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Abstract: Dynamic power management (DPM) is a well known power optimization technique that aims at 

reducing the power consumption of a system while maintaining an acceptable performance degradation level. 

This paper presents a Reinforcement Learning-based dynamic power management framework for extending the 

battery service lifetime of a system with multiple active modes. In the proposed framework, a Power Manager 

adapts the system operating mode to the actual battery state of charge based on the observation of the battery 

output voltage. Moreover, it uses the reinforcement learning technique to accurately define the optimal battery 

voltage threshold value and use it to control the system active mode. Additionally, the power management policy 

is automatically adapted to the optimal timeout value. The proposed algorithms are experimented on both single 

and dual-battery powered systems and the obtained results confirm their  excellent performance for defining the 

optimal power management policy particularly for high latency constrained systems. Experimental results show 

an improvement in battery State of Charge (SoC) savings up to 42.83% and 55.38 %  respectively for single 

battery and dual battery systems in comparison with classic pre-specified timeout policies using a given preset 

battery threshold voltage 

Keywords: Battery-powered system design, Energy savings, Reinforcement Learning; Dynamic Power 

Management; Extending battery lifetime. 

 

I. Introduction 
Batteries are widely used as the only source of power in many applications. Thus, extending the battery 

service lifetime of battery-powered systems  become a major concern [1], [2], [3]. Dynamic Power Management 

(DPM) techniques refer to a selective shut-off or slow-down of system components that are idle. Although, such 

techniques effectively reduce the system power consumption, they are not able to obtain the optimal policy for 

extending the battery lifetime. This is because the battery characteristics are not properly modeled and exploited 

in these techniques [4]. Due to the battery characteristics, a minimum power consumption policy does not 

necessarily result in the longest battery lifetime. Therefore, an effective power management technique must 

consider the system workload and the battery characteristics to extend the battery lifetime [5], [6]. In this 

context, authors in [7] proposed three policies: an open-loop policy, a closed-loop policy and their combination. 

The open-loop policies attempt to reduce the average power consumption independently from the battery state 

of charge while managing the system power. The closed-loop policy is based on the idea of switching from a 

high quality factor to a low quality factor of the system state when the output voltage of the battery drops below 

some voltage threshold. Compared to the open-loop ones, the closed-loop policies are based on the observation 

of both battery’s output voltage and system workload. As a consequence, they help maximize the time of battery 

operation more effectively by adapting a component’s shutdown scheme to the actual battery state of charge. 

This can be performed by lowering the quality of service when the battery’s output voltage falls below a voltage 

threshold. If the battery is fully charged, the system is kept in a high performance state providing high quality 

services. The rationale for this policy is to provide graceful degradation of system performance as the battery 

discharges. In this case, it is clear that the choice of the voltage threshold is critical for trading off the service 

quality with battery lifetime. For the work presented in [7], the threshold is obtained in a heuristic manner.  

Rong et al. in [8] attempt to maximize the battery service lifetime by using a stochastic approach. It can 

take into account both power and performance and able to derive provably optimal DPM policies, by modeling 

the request arrival times and device service time as stationary stochastic processes such as Markov Decision 

Processes (MDP) [9]. Its essential shortcoming is the need of exact knowledge of the MDP state transition 

probability function. However, the workload of a complex system is usually changing with time and hard to be 

predicted accurately [10]. The workload variation has a significant impact on the system performance and power 

consumption. Thus, a robust power management technique must consider the uncertainty and variability that 

emanate from the environment, hardware and application characteristics [11] and must be able to interact with 

the environment to obtain information that can be processed to produce optimal policies.  
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In this context, several previous works have used machine learning for adaptive DPM policy 

optimization [12]-[16]. Machine learning-based methods such as Reinforcement Learning (RL) can 

simultaneously consider power and performance, and perform well under various workload conditions when the 

system model is not known a priori. Tan et al. in [17] propose to use an enhanced Q-learning algorithm for 

system-level DPM. Wang et al. in [18] extend this work to allow a power manager working in a continuous-time 

and event-driven manner with faster convergence rate, by exploiting the a learning framework for Semi-MDP 

[19]. 

This paper presents a reinforcement learning approach for extending battery service lifetime in a 

portable electronic system with multiple active modes. More precisely, a DPM framework is implemented to 

perform power management by learning online the optimal battery threshold voltage for a closed-loop policy. 

