are used 

as for this sensor placement problem. Finally, elitism is adopted similar to the previous problem and all the steps 

are repeated until the GA converges. 
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IX. Example Results 
 To demonstrate the performance of this GA implementation, the GA was applied to the sensor 

placement problem shown in figure 3. The parameters of the GA used are given in table 1. The GA converged 

after 100 generations and gave the optimal sensor distribution, one with the highest weight value obtained after 
adding weights associated with all the sensor positions. Convergence plots for the GA are given in figure 5.2. 

For this problem, the search progresses according to the maximization of the fitness function, as given in 

equation 5.2. It is shown that the GA converges to a solution (individual, I= {6, 7, 8, 9, 10}) for which the 

fitness function is maximum i.e. F = 5 as controlled by chosen weight matrix. Since elitism is used, the 

convergence plot for the best individual shown in figure 5.2 does not give meaningful information after the 

optimal solution is present. Therefore, the convergence plot for the mean fitness values of best 10 individuals is 

also plotted in figure 5 to ensure that the final population is dominated by optimal solutions. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5: Convergence of GA for sensor placement 
 

Table 1: Parameters of Genetic Algorithm for Sensor Placement Problem 

 

 
 

 

 

 

 

 
 

 

 The optimal solution was validated for the chosen weight matrix. This demonstrates the efficiency of 

the GA to determine the optimum sensor placement. Now by modifying the fitness function, this GA can be 

applied to neural network based damage identification system. For each individual (five sensor distribution), a 

neural network diagnostic can be trained and the percentage error in predicting the damage can be evaluated 

over a testing set. The inverse of this probability of misclassification can be used as fitness function to drive the 

sensor placement optimization problem for a particular case. The training data for each network would be 

generated by restricting the full 20-sensor distribution to the subset specified by the five sensors defining a given 

individual. The above presented result allows the GA to be used for optimal placement of sensors, in an existing 

damage identification system 

 

X. Conclusion 
 In this work the implementation of the GA search procedure for the optimization of sensor locations for 

a particular structural application is presented. The performance of the GA is evaluated using a test weight 

function and assuming the existence of an effective diagnostic system. The combination of the developed GA 

with already established damage identification system to find the optimal sensor distribution is demonstrated. 

Given the existence of a diagnostic system, the developed GA with a modified fitness function can be 

implemented for damage detection of a desired structural application. A generic method is proposed for 

optimizing the efficiency of the existing diagnostic system. 

Parameter Value 

Probability of crossover (pc) 0.45 

Probability of mutation (pm) 0.15 

Probability of inversion (pin) 0.01 

Number of generations (N) 100 

Population size (ƞ) 50 

Weight factor (a) 1.2 

Mutation weight factor (B) 2 
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