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Abstract: Most of the pollution issues created in power systems are due to the non-linear characteristics and 

fast switching of power electronic equipment. Power quality issues are becoming stronger because sensitive 

equipment will be more sensitive for market competition reasons, equipment will continue polluting the system 

more and more due to cost increase caused by the built-in compensation and sometimes for the lack of enforced 

regulations. In this paper instantaneous reactive power theory (IRP theory) is proposed for calculating the 
reference compensating currents required to inject into the network at the connected point of non-linear load. 

Switching scheme of compensator is provided by comparing the reference compensating currents obtained from 

IRP theory and compensator currents. Thus IRP theory is used to identify the amount of compensating current 

injected into the network to compensate the reactive power required by non-linear loads and to bring the source 

current waveform as sinusoidal.  Simulations for a three phase three wire system and three phase four wire 

system with a shunt active power filter have been carried out for current harmonic reduction and reactive power 

compensation. Thus power factor has been improved by attaining source voltage and source current in phase. 
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I. Introduction 
The problems identified with non-linear loads have considerably increased with the proliferation of 

power electronics equipment. The modern equipment behaves as a non-linear load drawing a considerable 

amount of harmonic current from the power network. Therefore, power systems in some cases have to be 

analyzed under non-sinusoidal conditions. This makes it very important to establish a reliable set of power 

definitions that are also applicable during transients and under non-sinusoidal conditions. The progress of power 

electronics technology has brought new limit conditions to the power theories. Precisely speaking, the new 

conditions have not risen up from the research of power electronics engineers. They have resulted from the 

proliferation of power converters using power semiconductor devices such as diodes, thyristors, insulated-gate 

bipolar transistors (IGBTs), gate-turn-off (GTO) thyristors, and so on. Despite the fact that these power 

converters have a quick response in controlling their voltages or currents, they may draw reactive power as well 

as harmonic current from power networks. This has made it clear that conventional power theories based on 
average or rms values of voltages and currents are not applicable to the analysis and design of power converters 

and power networks. This issue has become more serious and clear during comprehensive analysis and design of 

active filters intended for reactive-power compensation as well as harmonic compensation. 

The  shunt  active  power  filter  (SAPF)  is  a  device  that  is  connected  in  parallel  to  and  cancels  

the  reactive  and  harmonic currents from a nonlinear load . The resulting total current drawn from the ac main 

is sinusoidal. Ideally, the APF needs to generate just enough reactive and harmonic current to compensate the 

nonlinear loads in the line. 

 

II. Instantaneous Reactive Power Theory 
The IRP Theory is based on a set of instantaneous powers defined in the time domain. No restrictions are 

imposed on the voltage or current waveforms, and it can be applied to three-phase systems with or without a neutral 

wire for three-phase generic voltage and current waveforms. Thus, it is valid not only in the steady state, but also in the 

transient state. This theory is very efficient and flexible in designing controllers for power conditioners based on power 

electronics devices [1-3].  

In IRP Theory three phase four wire system the Voltages and currents of a-b-c coordinates are converted into α − β −
0 coordinates and then defines instantaneous power on these coordinates. Hence, this theory always considers the three-

phase system as a unit, not a superposition or sum of three single-phase circuits.  
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III. Clarke’s Transformation In Three Phase Four Wire System 
In order to express instantaneous voltages and currents in three phase circuits mathematically, there is need to 

express voltages and currents the instantaneous space vectors.  

These space vectors are transformed into α − β − 0 coordinates as follows.  

 
Fig.1 a-b-c to α − β − 0 transformation in currents and voltages 

In order to get the expressions for p, q and p0 first phase voltages and currents are converted into 

α − β − 0 coordinate system using Clarke’s transformation.  
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. The difference is the additional definition of the zero-sequence power. Before explaining it, the three-

phase instantaneous active power should be re-written in terms of the  α − β − 0  components. 

                                                             
003 ivivivp    

                
0pp                                                                                              (5) 

Which is equal to the conventional three phase power 

  ccbbaa ivivivP 3                                                                          (6) 

This equation shows that the three-phase instantaneous active power P3∅  is equal to the sum of the real 

power p and the zero-sequence powerp0. In the case of a three phase, three-wire circuit, the power p0 does not 

exist, and so is P3∅ equal to p [4]. 

The relation between the conventional concepts of powers and the new powers defined in the p-q 

Theory is better visualized if the powers p, q, and  p0   are separated in their average values p   , q  and p0   , and 

their oscillating parts p   , q   and p0 . 

Zero-sequence power:                p0 = p0   + p0                                                                                                       (7)                                  

Real power:                                p = p  +  p                                                                                                           (8)                                

 Imaginary power:                      q = q  + q                                                                                                            (9)                              

 

IV. Selection Of Power Components To Be Compensated 
The idea is to compensate all undesirable power components generated by nonlinear loads that can 

damage or make the power system overloaded or stressed by harmonic pollution. In this way, it would be 

desirable for a three-phase balanced power-generating system to supply only the average real power p  of the 

load. Thus, all other power components required by the nonlinear load, that is, q   , p  , p0  , q  and p0    , should be 

compensated by a shunt compensator connected as close as possible to this load. 
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The compensation algorithm based on the IRP Theory is very flexible[5]. The undesirable powers to be 

compensated can be conveniently selected. 
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Powers to be compensated are  p  and q. This means that all the undesirable current components of the 

load are being eliminated. The compensated current is sinusoidal, produces a constant real power, and does not 

generate any imaginary power. The nonlinear load and the compensator form an ideal, linear, purely resistive 
load. The source current has a minimum rms value that transfers the same energy as the original load current 

that produce the average real power p . This is the best compensation that can be made from the power-flow 

point of view, because it smoothes the power drawn from the generator system. Besides, it eliminates all the 

harmonic currents.  

