Characterization of transmission line based on advanced SOLT calibration: Review

Abhishek Agrawal, Alpana Pandey, Vikas Dhanda

1Department of Electronics and Communication, M.A.N.I.T. Bhopal
2Department of Electronics and Communication, M.A.N.I.T. Bhopal
3Design Engineer, STMicroelectronics Pvt. Ltd.

Abstract: Validation of analog IP’s at high frequency is performed on a test board. For proper validation of IP’s, it is very necessary to characterize the transmission line in such a manner that how much amount of signal is received at the destination & how much amount of losses introduce the transmission line. This paper proposed, Fixture free characterization of transmission line mounted on test board, based on advanced SOLT calibration performed on test dummy structure (ISS). Extraction of RLGC parameters, attenuation constant and phase constant of transmission line in very simple manner. Advanced probes technology minimizes insertion and return losses at high frequency which introduce by the adopters. Fixture free characterization minimizes phase delays produced by the adopters.

Keywords: the transmission line, SOLT Calibration, Test dummy structure (ISS), ACP GS probes

I. Introduction

Fixture at RF frequency introduces insertion & return loss. As frequency increases attenuation losses are also increases which contribute inaccuracy in the measurement of S parameter [1]. Earlier there are different methods discovered for characterization of DUT. In order to meet these high speed requirements the design engineer must consider and minimize all the factors that impact the integrity of the digital signals in order to ensure the correct system functioning [7]. Adapting a coaxial test cable to a Microstrip device requires an adequate test fixture and a suitable de-embedding technique for removing the effects of the test fixture from the device under test (DUT). This further evaluates the de-embedding problem and the phase errors introduced when using test fixtures [7]. At RF improved accuracy & reduced attenuation losses achieved by fixture free measurement of DUT & well calibrates probes using SOLT calibration performed on wafer ISS (Short, open, load, thru).

II. Methods used FOR DUT characterization

A. Port Extension Method

It is used to remove the effects of the test fixture. It shifts the reference plane till the ends of the fixture but it is less accurate in practical environments. As the number of the fixtures increases inaccuracy in measurement is also increased. Advancement of port extension is the adopter removal method.

B. Adopter Removal Method

According to [1], there are generally two types of approaches to remove the effects of test fixtures. The first approach uses specialized calibration standards that are inserted at the end of the test fixture, and performing a calibration process to move the reference plane to the end of the test fixture. The accuracy of the measurement relies highly on the accuracy of the physical calibration standards. It is not practical to build an accurate broadband SOLT (short-open-load-thru) right after the test fixture; hence the traditional SOLT calibration process is generally not applicable for test fixture de-embedding. Alternatively, the TRL (thru-reflect-line) and LRM (line-reflect-match) method is a more suitable approach.

The second approach makes direct S parameter measurements of the DUT with test fixture, meanwhile acquires the S parameter of the test fixture through either direct measurement or simulation. The S parameter of the DUT without test fixture can be mathematically calculated from above two S parameter data. According to [2], the second approach with S parameter de-embedding yields the best results to the ideal DUT response. It is gaining popularity due to its straightforwardness in measurement, and easiness of data post processing.
When $[T_L]$ & $[T_R]$ are known then de-embedding result is:

$$[T_{\text{De-embedded}}] = [T_R^{-1}][T_{\text{DUT}}][T_L^{-1}] = [T_{\text{DUT}}]$$

In practical environment Fixture like SMA is connected to the transmission line (DUT) on test board using solders. With the help of this method we removes the effect of SMA but solders’ effect is still present. This solder cause impedance mismatch at the board end & creates in-accuracy at higher frequency. Due to impedance mismatch at the board end S parameter of de-embedded fixture is slightly different. This amplifies the error by an amount of $\frac{S_{22}S_{11}}{S_{21}S_{12}}$.

III. De-embedding Technique For Phase Delay Associated by Connectors

According to [7] due to fixture, phase delay is introduced into the measurement. The fixture S-parameter model can be simplified assuming a Microstrip with matched characteristic impedance of 50Ω thus the reflection coefficients (S_{11} and S_{22}) at M1 and M2 are reduced to zero. S_{21} and S_{12} of the Microstrip can be defined in terms of quasi-TEM wave equations with complex propagation constant and length L.

$$[S] = \begin{bmatrix} S_{11}e^{-\gamma_1} & S_{12}e^{-\gamma_2} \\ S_{21}e^{-\gamma_2} & S_{22}e^{-\gamma_2} \end{bmatrix}$$

However, when building an actual test fixture, any change in the connector geometry or Microstrip will introduce error into the final DUT S-parameters. Suppose we concentrate specifically on the effect of a length deviation in the Microstrip. In matrix form the S-parameter error introduced by changing the Microstrip lengths is given by

$$[S] = \begin{bmatrix} S_{11}e^{-\gamma_1(2\Delta l_1)} & S_{12}e^{-\gamma_2(2\Delta l_1+\Delta l_2)} \\ S_{21}e^{-\gamma_2(2\Delta l_1+\Delta l_2)} & S_{22}e^{-\gamma_2(\Delta l_2)} \end{bmatrix}$$