This work extends the basic DPM framework presented in [20] to a dual battery powered system and is 

enhanced to automatically adjust the power management policy by learning the optimal timeout value. This 

framework has the following main characteristics: i) it can dynamically perform power management in a 

continuous-time and event-driven manner according to both system workload and battery state of charge; and ii) 

it has fast convergence rate and less reliance on the Markovian property. Using the learning approach in [18], a 

power manager simultaneously learns the optimal policy for non-stationary workloads and uses that policy to 

control instead of only evaluating one predefined policy. Experiments on measured data traces show the power 

of learning the optimal DPM policy and demonstrate the superior performance of the proposed framework in 

comparison with prior works [7], [8].  

The remainder of this paper is organized as follows. We provide an overview of reinforcement learning 

background in Section 2. The proposed dynamic power management framework architecture is presented in 

Section 3, and its implementation details are given in Section 4. The experimental results are analysed  in 

Section 5. We conclude this paper in Section 6. 

 

II. Theoretical Background 
Reinforcement learning is a branch of machine learning based on learning through experience 

accumulation [21] and is widely applied for large optimal decision making problems. 

 

1. Formalism of the agent-environment interaction 

A general reinforcement learning (RL) model as illustrated in Figure 1 consists of an agent, a finite 

state space   , a set of available actions  , and a reward function              . The core of an RL 

technique is the interaction between the agent and its environment. The agent is the learner and decision maker. 

The environment is defined as any sensory information the agent receives. Actions refer to the decisions the 

agent is intended to make [22]. State represents the situation the agent can find itself in. More precisely, the state 

is the available information about the agent’s environment that helps the agent in decision making.  

 

 
Fig.1.   Agent-environment interaction model. 

 

At each step of interaction with the environment, the agent receives a representation of the 

environment's state      and selects an action            where       denotes the set of possible actions 

available at state   . As a consequence of the taken action, the agent moves from its current state    to a new 

state       and receives from the environment a reward      (a real or natural number) or a punishment (a 

negative reward) which indicates the value of the state transition. The cumulative rewards affect the agent 

behavior and guide the action policy. The agent’s goal is to optimize its behavior based on the cumulative 

received rewards. 

We define a policy                   as the set of all possible state-action pairs in the RL 

framework. It can be interpreted as mapping from states to probabilities of selecting possible actions:         
             . 
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The RL agent continuously adjusts its policy so as to maximize the total amount of reward received over the 

long run. It is worth to state that the RL agent-environment interaction model is abstract, generic and flexible. In 

fact, the time can be continuous and not defined in fixed intervals. The actions can be different and vary as well. 

The states can be completely intrinsic and can have different forms (signal readings, symbolic description, etc). 

 

2. Reinforcement learning in discrete-time 

The reinforcement learning problem is to determine the optimal policy that maximizes the value 

functions for all state-action pairs. Generally, the agent has no predefined policy or knowledge about state 

transition characteristics. Therefore the agent has to simultaneously learn the optimal policy and use that policy 

to control. We define the return   as the discounted integral of reward rate, whenever a selection of action is 

made by the agent. Furthermore, we define the value of a state-action pair       under a policy  , denoted by 

       , as the expected return when starting from state  , choosing action   (according to policy  ), and 

following   thereafter.  

The agent keeps a value function        , for each state-action pair       initially chosen by the 

designer and then updated each time an action is taken and a reward is received. The Q value function represents 

the expected long-term reward when starting from state  , choosing action   (according to policy  ), and 

following   thereafter. At decision epoch tk, the action with the highest Q value is chosen. At decision epoch 

tk+1, the Q value            is updated. 

The update rule for discrete time RL is based on the following equation: 

               
                                                                                                   (1)                                                                                                                                   

where         denotes the learning rate;      is the reward received at time   and           is the discount 

factor. The agent chooses the action with the maximum estimated value        for various actions     next 

time the state   is visited, and then adjusts its policy so as to maximize the total amount of reward received over 

the long run. 

 

3. Reinforcement learning in continuous-time 

The continuous-time RL technique is implemented based on the Temporal Difference learning method 

[22] for a Semi Markov Decision Process (SMDP) called TD(λ)  for short. Since the SMDP is a continuous time 

dynamic system composed of a countable state set S, and a finite action set A, there exists a countable set of 

decision epochs                    More precisely, at decision epoch tk, the system has just transitioned to 

state sk in response to a certain event. The agent selects an action ak according to some policy. At time tk+1, the 

agent finds itself in a new state     , and, in the time period          , it receives a scalar reward with rate     .  

