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 Abstract: The main aim of this paper is to damp out power system oscillations, which has been recognized as 

one of the major concerns in power system operation. This paper proposes a robust controller design for single 

machine infinite bus system based on Modified Nevanlinna-Pick theory along with Heffron-Phillip’s K model to 

stabilize power systems with unstable or lightly damped rotor modes. Most of the methods are not only complex 

but also require apriority knowledge of the complete system data. The method as proposed for single machine 

infinite bus system is easy to implement and gives better performance over wide range of operating conditions 

as compare to conventional one.   

Keywords: Modified Nevanlinna-Pick theory (MNP), Heffron-Phillip’s model(HP) ,Power System Stabilizers 
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I. Introduction 
 Modern power systems are interconnected non-linear time varying systems. Stable operation of such a 

complex system at a given operating equilibrium, sustaining large variety of small and large disturbances 

depends upon variety of controllers. In spite of the availability of high gain fast excitation controllers, the small 

signal oscillatory instability or low frequency oscillation remains a major concern in power system operation. In 

multi-machine systems this is manifested as multi-modal oscillations, which once excited can persist for long 

period of time and in some cases can cause generators to pull out of synchronism. This thesis is concerned with 

the design of power system stabilizer to contain these oscillations. The major factors contributing to the 

oscillatory instability were found to be dependent upon [5] 

1.  The loading of the generator tie line. 

2.  Power transfer capability of transmission line. 

3.  Power factor of the generator (leading power factor operation is more problematic than  Lagging power 
factor operation). 

4.  The gain and time constant of the AVR.  

 

In interconnected power systems, three different modes of oscillation can be detected [6]. 

1.  Intra-plant modes in which only the generators in a power plant participate. The oscillation frequencies 

are generally high in the range of 1.5 to 3.0Hz. 

2.  Local modes in which several generators in an area participate. The frequencies of oscillations are in the 

range of 0.8 to 1.8Hz.  

3.  Inter area modes in which generators over an extensive area participate. The oscillation frequencies are 

low and in the range of 0.1 to 0.8Hz. 

 

II. Power System Stabilizer 
 The most cost effective way of countering small-signal oscillatory instability is to use auxiliary 

controllers called power system stabilizers (PSS) to produce additional damping in the system [5]. Real power 

systems are nonlinear dynamic systems and as the operating condition changes, so does the system dynamics 

[4]. A well designed damping controller should ensure that the oscillations are well damped under all operating 

conditions. Designing an effective PSS for all operating conditions still remains a difficult task due to the 

following reasons: 

1.  Large variations in operating conditions. 

2.  Large variety of disturbances that can occur in power systems during normal operation. 
3.  Variation in system parameters due to changes in network configuration. 

4.  Difficulty in working out mathematical models capable of adequately modelling the Generator under 

various operating conditions.  

There are different types of controller each having some advantages and disadvantages [7]. 

 Conventional Fixed Parameters Controllers 

 Adaptive Controllers 

 Fuzzy Logic Controllers 
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 Application of Genetic Algorithm  

 Robust Control  

Robust systems are less sensitive to changes in operating conditions and provide adequate damping over a wide 

operating range.  

 

III. The Modified Nevanlinna-Pick Theory 
 To overcome the disadvantages of classical NP theory a Modified Nevanlinna-Pick theory are 

described below. The general procedure is as follows: 

 

1. A solution to interpolation problem with BR function u(s) exists if and only if the Youla indices associated 

with pi are positive when aiis complex, or |pi| ≤1 when ai is real. Where bounded real (BR) function u(s) 

satisfies. 

  uj(ai) = pi       j= n, n-1,...,1      (3.1) 

As ai is complex it allows us to apply the Nevanlinna-Pick (NP) algorithm for the rotor poles lying in left or 

right half of s- plane. 
 