The phase error (in radians) for each S-parameter of Microstrip is:

$$[\Delta \phi_f] = \begin{bmatrix} \frac{4\pi f \Delta l_1 \sqrt{\varepsilon_{\text{eff}}}}{c} & \frac{2\pi f (\Delta l_1 + \Delta l_2) \sqrt{\varepsilon_{\text{eff}}}}{c} \\ \frac{2\pi f (\Delta l_1 + \Delta l_2) \sqrt{\varepsilon_{\text{eff}}}}{c} & \frac{4\pi f \Delta l_2 \sqrt{\varepsilon_{\text{eff}}}}{c} \end{bmatrix}$$

IV. New De-Embedding Method Based On SOLT Calibration On Impedance Substrate Structure

According to [5], all losses due to impedance mismatching or due to fixtures are removed using fixture free measurement of DUT, based on advanced SOLT calibration performed on the ISS & advanced ACP GSG.
probes. By using mechanical calibration it is impossible to shift the reference plane till the ends of fixture. This calibration shifts the reference plane till the ends of probes’ tip. It uses 2 ISS. One ISS have open, short & load structure whereas accuracy in measurement of S parameter is depends on this calibration. This de-embedding method overcomes the drawback of the other Known solutions. Propagation constant & characteristic impedance of transmission line can be defined by eq. (1) & (3)

\[\gamma = \sqrt{(R + j\omega L)(G + j\omega C)} \] (1)

\[\gamma = \alpha + j\beta \] (2)

\[Z_0 = \frac{\sqrt{(R + j\omega L)(G + j\omega C)}}{\alpha + j\beta} \] (3)

By solving these three equations we get

\[G = \frac{\alpha}{Z_0} \] (4)

\[C = \frac{\beta}{\omega Z_0} \] (5)

\[R = Z_0^2 G \] (6)

\[L = Z_0^2 C \] (7)

R is loop resistance per unit length, represents the lossy behavior of conductor. G is shunt conductance per unit length, represents lossy behavior of dielectric. L is the loop inductance per unit length, which store magnetic energy. C is shunt capacitance per unit length, represents the electric energy.

V. Measurement Setup

On the basis of previous work a measurement is performed on 5cm long single ended transmission line can be used for validation of this method. Transmission line is mounted on PCB & use FR4 dielectric material whose permittivity is 4.8. First step is performing 2 port measurement of transmission line of test board for extraction of other parameters. This measurement performed using 4 ports Agilent PNA X N5244A Network Analyzer having a broad frequency range of 10 MHz to 43.5 GHz. BTS 2000 used to holding the probes. High bandwidth coaxial cable (40GHz) is connected to one end of PNA ports & another side of coaxial cable is connected to DUT via ACP probe. Single ended transmission line can be considered as a DUT. Transmission line has a ground pad beside the signal pad. For single ended transmission line characterization 2 ACP GS probes of 1000 µm pitch are used. Before landing the ACP probes on the pads, it is well calibrated. It is also must to check probe alignment, probe planarization to achieve perfect contact. Measurement performed after successfully landing of probes on signal & ground pads. With the help of this measured result RLGC parameter is calculated. Measured result is compared with simulated results & other known solution (Port Extension).

Figure 3: Measurement Setup

VI. Results

S parameter data is measured using VNA. With the help of eq. (4) (5) (6) (7) RLGC parameter extracted & it is shown in figure 4 below. Fig.2 shows the S11, S21, S12, S22 measured by the fixture free characterization method. In fig.3, Insertion loss is compared with Port extension method-3dB is achieved at 9 GHz. It shows that transmission line is capable of transmit information correctly till 9 GHz after that loss occur. Measurement with Port Extension method introduces phase delay, it occurs due to inaccurate characterization of fixture & its effects seen in RLGC parameter at high frequency.
Figure 4: S Parameter using fixture free characterization method

Figure 5: (A-B) Insertion Losses in Phase

Figure (C) Attenuation Constant
Figure 6: (E-F) Attenuation & Phase Constant

(D)

(E)

(F)

(G)
This paper shows a simple method for extraction of RLGC parameter of transmission line. Attenuation constant and phase constant is calculated using measured S parameter data. This method avoids complex calculation as used in other papers. This method is successfully applicable for lossy and lossless transmission line over a broad range of frequency. Fixture free measurement minimizes insertion & return loss. Measurement setup is described & results are mentioned.

References

[3]. Kazuki MAEDA, Kengo JOKIBE, Yoshihata TOYOTA, Ryuji KOGA “De-embedding of Board Parasitic with T-parameters for S-parameters of Integrated Circuits on PCB-Examinations in One-port Measurements”.
[7]. Doug Campbell, Aldo Morales, Sedig Agili “An Improved Phase De-Embedding Technique for High Speed Connectors” IEEE 2010.