The temporal difference learning (TD) for SMDP generates an estimate         for each state-action 

pair       at epoch   , which is the estimate of the actual value         following policy  . Suppose that 

state    is visited at epoch   . Then at that epoch the agent chooses an action either with the maximum estimated 

value          for various actions    , or by using other semi-greedy policies [22]. The TD learning rule 

updates the estimate           at the next epoch     , based on the chosen action    and the next state     . 

We choose to use the algorithm presented in [9] due to a joint consideration of effectiveness, robustness and 

convergence rate. More specifically, the value update rule for a state-action pair at epoch      in the TD(λ) 

algorithm for SMDP [22] is given as follows: 

                                                  

       

 
         

       
                             

            

(2) 

In the above expression,            is the time the system remains in state    ; 
       

 
         is the 

sample discounted reward received in    time units;               is the estimated value of the state-action pair 

          in which      is the actually occurring next state. Moreover, in Eq.(2),           denotes the 

eligibility of each state-action pair in order to facilitate the implementation of the TD( ) algorithm. Such 

eligibility reflects the degree to which the state-action pair       has been chosen in the recent past and it is 

updated as follows: 

                                                           (3) 

where          denotes the delta kronecker function. 
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III. Indentations And Equations 
We target a battery powered system under non-stationary workload. The basic system as shown in 

Figure 2 consists of a service requestor (SR) generating the requests, a service queue (SQ) to store the requests 

waiting for processing, and a device providing services to the workload called service provider (SP). Like real 

systems, the service request’s exact generating time instances are not known a priori.  

 

 
Fig.2. The global system architecture. 

3.1. Service Provider Model 

In this work, we consider a service provider as shown in Figure 3. It has five main states explained as follows: 

— Active state: the SP is fully functional and some requests are being processed. The active state includes two 

different power modes :  

 High Performance state (HP) when the system consumes more power but provides high quality services; 

  Low Performance state (LP) when the system provides low quality services and consumes less power. 

We use the service provider response time as the service quality metric [23]. In HP state, the SP power 

consumption is higher but services the service requests more rapidly than in LP state. In contrast, the SP has 

longer execution time and less energy consumption in LP state compared to its HP state. 

— Idle state: the system is still operational, but there are no service requests to deal with [24]. The transition 

between the active and idle states is autonomous, i.e., as soon as the system completes servicing all of the 

waiting requests, it enters the idle state. Similarly, the system goes from idle to active once a service 

request arrives. 

— Sleep state: The SP moves to the Sleep state- where it has reduced power consumption- only from the idle 

state. The device turns into active as soon as a service request arrives. 

— Off state refers to a completely turned off system. 

 
Fig.3. State diagram of a service provider. 

 

3.2. Battery Model 

We use state-of-charge (SoC) to denote the status of the battery. A battery SoC is usually changing 

over time depending both on user activities and on battery properties. Ideally, the battery voltage is constant 

over a complete discharge cycle, and it drops to zero when the battery is fully discharged. In practice, the battery 

output voltage decreases as a function of the discharge time, and the battery is exhausted when its output voltage 

falls below a given voltage threshold [7]. Thus, the battery output voltage describes the battery SoC.  

Recall that the targeting system has two active modes with different performance and power 

consumption levels. The SP switching between its two busy HP and busy LP states depends on the status of the 

power supply, i.e., the battery SoC. More precisely, we use the battery voltage threshold for setting the 

appropriate active mode. Thus, an efficient DPM framework must identify the best battery output voltage 

threshold Vth to be set in order to make the battery service lifetime optimal. 

In addition, two other important factors distinguish the real batteries from ideal ones. These factors are 

the basis of the proposed DPM framework: i) the total energy capacity of a battery is strongly related to its 

discharge current rate. More precisely, the deliverable capacity of the battery decreases as the discharge current 

rate increases. This phenomenon is called the rate-capacity characteristic [25]; and ii) a battery can recover some 
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of its deliverable capacity when it is given some rest in a state during which no current is drawn. This property 

is called the recovery or relaxation characteristic [26], [27]. This characteristic will be exploited in a dual-

battery powered system case. 

For this study, we are considering a Lithium-Ion battery given its wide use in portable systems. We use 

the equivalent circuit model of a Li-ion battery given in [28] as shown in Figure 4. This circuit model can be 

used to predict both the battery runtime and I–V performance accurately. 

 

 
Fig.4. Equivalent circuit model of the Li-ion battery [18]. 

 

On the right of Figure 4, the used battery model consists of a series resistor RS and two RC parallel 

networks (RTS, CTS)  and (RTL, CTL). These components are modeling for the battery transient response to load 

events at a particular open-circuit voltage VOC. For example, in a step load current event, RS is responsible for 

the instantaneous voltage drop of the step response. (RTS, CTS) and (RTL, CTL) are respectively modeling for the 

short time constant and long time constant responses.  