2. Select an arbitrary BR function uj+1(s) and use the interpolation formula compute  uj(s). 

  uj(s) =𝑢𝑗 +1 𝑠 ℷ𝑗  𝑠 +µ𝑗(𝑠)

µ𝑗 +1 𝑠 ɣ𝑗  𝑠 +1
    j= n, n-1,...,1      (3.2) 

ℷj(s), µj(s) and ɣj(s) are some functions which depend on ai and pi. 

 

The function uj+1(s) is an arbitrary BR function. Therefore the solution is not unique. The NP theory is solvable 

if the so called Youla indices are positive. This condition limits the choice of pi and consequently the plant 

perturbation rm(ai) defined above. The Youla indices for a given interpolation point ɣi in (4.14) and ai = σi + jωi 

are given by eq. (3.3) below 

 

                  
   

Applying the Modified Nevanlinna-Pick theory to Robust Stability 

The procedure for the controller design is as follows[4]: 

1. Define a function D(s) having magnitude less than or equal to unity for all values of s = jω as  

 𝐷 𝑠 =
 𝑠−𝑎1 …………..(𝑠−𝑎𝑛)

 𝑠−𝑎11 …………(𝑠−𝑎1𝑛)
               (4.1) 

Where a1,....... an are the unstable/lightly damped poles of the nominal system anda11,...........a1n are the 

corresponding desired poles of the system with robust controller. 
 

2. Define a stable proper transfer function as 

   n(s) =Pn(s)D(s)                         (4.2) 

3. Initialize rm(ai) the plant perturbation to zero. 

4. Increase the value of rm(ai)from the previous assign value in small steps for each iteration. 

5. For each iterative value of rm(ai) compute ɣi as follows. 

    ƿ𝑖 =  
rm (ai)

𝑝𝑛(𝑎𝑖)
    i=1,.............n              (4.3) 

6. Having ɣ i and rm(ai) for each iteration, calculate the Youla Indices from [1]. Repeat steps 4, 5, and 6 till the 

maximum value of rm(ai) is found, for which the positiveness of Youla Indices is ensured then go to step 7. 

 

7. From [1] compute solution uj(s) (bounded real function) of NP theory in terms of an arbitrary (free) BR 

function uj+1(s). 

 

8. Using Q(s) =  Q(s)D(s) in the relation Q(s) = u(s)/rm(ai). We can get Q(s) as: 

    𝑄 𝑠 =  
𝐷 𝑑 

𝑟𝑚  𝑎𝑖 
𝑢(𝑠)              (4.4) 

9. The robust controller transfer function C(s) is obtained from equation (4.4). 

             C(s) = Q(s)(1- Pn(s)Q(s))                                               (4.5) 
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IV. Modelling Of Power System 
This Single Machine Infinite Bus (SMIB) power system model [2] is used to obtain the linearized dynamic 

model (Heffron-Phillip's or K-constant model). Basic equations related with SMIB system are written below. 

                               
𝑑

𝑑𝑡
δ = ωbSm      (5.1)         

                        

    
𝑑

𝑑𝑡
Sm = [-DSm+ Tmech-Telec] / 2H   (5.2) 

 

    
𝑑

𝑑𝑡
E΄d=  [-E΄d- (Xq- X΄q) iq] / T΄qo    (5.3) 

 

    
𝑑

𝑑𝑡
E΄q=  [Efd - E΄q +(Xd- X΄d)]    (5.4)              

                                                        T΄do 

    
𝑑

𝑑𝑡
Efd=  [KA(Vref +Vs–Vt) - Efd]     (5.5)   

                          TA 

     Telec = E΄did + E΄qiq+(X΄d- X΄q) idiq     (5.6) 

 

     Sm =   ω - ωb 

                                             ωb       (5.7) 

 
Fig.1: A single machine infinite-bus system 

   

   Linearized equations can be written as,  

   Δδ1 = ωbΔSm                                                                                                       (5.8) 
 

                                  ΔS1
m = [ΔTm- ΔTe- DΔSm] / 2H                   (5.9)                        