  

V. Shunt Active Power Filter 
In this paper shunt active filters, applied to three-phase three wire systems and three phase four wire 

systems. The shunt active filters described have controllers based on the instantaneous reactive power theory ( 

i.e., IRP Theory) Most applications of shunt active filters are intended to compensate for the source current 
harmonics produced by a specific load. Another interesting compensation function that a shunt active filter can 

realize is to provide harmonic damping in power lines, in order to avoid harmonic propagation resulting from 

harmonic resonances between the series inductances and shunt capacitors[6]. 

 
Fig.2 PWM converter for shunt active filter 

 

Shunt active filters generally consist of two distinct main blocks: 

1. The PWM converter (power processing) 

2. The active filter controller (signal processing) 

 

VI. Active Filter Controllers 
The control algorithm implemented in the controller of the shunt active filter determines the 

compensation characteristics of the shunt active filter. There are many ways to design a control algorithm for 

active filtering. Certainly, the p-q Theory forms a very efficient basis for designing active filter controllers.  

According to the p-qTheory, to draw constant instantaneous active power from the source means that 

the shunt active filter must compensate for the oscillating real power (p ). Additionally, the rms value of the 

compensated current is minimized by the compensation of the total imaginary powerq = q + q  of the load. 

There is no zero-sequence power because a three-phase, three-wire system is being considered. If the system 
voltage contains harmonics and/or imbalance at the fundamental frequency, the compensated current cannot be 

sinusoidal to guarantee constant real power, p, that is drawn from the source[7]. From the above analysis, we 

can see that harmonic compensation can have different functionalities.  

PWM converters generate undesirable current harmonics around the switching frequency and its 

multiples. If the switching frequency of the PWM converter is sufficiently high, these undesirable current 

harmonics can be easily filtered out by using small, passive high-pass filters represented by R and C. Ideally, the 
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switching-frequency current harmonics are fully cut out, and the compensating currents iCk correctly track its 

references iCk
∗(k= a, b, c)[8]. 

 

VII. Hysteresis Current Control For Active Power Filter With Constant Frequency 
The hysteresis band current control for active power filter that the current can carried out to generate 

the switching pattern of the inverter. The various current control methods proposed for such active power filter 

configuration but the hysteresis band current control method has the highest rate among other control methods, 

because quick current controllability, easy to implement. Hysteresis band current control is robust provides 

excellent dynamics and fast control with minimum hardware [9]. 

Conventional hysteresis current control operates the PWM VSI by comparing the current error against 

fixed hysteresis band. This current error is the difference between iC
∗ (which is calculated from p-q theory) and 

filter current if. Fig.3 Hysteresis-band PWM current control[10]. 

 
Fig.3 Hysteresis-band PWM current control 
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Where Vdc
∗is the reference VSI terminal voltage corresponding toIa

∗. if we define APF current tracking error 
*

aa iii   

*

dcdc VV
dt

id
L 

                                                                                             (18) 

Where VSI terminal voltage dcV  and for s=1 dcV = dcV  

And for s=0      dcV = dcV  

If the error current exceeds the upper limit of the hysteresis band, the upper switch of the inverter arm is turned 

OFF and the lower switch is turned ON. If the error current crosses lower limit of the hysteresis band the lower 
switch of the inverter arm is turned OFF and the upper switch is turned ON.  

 
Fig.4 single phase VSI 
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VIII. Matlab/Simulink Results 

 
Fig.5 implementation of SAPF for thyrister based non-linear load 

 

 
Fig.6 source currents in phase a 

 
Fig.7 filter currents in phase a 

 
Fig.8 source current after compensation 

 
Fig.9 source voltage and source current after compensation 

 
Fig.10 implementation of SAPF for three phase four wire non-linear load 
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Fig.11 source current in phase a before compensation 

 
Fig.12 filter current in phase a 

 
Fig.13 source current in phase a after compensation 

 
Fig.14 source voltage and source current after compensation 

 
Fig.15 Source side active power and reactive power 

 
Fig.16 THD analysis for source currents before compensation for three phase four wire system 
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Fig.17 THD analysis for source currents before compensation for three phase four wire system. 

 

Table 1: Three Phase Three Wire System Parameters 
AC Voltage Source Vs 230.9 Vrms value 

Fundamental frequency   F 50 Hz 

Load   RL 10 Ohm and 35 mH 

DC bus capacitor   Cdc 5 uF 

Filter inductor   Lf   1.5 mH 

 

Table 2: Three Phase Four Wire System Parameters 
AC Voltage Source Vs 230.9 Vrms value 

Fundamental frequency   F 50 Hz 

Load RL 10 Ohm and 1mH 

DC bus capacitor   Cdc1 and 

Cdc2 

1100 uF and 1100uF 

Filter inductor   Lf   6 mH 

 

IX. Conclusion 
Proposed IRP theory is used to identify the amount of compensating current injected into the network 

to compensate the reactive power required by non-linear loads and to bring the source current waveform as 

sinusoidal. A shunt active power filter has been investigated for power quality improvement. The MATLAB 

simulation results shown that the harmonic currents drawn by non-linear load are compensated and source 

currents are appeared as sinusoidal. Also power factor is improved by reactive power compensation, so that  

source voltage and source current are in phase. The THD of line currents has been reduced by implementing 

shunt active power filter. 
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