On the left, a capacitor Cb and a current-controlled current source ib model the capacity, State of 

Charge (SoC), and runtime of the battery. Cb represents the whole charge stored in the battery, i.e., SoC. ib is 

used to charge or discharge Cb so that the SoC changes dynamically and the battery runtime is obtained when 

the battery voltage reaches the end-of-discharge voltage. Rsd is used to characterize the self-discharge energy 

loss when batteries are stored for a long time. Theoretically, all the parameters of the proposed model are 

multivariable functions of SoC, discharge current, temperature, and cycle count. However, within certain error 

tolerance, the model parameters’ dependence on temperature, discharge current and cycle number can be 

simplified given their negligible effects [29]. Finally, the circuit model component values are obtained 

according to the following non-linear single variable equations [29].  

         
                 

           
                  

  

        
                

  

         
               

  

         
               

  

         
                

  

         
                

  

                 

  

where  

     :is an empirically-extracted regression coefficient. Its detailed extraction methods can be found in 

[30]. 

      : represents the nominal energy capacity of the battery (SoC) in Ahr 

     : denotes the open circuit voltage and  

     : denotes for the initial voltage across Cb that quantitatively represents the battery SoC.  

Table 1 lists the empirically-extracted regression coefficients as detailed in [30]. 
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Table I.  Extracted simulation parameters of the battery. 
b11 -0.67 b12 -16.21 b13 -0.03 

b14 1.28 b15 -0.40 b16 7.55 

b21 0.10 b22 -4.32 b23 0.34 

b31 0.15 b32 -19.60 b33 0.19 

b41 -72.39 b42 -40.83 b43 102.80 

b51 2.07 b52 -190.41 b53 0.20 

b61 -695.30 b62 -110.63 b63 611.50 

Cinit 0.35     

 

IV. Dynamic Power Management Framework Using Reinforcement Learning 
This paper focuses on extending the service lifetime of a battery-powered electronic system. The goal 

is to develop a Power Manager (PM) that implements the optimal policy for minimizing the energy delivered 

from the battery while maintaining an acceptable average number of waiting requests in a service queue. 

Basically, the first problem we are addressing in this paper is to identify the battery output voltage threshold Vth 

to be set in order to make the battery service lifetime optimal. For this aim, reinforcement learning techniques 

are used to learn the optimal Vth that guarantees the best tradeoffs between the battery lifetime and the system-

performance. A system with a given pre-specified timeout policy is first used and an optimal voltage threshold 

value for that fixed timeout value is obtained by reinforcement learning. Then, the framework is enhanced with 

an optimal timeout-policy that integrates a learned voltage threshold policy to get best system performance. 

 

Learning optimal battery output voltage threshold 

The Battery SoC is regularly changing over time and the SoC values are sampled at regular intervals 

regardless of the system events. Therefore, discrete time RL is adopted for learning the optimal threshold 

voltage Vth according to Eq. (1). 

 

Policy evaluation 

The goal of the PM is to extend battery lifetime by reducing the system power consumption while 

maintaining an acceptable performance level. In this problem, the SP power value is known for each power state 

and the average delay is used as a performance metric. The average delay stands for the average number of 

waiting requests in the SQ. This is reasonable because as indicated in [9], the average number of requests in the 

SQ is proportional to the average latency per request that is defined by the average waiting time for each request 

to be processed. The average service time represents the time between the moment the request is generated and 

the moment the SP finishes processing it i.e., it includes queuing time plus execution time.  

In this work, we use “cost rate” instead of “reward rate” in RL algorithms. The cost rate is a linearly 

weighted combination of the SoC degradation starting from the initial battery charge state, and the number of 

requests buffered in the SQ. The SoC degradation is directly related to the battery discharge current which is a 

function of the instantaneous SP power consumption that is obtained from its power state observation. In this 

way, the value function Q(s,a) for each state-action pair (s,a) is a linear combination of the expected total 

discounted SoC degradation and latency. The relative weight between the SoC degradation and latency can be 

changed to get a SoC-latency tradeoff curve. More precisely, upon selection of action   from state  , the cost 

function          is defined as follows: 

                                                               (11) 

where         represents the drawn charge from the battery;        denotes the caused delay and   is a user-

defined parameter enabling the SoC-delay tradeoff. 