             

                                         ΔTe= K1Δδ + K2ΔE΄q                   (5.10) 

 

               dΔE΄q = [K3(ΔEfd – K4Δδ)- ΔE΄q ]        (5.11) 

              dt                      K3T΄do 

       

                                         ΔVt= K5Δδ + K6ΔE΄q      (5.12) 

 

  dΔE΄fd  = [KA(ΔVref +ΔVpss –ΔVt) - ΔE΄fd]     (5.13) 
                                 dt                          TA 

       Heffron-Phillip's constants K1,..............,K6 are defined as below. 

 

       𝐾1 =
𝐸𝑏𝐸𝑞𝑜 cos 𝛿𝑜

𝑋𝑞  + 𝑋𝑒
 + 

𝑋𝑞−𝑋΄𝑑

𝑋𝑒+𝑋΄𝑑
Eb sin δo   K2 = 

𝑋𝑞+𝑋𝑒

𝑋𝑒+𝑋΄𝑑
𝑖𝑞𝑜 

 

       K3 = 
𝑋𝑒+𝑋΄𝑑

𝑋𝑑 +𝑋𝑒
      K4 = 

𝑋𝑑−𝑋΄𝑑

𝑋𝑒+𝑋΄𝑑
𝐸𝑏 sin𝛿𝑜 

 

        K5 = - 
𝑋𝑞  𝑉𝑑𝑜  𝐸𝑏  𝐶𝑜𝑠  𝛿𝑜

(𝑋𝑞+𝑋𝑒 )𝑉𝑡𝑜
  - 

𝑋΄𝑑  𝑉𝑞𝑜  𝑆𝑖𝑛  𝛿𝑜

 𝑋𝑒+𝑋΄𝑑 𝑉𝑡𝑜
              K6 =  

𝑋𝑒

𝑋𝑒+𝑋΄𝑑

𝑉𝑞𝑜

𝑉𝑡𝑜
 

 

   Where Eqo= E΄qo – (Xq - X΄d)ido 

 

  δ0; Sm0;E΄q0;Efd0 and Vt0 denote the values at the initial operating condition. 
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Fig. 2: Heffron-Phillip's or K-constant model for SMIB system based on [3] 

 

5.1 State Equation of Small Signal Model: 

Linearized state-space form of the above system is given below. 

                     ɣ= [A] X + [B]∆Vref               (5.14) 

 Where, X = [∆δ ;∆Sm;∆E’q;∆E’fd] 

The matrices A and B can be obtained as 

  

  

  

  

 

 

 

 

 

 

 The small signal stability of the system can be improved by applying an auxiliary signal, derived from 

the deviation in speed signal ∆ω at the voltage reference input of the excitation system. The system transfer 

function, P(s) = ∆ ω /∆Vref in terms of K-parameters, can be found by using fourth-order linearized model as 

shown in Fig.2. 
    Pn(s) = -KAK2K3S/M(S)     (5.15)  

         
  

V. Power System Stabilizer Design 
 The theory developed in the preceding section is applied in this section for the design of power system 

stabilizers for nominal SMIB power system (S=P+jQ=0.4+j0.084p.u. Xe=0.37p.u) [8]. At this operating 

condition the Heffron-Phillip's constants for the nominal plant whose system parameter are given in Appendix 

are computed as, K1=1.0, K2=0.362, K3=0.46, K4=0.437, K5=-0.093 and K6=0.350.  Using (5.15) the linearized 

fourth order transfer function of SMIB power system is obtained: 

 

                        Pn(s) =   
−43.73s

 s4 + 34.27s3 + 409s2 + 1537 .1s + 14927 .7 
            (6.1) 

The lightly damped mechanical modes of the above characteristic equation are a1 = -0.16 + 6.47i; a2 = -0.16 – 

6.47i.  

