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Abstract: We study the paper of Ra that was published in Decision Sciences. He tried to develop a new method 

to simplify the paired comparison for Analytic Hierarchy Process. We show that for a three by three comparison 

matrix, the normalized relative weights derived by the chainwise paired comparison proposed by Ra is the same 

as the normalized results of the row geometric mean method. Our results provide a framework for further 

analytical explanation for the chainwise paired comparisons. On the other hand, we provide an example in 

which Ra’s method comes up with questionable outcomes. Researchers who use Ra’s method should be aware of 

this discrepancy. 
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I. Introduction 
 The Analytical Hierarchy Process (AHP) was developed by Saaty [17] as a decision making aid. It has 

been successfully applied in many fields. Zanakis et al. [22] examined over 100 applications of AHP within the 

service and government sectors, some researchers still dispute for its suitability and completeness. For example, 

just to cite a few, Apostolou and Hassell [2] studied whether comparison matrices with consistent ratio (CR) 

1.0  could be accepted. Bernhard and Canada [4] recommended that the incremental benefit/cost ratios should 

be compared with a cutoff ratio instead of the benefit/cost ratios of Saaty [18, 19]. Finan and Hurley [11] 

developed a diagonal procedure to build a rank-order consistent matrix. On the other hand, some researchers 

have tried to revise those improvements. For example, Chu and Liu [10] explained problems in Apostolou and 

Hassell [2]. Yang et al. [21] showed that the method of Bernhard and Canada [4] was deficient and then revised 

it. Chao et al. [6] reported that the diagonal procedure of Finan and Hurley [11] did not pass the consistent test 

of Saaty [18]. Following this trend, we consider the paper of Ra [16] to create a new approach to simplify the 

computation in AHP. 

AHP is particularly appropriate for complex judgments, which contain the comparison of decision 

alternatives that are difficult to quantify. Hence, it is built on the ground that when faced with a complicated 

decision problem the natural human response is to gather the decision alternatives according to their common 

features. It includes construction of a hierarchy of decision criteria and then making comparisons between each 

possible pair with respect to criteria to derive relative weight for alternatives. Pairwise comparison is commonly 

used to estimate preference values of finite alternatives with respect to a given criterion.  

There are   2/1nn  comparisons which need to be decided by a decision maker for n  alternatives. 

Ra [16] considered that that might be a time consuming procedure for problems with large numbers of 

decisions. For example, in Ra’s paper, an AHP problem with a hierarchy consisting of five levels, where each 

level except the top has 10 elements (criteria and sub-criteria for those median level, and alternatives for the 

bottom level) and the top level has one element (goal) requires a total of 1395 paired comparisons for a decision 

maker to derive the final results. There are several authors who tried to simplify the pairwise comparison 

procedure. For example, Macharis et al. [15] considered using the first row of a comparison matrix to develop a 

consistent matrix with the desired values for several specified entries. However, Jung et al. [12] pointed out that 

the procedure of Macharis et al. [15] contained questionable results. Ra [16] suggested a simplified procedure, 

with his notation:chainwise comparisons, such that there are only n  comparisons that need to be decided by a 

decision maker for n  alternatives. Hence, the 1395-paired comparisons in the previous example would reduce 

to 310-paired comparisons.  

Ra [16] used iD  and iI  to decide whether ordinal consistency is violated or not. He used the upper 

bound of ordinally inconsistency sets as the lower bound for the ordinally consistency and the lower bound of 

ordinally consistency sets as the upper bound for the ordinally inconsistency. He tested the all-possible sixty 

cases for the Saaty’s example of nation’s wealth (Saaty [18], p.40) to show that all the eigenvector solutions for 

the sixty chain orientations implied identical weights obtained through the chainwise method. Hence, Ra [16] 
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claimed that chainwise comparisons may take the place of complete pairwise comparisons in AHP, to 

significantly reduce the number of paired comparisons. Up to now, there have been six papers, namely Sirola 

[20], Chen and Lin [8], Choo and Wedley [9], Kuchanov et al. [14], Chen [7], and Kim et al. [13] that have cited 

Ra [16] in their references. Owing to this high citation rate, it may be worthwhile to provide a deep examination 

of his new method. Sirola [20] used conceptual decision model in a case study to utilize rule-based procedures, 

numerical algorithms and procedures, statistical methodologies and visual support. Chen and Lin [8] used 

analytic hierarchy process to derive the multifunctional knowledge and the teamwork capability of team 

members and then applied Myers-Briggs type indicator to assess the working relationship model. Choo and 

Wedley [9] discussed 18 estimating methods for deriving preference values from pairwise judgment matrices 

under a common framework of distance minimization and correctness in error free cases. They recommend the 

simple geometric mean method and the simple normalized column sum method to have closed-form formulas 

for easy calculation and good performance. Kuchanov et al. [14] discussed the theory of poly-condensation. 