 

Battery output voltage threshold learning algorithm 

A timeout policy is assumed to be the SP policy due to its wide usage in many devices. Under such 

policy, the SP moves into the sleep state if it remains idle for more than a specified timeout period. Fist, a 

system with a given pre-specified timeout policy is used. The optimal voltage threshold for a fixed timeout 

value is obtained by applying reinforcement learning. Let Vth denote the threshold value of the battery output 

voltage. In the RL technique, a list of  Vth serves as the PM action set for controlling the SP switching between 

its two busy HP and busy LP states. The PM learns to choose the optimal action    , which corresponds to 

the optimal Vth value, by using the RL technique. Notice that, to accurately learn the best supply voltage, we 

must run multiple battery charging/discharging cycles.  

The proposed RL framework operates as follows. The PM continuously observes the following 

parameters (i) the SP power state: busy, idle and sleep, (ii) the SQ state: number of waiting requests, and (iii) the 

battery output voltage that is nonlinearly related to the SoC as represented in the battery model. Based on these 

observable parameters, the PM makes a decision and issues commands to the SP in the following four cases: 
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1. The SP is in the idle state and a request comes before the timeout period expires. Thus, the PM decides to 

turn the SP into the active state. 

2. The SP is transitioning to the active state. Depending on the battery output voltage, the PM decides either 

to turn the SP into the low performance (Busy LP) state or to keep it into the high performance (Busy HP) 

state. More precisely, if the battery output voltage falls below Vth, the SP is operated in the LP state. 

3. The SP is in the idle state and the timeout has expired. Thus, the SP is put to sleep. 

4. The SP is in the sleep state and a request comes. In this case, the PM turns the SP active to process the 

incoming requests. 

 

In this implementation, the optimal policy is achieved by minimizing the cost function which is a 

linearly weighted combination of (i) the drawn charge from the battery and (ii) the caused delay as explained 

above. Details of the proposed RL-based algorithm are provided in Algorithm 1. 

 

ALGORITHM 1. The basic RL-Based DPM Algorithm. 

 

Input: the timeout       value, the action set   (a set of V th values), the battery output voltage 

    . 

Do for 1,2,3,..,80 (number of charge/discharge cycles) 

Initialization :  The battery is fully charged 

Choose an action  , which corresponds to a specific battery output voltage threshold, from the 

action set  . 

repeat 

At each decision epoch   : 

Let the PM execute the timeout policy with timeout value     . 

if the SP is in the idle state then 

if some request comes before the timeout period expires then 

The PM turns the SP active for processing requests until the SP becomes idle again. 

Then we have reached decision epoch     . 

       else 

The PM keeps SP idle for      period of time. 

       end 

else if the SP is in the sleep state then 

if some request comes then 

The PM turns the SP active for processing requests until the SP becomes idle again. 

Then we have reached decision epoch     . 

else 

The PM keeps SP in the sleep state. 

end 

else (the SP is in the active state) 

if          then 
The PM turns the SP into the Low Performance state for processing requests. 

 Then we have reached decision epoch     . 

else 

The PM turns the SP into the High Performance state for processing requests.  

Then we have reached decision epoch     . 

end 

end 

   until the battery is fully discharged 

Evaluate the chosen action   using the RL technique (Equation 1). 

 

Learning the optimal timeout policy  

In addition to learning the optimal battery output voltage threshold, we propose to enhance the 

framework to automatically adjust the power management policy by learning the optimal timeout value under 

non-stationary workloads. Recall that the timeout policy is assumed to be the service provider policy due to its 

wide usage in many devices. The timeout determines the tradeoff between the service latency and power 

dissipation of the SP. The major difficulty is to accurately define the optimal timeout period. An undesirable 

situation is where the SP is put to sleep too fast, only to be awakened immediately. Thus, the system would 

suffer from extra energy consumption and latency of waking up the SP and bringing it to the active state. 
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On the other hand, if the timeout is set to be too long and meanwhile no service requests arrives, the SP has 

unnecessarily wasted energy by waiting in the idle state. Predicting the optimal timeout value under a given 

system performance constraint is a major concern for us in this case. 

For learning the optimal timeout value, since the system functions in an event driven manner, 

continuous-time learning based on TD(λ) learning method for SMDP is used. The update rules for the SMDP 

TD(λ) algorithm are defined according to Eqs. (2) and (3). In this case, the PM simultaneously learns the 

optimal timeout policy and adapts the suitable output voltage threshold for that timeout policy. 

 

Policy evaluation 

To learning the optimal timeout value, we use the cost function             which is a linearly weighted 

combination of (i) instantaneous power consumption and, (ii) the number of requests buffered in the SQ. The 

cost function is defined as follows: 

 

                                                                                  (12) 

 

where           is the service provider absorbed power for state s;              is the delay and    is a user-

defined parameter enabling the power-delay tradeoff.  