 The maximum allowable perturbation with which the system stability is guaranteed is dependent upon 

pole placement. The allowable perturbation for various pole placement of the plant is listed in Table 1.1. It can 
be seen that choosing a smaller damping ratio results in larger allowable perturbation for the same plant. 
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Controllers C1(s) to C5(s) have been designed for all the desired pole location listed in Table 1.1 by the proposed 

method. . Fig.3 shows the response of the plant following a 0.1 pu step change of Vref for each of the five 

controllers. The plant response is highly oscillatory without a damping controller. A well designed conventional 

PSS tuned for this operating condition is able to damp the oscillations fairly well. 

                             

Table 1.1: Plant perturbation (rm(a1)) for SMIB system with varying Damping Ratio 

  Controller           Desired Poles  Damping Ratio ()  Perturbation rm(a1)  

       C1           -1.15 6.47i          0.175         0.0592 

       C2             -2  6.47i          0.295         0.0316  

       C3             -36.47i          0.421         0.0202  

       C4             -4 6.47i          0.526         0.0147  

       C5            -5  6.47i          0.611         0.0113  

 

Step 1: Evaluate function D(s) defined in (4.1) for desired poles (a11, a12) at -56.47i.  

                         D(s) =
 s−0.16  6.47i 

 s + 5  6:47i 
                                   (6.2)  

Which satisfies the criteriaD(jω) 1   ω   

 

Step 2: A stable proper transfer is derived from (4.2)  

                          Pn(s) = 
−43.73s

 s4 + 43.95s3 + 762.64s2 + 5833 s + 23824 .4 
                    (6.3) 

Step 3: following the steps (3 to 6) in the section IV of this paper. The maximum plant perturbation rm(a1) is 

found to be 0.0113 till the Youla indices becomes positive. 

 

Step 4: Replacing proper transfer ~ Pn(s) function and plant perturbation rm(a1) = 0.0113 in (4.3), the value of 

plant interpolation 1 = -0:982+0:231i and 2 = -0:982-0:231i.  
 

Table 2.2: Youla Indices and Pick matrix 

  

 

 

 

 

 

 

                        

Step 5: The value of Pick matrix and Youla indices as given in Table 1.2 can be derived by eq.3.3  

Step 6: Now the solution of the NP theory can be found in terms of the arbitrary BR function uj+1(s). In this case 
the function is u(s) because generator has only one pair of lightly damped poles under nominal operating 

condition. Selecting u2(s) = 0 the PSS transfer function acts as a controller as well as a washout. Replacing u2(s) 

= 0 in (3.2) the solution of NP theory is  

 

                     u(s) = 
0.1(s) + µ1 s 

0.1 s + 1
= 

 I4−I1 s2 +  I2−I3 s

 I4 + I1 s2 +  I2 + I3 s + 2a12
 = 

−0.91s2−8.39s

s2 + 9.52s + 17.11
               (6.4) 

where values of I1,I2,I3 and I4 are given in Table2.2  

 

Step 7: Replacing u(s) in (4.4) and (4.5) we can get the controller transfer function as:  

                     C5(s) = −80.79 
s s + 9.19  s2 + 33.95s + 356.24 

 s + 1.62  s + 8.87  s2 + 42.66s + 677.16 
              (6.5) 

With this controller transfer function there is need for a separate washout circuit, since with no system 

oscillations the output of the controller is zero. C1(s) to C4(s) are  

           

 Youla Indices      Pick Matrix 

I1   4.686 P11        0.055 

I2   2.772 P12 -0.0352-0.006i 

I3   43.86 P21 -0.0352+0.006i 

I4    0.213 P22     0.055 

  P    0.0017 



Design of Robust Power System Stabilizer For SMIB System Using Nevanlinna-Pick theory 

www.iosrjournals.org                                                             6 | Page 

                              
 

VI. Observation And Result 

 With the proposed PSS design the damping is least with controller C1(s) and maximum with controller 

C5(s). However, the maximum allowable plant perturbation which could be due to unmodelled dynamics or 

changes in plant operating parameters, is maximum with controller C1(s) and minimum with controller C5(s).  

