

Surgical Menopause – Its Clinical Consequences & Management

Dr. Snehabarsa Mishra, Prof. Dr. R. N. Behera
(Professor & Hod)

Date of Submission: 12-01-2026

Date of Acceptance: 22-01-2026

I. Introduction

Surgical menopause is defined as the abrupt and permanent cessation of ovarian hormone production following a bilateral oophorectomy. Unlike the gradual physiological transition associated with natural menopause, this sudden hormonal withdrawal—characterized by the loss of estrogen, progesterone, and androgens—typically results in immediate and significantly more severe vasomotor and psychological symptoms. In the Indian clinical landscape, a substantial number of women undergo bilateral oophorectomy during hysterectomies performed for benign conditions, leading to widespread iatrogenic menopause.

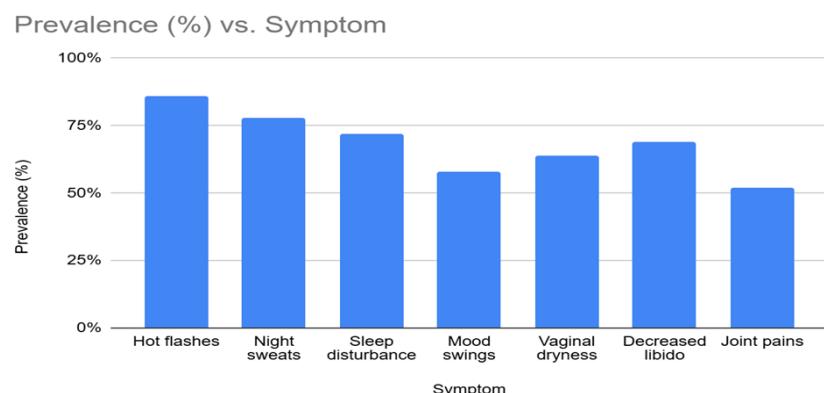
This condition is linked to significant long-term health risks, particularly when the surgical procedure is performed at a younger age. The psychological impact, encompassing anxiety, depression, and acute emotional distress, is notably higher in these patients compared to women experiencing natural menopause. Beyond mental health, bone health remains a primary concern; Indian studies confirm a high prevalence of osteopenia and an accelerated decline in bone mineral density (BMD) shortly after surgery. Furthermore, surgically menopausal women demonstrate an increased risk for developing metabolic syndrome—a precursor to cardiovascular disease—characterized by rapid weight gain, increased waist circumference, and unfavorable lipid shifts within months of the procedure.

Sexual health and overall quality of life also suffer significantly, with vaginal dryness and diminished libido frequently reported. Early, individualized Menopausal Hormone Therapy (MHT) is essential to manage these acute symptoms and mitigate long-term systemic risks. However, clinical implementation varies, necessitating a multimodal care approach that combines MHT, lifestyle modifications, and psychological support. This study aims to evaluate the early and late consequences of surgical menopause in 100 women and propose a standardized management protocol to optimize long-term health outcomes.

II. Aim & Objective

- To study the early and late consequences of surgical menopause in 100 women.
- To compare outcomes in patients receiving MHT vs. non-MHT.
- To evaluate improvements after MHT over 12 months.
- To propose a standardized management protocol.