 

Timeout value learning algorithm 

For this aim, the RL algorithm uses two action sets: (i) a list of output voltage values that serve for the 

selection of the battery output voltage threshold, and (ii) a second list of timeout values to be used when the SP 

is idle. At a given decision epoch tk , the  SP is idle and SQ contains no requests, the PM chooses an action from 

the timeout action set (list of timeout values) and then executes the learning of the optimal battery output 

threshold voltage based on the chosen timeout value as described in the previous section.  At the next decision 

epoch     , the system finds itself either in the sleep state (no request came during the timeout period) or in the 

idle state (some request came in that period). The system evaluates the chosen action using the continuous-time 

TD(λ) algorithm for SMDP  presented before. Details of the optimal timeout policy enhancement are shown in 

Algorithm 2. 

 

Dual-battery Policy 

Modern battery powered systems can accommodate two batteries or more, e.g. portable computers and 

mobile phones where batteries are generally used in sequence one after the other. The second battery starts 

operating only when the first battery is totally discharged. However, as it was discussed earlier, a battery can 

recover some amount of its deliverable capacity when it is given some rest after some period of current 

discharge. This is due to its electro-chemical characteristics [7] that can be fruitfully exploited in a dual-battery 

system by enabling the PM to alternate the use of the two batteries. In this way, one battery powers the system 

and the other can recover while it is temporarily disconnected from the load. An effective power management 

scheme must consider such a recovery effect to extend the battery lifetime.  

In this context, a dual-battery system (B1 and B2) is considered where batteries are alternated in 

operating the system. As performed for a single battery system, RL technique is used to learn the optimal 

threshold voltages for both the two batteries (Vth1 and Vth2) that guarantee the best tradeoffs between battery 

lifetime and system-performance. When the output voltages of the two batteries exceeds their corresponding 

optimal threshold voltages, the system operates in an HP mode and we perform the switching between the two 

batteries with a fixed frequency f. Using this policy, the lifetime of the system is expected to increase. However, 

this strongly depends on f. For very low f, each battery is drained for a long time with full current load. In the 

limiting case of      , two batteries are discharged in sequence. In the Experiment section, a suitable 

procedure for locating the most suitable value of f is implemented. When the output voltage of the currently 

operated battery, e.g., B1’s voltage falls below Vth1 while B2’s voltage exceeds Vth2, B1 is disconnected from the 

load and it is given some rest.  In this case, no switching between the batteries is performed and the system is 

kept powered only B2 such that the SP continues to operate in an HP until B2 becomes exhausted. 

When both batteries are exhausted, the PM turns the SP into the LP mode and the fixed switching policy 

between B1 and B2 is again performed until both are fully discharged. 
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ALGORITHM 2. The Enhanced RL-Based DPM Algorithm. 

 

Input: the action set     (a set of      values), the action set  (a set of Vth values), the battery 

output voltage     . 

Do for 1,2,3,..,80 (number of charge/discharge cycle) 

Initialization :  The battery is fully charged 

Choose an action  , which corresponds to a specific battery output voltage threshold, from the 

action set  . 

 repeat 

  At each decision epoch   : 

Choose an action    , which corresponds to the Timeout value, from the action set    . 
Let the PM execute the timeout policy with timeout value    . 

if the SP is in the idle state then 

if some request comes before the timeout period (with duration of    ) expires then 

The PM turns the SP active for processing requests until the SP becomes idle again. 

Then we have reached decision epoch     . 

else 

The PM keeps SP idle for    period of time. 

end 

else if the SP is in the sleep state then 

if some request comes then 

The PM turns the SP active for processing requests until the SP becomes idle again. Then 

we have reached decision epoch     . 

else 

The PM keeps SP in the sleep state. 

end 

else (the SP is in the active state) 

if         then 

The PM turns the SP into the Low Performance state for processing requests.  

Then we have reached decision epoch     . 

else 

The PM turns the SP into the High Performance state for processing requests.  

Then we have reached decision epoch     . 

end 

end 

   Evaluate the chosen action    using the TD(λ)  technique (Equation 2 and Equation 3). 

until the battery is fully discharged 

Evaluate the chosen action   using the RL technique (Equation 1). 

 

V. Experimental Results 
In this section, we present the effectiveness of the proposed DPM framework on extending the battery 

lifetime. The proposed algorithms are experimented on both single and dual-battery powered systems.  