They considered various models and the methods of their solution for the calculation of the statistical 

characteristics of the chemical structure of polymers to analysis them in detail. Chen [7] developed an integrated 

methodological framework for project task coordination and team organization from the concurrent engineering 

perspective in order to assign the right team members to the right tasks. Kim et al. [13] proposed a customer-

oriented evaluating method for rating in house of quality. The 1-9 scaling pairwise comparison (Saaty [18]) is 

not suitable for customers such as non-experts, housewives, or even children such that they avoided the 

phenomenon of inconsistency. However, none of these six papers provided further discussions for the 

groundwork for the theoretical development of chainwise paired comparisons approach proposed by Ra [16]. 

Hence, in this note, we will first provide an explanation for Ra’s method for three by three comparison matrix to 

show that his result will coincide with the geometric mean method (Barzilai et al. [3], Brugha [5], and Aguarón 

and Moreno-Jiménez [1]). 

 

II. Review Of The ChainwisePaired Comparison 
We review the chainwise paired comparison proposed by Ra [16]. First, he defined the direct 

comparison, iD , as the relative weight for alternative i  to alternative 1i  for 1,,2,1  ni   and nD  as 

the relative weight for alternative n  to alternative 1 . This means that for a nn  comparison matrix, say 

 
nnjia


, Ra [16] only constructs 1, iia  for 1,,2,1  ni   and 1,na  where 1,  iii aD  for 

1,,2,1  ni   and 1,nn aD  . Secondly, he defined the indirect comparison, iI , as the value computed 

from the other values, that is, the reciprocal of the product of other sDi . For example,  nDDDI 321 1  

or we may rewrite 



n

i

iDDI
1

11 . Hence, Ra [16] assumed that 



n

i

iii DDI
1

for ni ,,2,1  . 

Thirdly, to derive the best estimation, denoted by iR
~

 from two different values of iD  and iI , he proposed the 

weighted geometric mean 
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We may say that iR
~

 is the normalization of iD  by multiplication operation. Fourthly, for the relative 

weights, he assumed that 1nM  and the other elements are computed in descending order from )1( n  to 

the first element by 




 
1

1

~~ n

ij

jiii RMRM for 1,,1 ni . We may say that iM  is the relative weight 

between alternative i  and alternative n through iR , ,1iR , and 1nR . Fifthly, he defined the normalized 

relative weights, iV , with 



n

j

jii MMV
1

. Ra [16] did not offer additional clarification why he constructed 

iV  by the previous five steps. In the consequent six papers as we mentioned before, no one provided further 

explanations. 
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III. Our Explanation For The ChainwisePaired Comparisons 

 In this section, we will show that for a three by three comparison matrix, say  
33jia , then the 

normalized relative weights, iV , correspond to the relative weights derived by the row geometric mean method. 

First, we list the results from the row geometric mean method, say  TBBB 321 ,, with   3/1

13121 aaB  , 

  3/1

23212 aaB   and   3/1

32313 aaB  . Next, we follow the chainwise paired comparison proposed by Ra 

[16] to find that 121 aD  , 232 aD   and 313 aD  .  

 

To simplify the expression, we assume that 

3/1
3

1

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j

jD and   3/1

2313aa . This yields that 


 i

i

D
R
~

for 3,2,1i , and then 13 M , 22

~
RM   and 211

~~
RRM  . 

 

We obtain that 

  1

3/12

1323122

2312

1 Baaa
aa

M 


 ,                   (1) 

  2

3/12

231321

23

2 Baaa
a

M 


 ,             (2) 

and 

33 1 BM  .                          (3) 

This implies that the weights derived by the row geometric mean method, say  TBBB 321 ,,  and the relative 

weights by the chainwise paired comparison proposed by Ra [16], say  TMMM 321 ,, become by Equations 

(1), (2) and (3) 

 TMMM 321 ,,  TBBB 321 ,, .                  (4) 

 

It follows that the normalized relative weights, iV , satisfies 





3

1j

jii BBV          (5) 

for 3,2,1i . We summarize our findings in the next theorem. 