At lower damping (desired poles at -1.156.47i and -26.47i) the performance of the conventional stabilizer is 

better. At desired pole location of -36.47i the performance of the controllers are comparable. At higher 
damping the performance of the propose controller is better.  

        

 
Fig 3: System response in terms of slip Sm for increase in Vref by 0.1 pu 

 

VII. Conclusion 
 The Proposed PSS is physically realizable with real coefficients. In the proposed controller design, 

unlike in the conventional PSS design, there is no need for the computation of appropriate gain and time 

constants of the stabilizer. The performance of the proposed robust stabilizer is consistently better than that of a 

conventional PSS under all operating and system conditions for different types of disturbances.  
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 The greatest advantage of the proposed stabilizer is that there is no need for tuning of stabilizers 

constants. On the other hand, the design of conventional PSS requires considerable expertise and experience for 

the selection and tuning of PSS and washout circuit parameters. The proposed stabilizer design based on 

modified NP theory has the added advantage that the close loop system performance is an integral part of design 

process. The controller also guarantees system stability so long the plant uncertainty is limited to the uncertainty 

bound function. The uncertainty is however unstructured and includes variation in plant parameters and 

modelling errors within limits. The uncertainty bound within which the proposed PSS is effective depends upon 
the choice of the nominal plant for PSS design.  

 

VIII. Appendix 
This system data is taken from [8] 

Machine Data:  

Xd= 1.863, X’d= 0.657, T’do= 6.9, H = 4, D = 5, fB= 50Hz, 

EB = 1p.u, Vt= 1.02p.u, Xt= 0.127p.u, Xe= 0.36965 

 

Static Excitation System Data: 
Ke= 200,Te= 0:03s,Efdmax = 6,Efdmin = -6. 

 

PSS Data:  

T1 = 0.2, T2 = 0.05, Kpss= 20; Tw = 3; PSS output limits = 0.1 
 

References 
[1] G. Sai Sudheer , B N S P Venkatesh , Emandi. Ramesh , Doradla. Prathap Hari Krishna,”Design Of Power System Stabilizer To 

Improve Small Signal Stability By Using Modified Heffron-Phillip’s Model” IJEST, Vol. 3 No. 6, pp. 4888-4896, June 2011.  

[2] P. Dorato, Yunzhi Li, "A Modification of the Classical Nevanlinna-Pick Interpolation Algorithm with Application to Robust 

Stabilization", IEEE Trans. Vol. AC-31, pp. 645-648, , July 1986.  

[3] P.S. Kundur, Power System Stability and Control. New York: McGraw-Hill, Inc.,1994.  

[4] K. R. Padiyar, POWER SYSTEM DYNAMICS Stability and Control. John Wiley; Interline Publishing, 1996. 

[5] P.S. Rao,"On The Design of Robust Power System Damping Controllers", Ph.D Thesis, Indian Institute of Science, Bangalore , 

May 1998. 

[6] G. Gurrala and I. Sen, “A Modified Heffron-Phillip's Model for The Design of Power System Stabilizers," in POWERCON 2008, 

New Delhi, India, October 12 - 15, 2008.  

[7] P. Kundur, M. Klein, G. J. Rogers, M. S. Zywno, "Application of Power System Stabilizer for Enhancement of Overall  System 

Stability", IEEE Trans. Vol. PWRS-4, pp. 614-626, May 1989.   

[8] C.Zhu, R.Zhou, and Y. Wang, "A new nonlinear voltage controller for power systems,"Int. J. Electr. Power and Energy Syst., vol. 

19, pp. 19-27, 1997. 

[9]  F. P. de Mello, C. Concordia, "Concept of Synchronous Machine Stability as Affected by Excitation Control", IEEE Trans. Vol. 

PAS-88, pp. 316-329, April 1969. 

   

 

  

   

   

 