 

5.1. Experiments on a Single-Battery Powered System 

The first set of experiments demonstrates the effectiveness of the basic DPM framework implemented 

with a given pre-specified timeout policy fixed to 0.2 Tbe (Tbe refers for the break-event time defined in [4]). We 

have conducted two experiments by assuming different Hard Disk drive (HDD) characteristics defined in Table 

II such as voltage; current and time of service values for both HP and LP states.  

 

Table II.  The HDD characteristics in two experiments [16]. 

 
Experiment 1 Experiment 2 

LP mode HP mode LP mode HP mode 

Current (Amp) 0.4 0.6 0.4 0.8 

Voltage (V) 3.6 3.6 3.6 3.6 

Time of service (s) 1.7 1.2 1.7 1.2 

Power sleep (W) 0.13 

Power idle (W) 0.2 

Time transition idle to sleep (s) 1.6 

Time transition sleep to active (s) 1.6 
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At each state, the battery voltage and current are calculated. Assuming that the battery voltage is 

constant in each state, the actual power drawn from the battery is obtained. The SoC degradation denotes the 

amount of the consumed charge from the initial battery SoC. We perform different experiments under multiple 

battery‘s charging and discharging cycles. For the workload, we measure a real 6-hour server accessing trace 

using the tcpdump utility in a Linux server. Then, this real trace has been reproduced and utilized several times 

to simulate multiple charge/discharge cycles of a battery.  

To assess the effectiveness of the basic DPM framework in improving the battery lifetime, various 

experiments have been performed by targeting different SoC-latency tradeoffs. The SoC degradation and 

latency tradeoffs are precisely controlled based on a user-defined parameter that is weighing the cost function’s 

linear combination of (i) the battery SoC degradation and (ii) the average response time. A low weight for the 

SoC degradation implies a highly-constrained latency system. High SoC degradation weights are related to 

lowly-constrained latency systems. Figure 5 reports the obtained results for an HDD having different 

characteristics as defined in Table II (experiments 1 and 2 settings). These results are compared to what can be 

obtained if only a 0.2 Tbe pre-specified timeout policy is used with a preset battery threshold voltage Vth = 3.7V. 

First, as shown in Figure 5, the proposed DPM framework provides a wide range of SoC-latency 

tradeoffs for both experiments 1 and 2.  Better performances are obtained for HDD with characteristics of 

experiment 1 particularly for low latency values. Higher average latencies would imply reduced performance at 

the gain of longer battery duration and higher values of battery output voltage threshold. As shown in Table II, 

the HDDs are characterized by the same busy LP mode current for both experiments 1 and 2. In this case, 

similar tradeoff curve behaviors are observed for increasing latency values for both experiments. In comparison 

with the fixed-timeout policy with 3.7 V preset threshold voltage, 15.7% maximum battery SoC improvement is 

obtained for high latency value systems for the HDD with parameter settings of experiment 1.  

This is shown in Figure 5, when only the fixed timeout policy with the fixed preset threshold voltage is 

used, the SoC degradation is about 11.93% for a latency value equal to 4 %. Using our framework, only 10.06 % 

of battery SoC degradation is obtained for low performance constrained systems that tolerate up to 7.2 % 

latency.   

 
Fig. 5. SoC-latency trade off curves of the 0.2 Tbe fixed timeout policy running the RL-based DPM on HDD for  

both  experiments 1 and 2 

 

For experiment 2 settings, even better performances are achieved with up to 29.89% of SoC saving 

obtained in comparison with the fixed-timeout policy with 3.7 V preset threshold voltage. In this case, similar 

SoC/latency tradeoff behavior is observed for high latencies constrained systems. However, when only the fixed 

timeout policy with the fixed preset threshold voltage is used, the SoC degradation with experiment 2 settings is 

14.34 % with 4 % latency. This even outperforms the method in [8] by 35.86% in terms of battery service 

lifetime extension.  

 

Learning the optimal timeout  

To evaluate the improvements of the enhanced RL-battery DPM framework with learning the optimal 

timeout, we run experiment 3 with the same workload as used for the HDD with experiment 1 settings. For this 

experiment, learning the timeout is activated and a second action set of timeout values (    ), denoted by    , is 

used as follows:    = {0.1Tbe, 0.2 Tbe, 0.3 Tbe,0. 5Tbe, 2 Tbe,3Tbe and 5 Tbe }. In this case, the PM also learns the 

optimal timeout value among the timeout action set values and then accordingly learns the best battery voltage 

threshold for the resulting timeout policy. The obtained results are given in Figure 6. 
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Fig.6. SoC-latency tradeoff curves of the  RL-based DPM with and without learning timeout using HDD with 

experiment 1 parameter settings. 