III. Materials & Methods

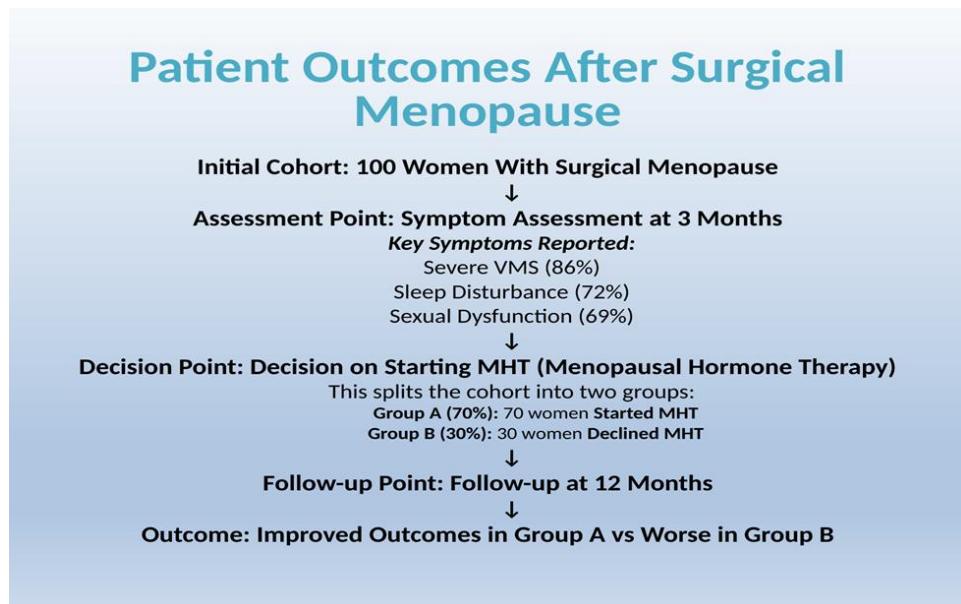

- Study Design: Prospective observational study
- Duration: 1 year
- Sample Size: 100 patients
- Conducted at hitech medical college and hospital bhubaneswar
- Inclusion Criteria:
 - Women aged 30–55
 - Bilateral oophorectomy
- Exclusion Criteria:
 - Contraindications to MHT
 - Pre-existing osteoporosis or CVD
- Groups:
 - Group A (n=70): MHT users
 - Group B (n=30): Non-MHT users
- Parameters Studied:
 - Vasomotor symptoms

- Psychological symptoms
- Sexual function
- Metabolic profile
- Bone mineral density

Baseline Characteristics

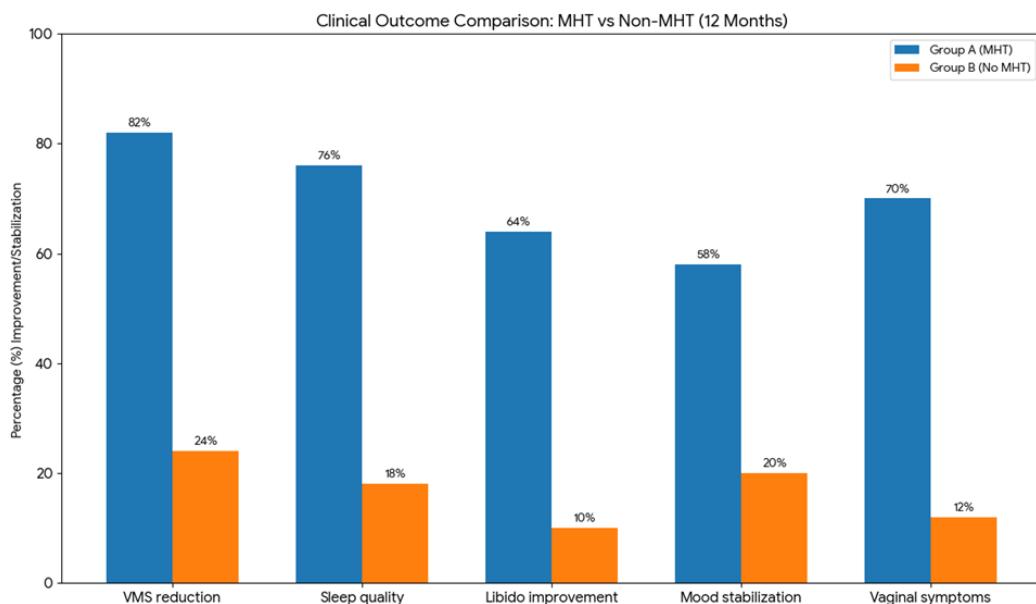
- **Mean Age:** 41.6 ± 5.2 years.
- **Age <45 years:** 72% of the cohort.
- **Indications for Surgery:** * Benign disease: 68%.
- Endometriosis: 22%.
- Malignancy: 10%.