 

Theorem1. For a three by three comparison matrix, the normalized relative weights derived by the chainwise 

paired comparison proposed by Ra [16] is the normalized results of the row geometric mean method. 

 

IV. Inherent ProblemsOf Ra’s Method 
We will provide an example to explain inherent problems in Ra’s method. First, we recall the six 

nation’s wealth (Saaty [18], p. 40). By Saaty’s eigenvector method or the geometric mean method, the US has 

the highest weight. By his method, Ra computed all sixty possible arrangements ( 60
26

!6



, since !6  for all 

permutation; divide by 6 for circular permutation, for example  6,5,4,3,2,1 and )1,6,5,4,3,2( ; divide by 2 for 

flipped over, for example  6,5,4,3,2,1  and )1,2,3,4,5,6( . In 56 of the 60, the US still has the highest weight, 

but in the other 4 cases, the USSR has the highest weight.  

 

This reveals two important features of Ra’s method: 

(a) Sometimes, by Ra’s method, the alternative with the highest weight does not coincide with the Saaty’s 

eigenvector method. 

(b) We may need to check all possible arrangements to find the alternative with the highest weight. 
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Here, we assume a four by four comparison matrix, say A , for alternatives in the following order 1A , 2A , 3A  

and 4A , with 





















14/179

413/15

7/1312/1

9/15/121

A ,                   (6) 

such that by Saaty’s eigenvector method, 833.6max   and the normalized relative weight is 

 378.0,343.0,194.0,085.0  so 4A  has the highest weight. 

 

There are 3 different cases by Ra’s method, since 3
24

!4



 as we explained early. In the original order, by 

Ra’s method, we imply that 

   1,043.1,816.0,426.0,,, 4321 MMMM .              (7) 

 

By Equation (7), in the arrangement of 1A , 2A , 3A  and 4A , Ra’s method implies that 3A  has the highest 

weight. 

Next, we consider the arrangement of 1A , 2A , 4A  and 3A , which means the comparison, say B , becomes 





















143/15

4/1179

37/112/1

5/19/121

B           (8) 

which means that in B  (a) the third and the fourth rows of A  are interchanged  and (b) then the third and the 

fourth columns of the result of (a). By Ra’s method, we derive that 

   1,323.0,060.0,155.0,,, 4321 MMMM .              (9) 

 

By Equation (9), in the arrangement of 1A , 2A , 4A  and 3A , Ra’s method implies that 3A  still has the highest 

weight. 

Lastly, we examine the arrangement of 1A , 3A , 2A  and 4A , which means the comparison, say C , becomes 





















174/19

7/1132/1

43/115

9/125/11

C       (10) 

which means that in C  (a) the second and the third rows of A  are interchanged and  (b) then the second and 

the third columns of the result of (a). By Ra’s method, we obtain that 

   1,264.0,163.0,060.0,,, 4321 MMMM .              (11) 

 

By Equation (11), in the arrangement of 1A , 3A , 2A  and 4A , Ra’s method implies that 4A  has the highest 

weight. 

If we compute all possible arrangements by Ra’s method, then it yields that for %67 , 3A  has the highest 

weight and for %33 , 4A  has the highest weight. 

 

Hence, by Ra’s method we summarize our findings in the next observations. 
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(i) If we only apply Ra’s method once, then for comparison matrices A and B , we cannot find 4A  has the 

highest weight. 

(ii) If we compute all possible cases, then the percentages for 3A  and 4A  having the highest weight are %67

and %33 , respectively. Hence, most researchers will accept that 3A  has the highest weight. 

 

Here, we point out inherent problems by Ra’s method. 

(a) If we only consider some possible arrangements, then we may not derive the best alternative as proposed by 

Saaty’s eigenvector method. 

(b) If we evaluate all possible arrangements, then the alternative with the most percentage may not be the best 

alternative. 

 

Owing to these two inherent problems by Ra’s method, we may advise researchers do not apply this new 

algorithm to avoid questionable results. 

 

V. Conclusion 

 Our findings provide a theoretical ground for the chainwise paired comparison of Ra [16] so that more 

researchers can confidently use this new technique to avoid the time consuming procedure required to construct 

the complete set of comparison matrices. However, our example reveals two inherent problems of Ra’s method 

which seems to indicate that this new approach sometimes cannot decide the best alternative as proposed by 

Saaty’s eigenvector method. 
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