 

It is clear from Figure 6 that learning both timeout and voltage threshold further helps minimizing the 

average power consumption leading to more battery service lifetime extension and higher effectiveness of the 

proposed DPM framework. Indeed, in comparison with the basic RL framework using a pre-specified 0.2 Tbe 

timeout value, the enhanced framework with timeout learning can achieve “wider and deeper” SoC-latency 

tradeoffs. In addition, the obtained results outperform the basic framework under the same latency values. The 

enhanced RL-based DPM with timeout learning can achieve lower battery SoC degradation in comparison with 

the basic framework particularly when the system has tight latency constraints.  

For systems that can tolerate high latency values up to 7.2%, the battery SoC degradation is enhanced 

to 6.82 % compared to 10.06 % previously obtained with the basic framework. In reference with the 0.2 Tbe pre-

specified timeout policy using 3.7V preset battery threshold Vth voltage, the enhanced framework is capable of 

achieving almost 42.83 %  of battery SoC savings. 

 

5.2. Experiments using a Dual-Battery Powered System 

HDD is used with parameters settings of experiment 1 and two identical batteries are considered with 

the same characteristics represented through the extracted simulation parameters given in Table I. The best-

suitable frequency value is obtained by trial-and-error experiments to derive the appropriate switching between 

the two batteries. In the first set of experiment, we run multiple battery charging/discharging cycles and use the 

RL technique to learn the best battery threshold voltage among a list of voltage thresholds for both batteries with 

only a fixed timeout value system of 0.2 Tbe(basic framework). The obtained results are compared to a reference 

0.2 Tbe pre-specified timeout policy system with a preset threshold voltage Vth equals to 3.7V, and using the 

same batteries with the same switching frequency value. In this case, the SoC degradation/latency tradeoff is 

obtained and shown by the red curve in Figure 7. When comparing the proposed DPM framework with the 

reference timeout system with a fixed Vth equals to 3.7V, we can see again the improvements achieved using the 

proposed approach especially for low-delay constrained system where up to 27.33% of SoC saving can be 

achieved. 

 
Fig.7. SoC-latency tradeoff curves of the  Dual-Battery DPM with and without learning timeout using HDD 

with experiment 1 parameter settings compared to the reference timeout system. 

 

In a second set of experiment represented by the blue solid curve in Figure 7, we use the reinforcement 

learning technique to define both optimal timeout value and threshold values while a fixed frequency switching 

between the two batteries is implemented. The outcome of this enhancement is clear as shown in Figure 7. In 

comparison with the basic dual battery DPM experiment (red dotted curve).the enhanced framework performs 
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better for both low and high latencies constrained system under the same performance level. For example, for a 

system with 6.5% latency constraint, the SoC saving obtained with the enhanced dual battery with a timeout 

learning DPM framework is about 46.73% higher than the dual battery basic DPM using the 0.2 Tbe pre-

specified timeout policy. Now, and in reference to 0.2 Tbe pre-specified timeout policy using the 3.7V preset 

battery threshold Vth voltage, the dual battery DPM framework enhanced with timeout learning enables up to 

55.38% maximum battery SoC savings. This maximum value is calculated from Figure 7 by using the 10.67% 

SoC degradation obtained when the fixed timeout policy with the fixed preset threshold voltage is used in 

comparison with the 4.76 % minimum SoC degradation obtained for a system that tolerates up to 6.5% latency.   

 

VI. Conclusions 
This paper presents an efficient reinforcement learning-based DPM framework that increases battery 

lifetime by accurately defining the best battery voltage threshold value and sets accordingly the system active 

mode. Moreover, the PM uses the TD(λ) algorithm for SMDP to define the best timeout value and automatically 

adjusts the power management policy to further enhance energy savings. The proposed DPM framework is 

model-free and requires no prior information of the workload characteristics. The experimental results provide 

strong evidences that reinforcement learning performs well for defining the optimal power management policy 

particularly for high latency constrained systems. For a single-battery system,  the results implemented on an 

HDD device show an improvement in battery SoC savings up to 42.83% in reference with a pre-specified 

timeout system using  a given preset battery threshold voltage. The maximum battery SoC savings are further 

improved to 55.38% when using our proposed dual-battery DPM framework enhanced with timeout learning 

values. In addition, wider and deeper SoC-delay tradeoffs are obtained with extended battery service lifetime in 

comparison with prior works. 
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