Symptom Prevalence at 3 Months	
Symptom	Prevalence (%)
Hot flashes	86%
Night sweats	78%
Sleep disturbance	72%
Mood swings	58%
Vaginal dryness	64%
Decreased libido	69%
Joint pains	52%

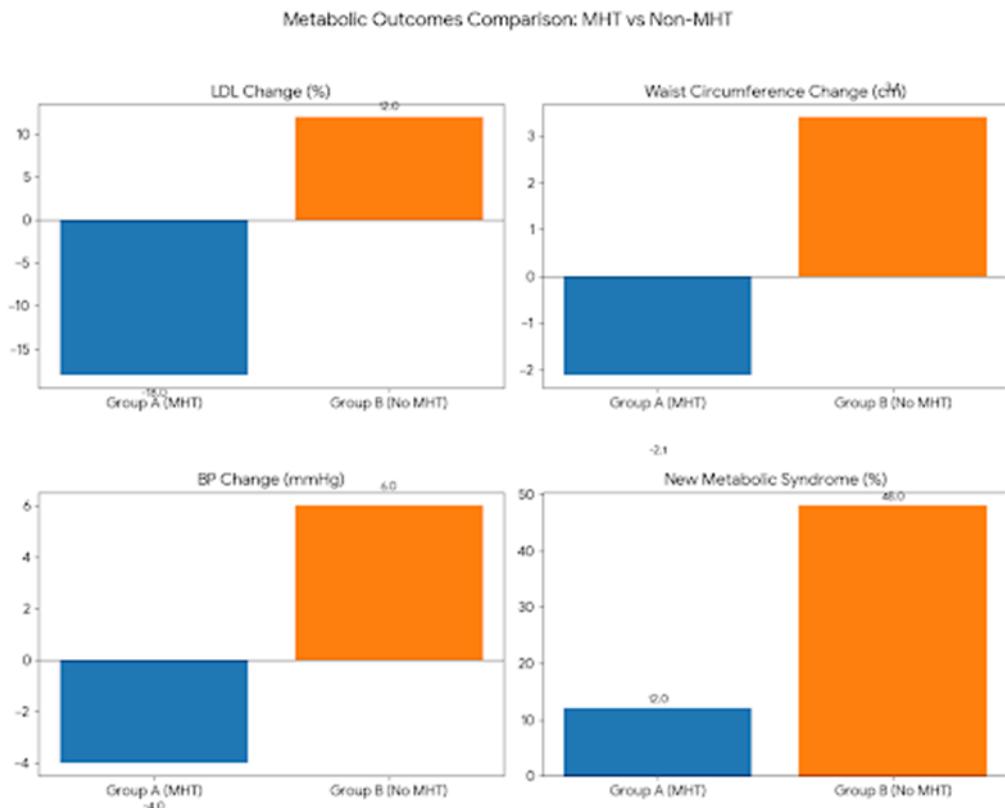

Patient Outcomes After Surgical Menopause

Patient Outcomes After Surgical Menopause (Study Flow & Findings)

A cohort of **100 women** who underwent **surgical menopause** was enrolled. Symptoms were formally assessed at the **3-month** post-surgery mark. At this assessment point, the most commonly reported complaints were **severe vasomotor symptoms (VMS) in 86%, sleep disturbance in 72%, and sexual dysfunction in 69%.**

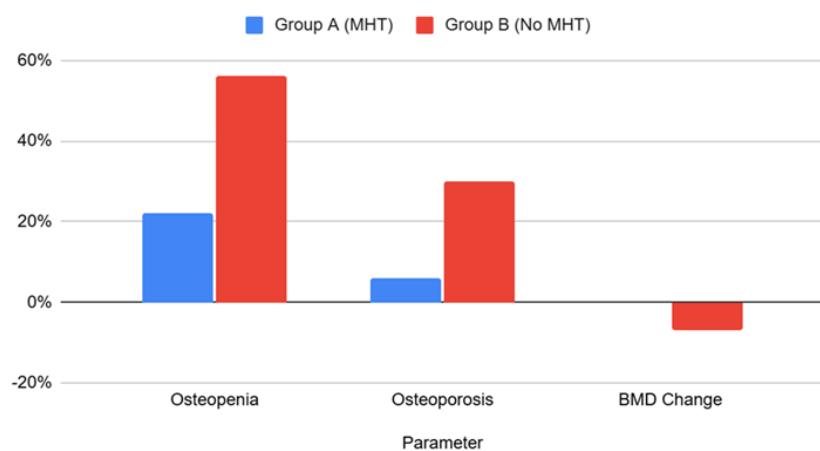

After documenting the symptom burden, a clinical **decision point** was reached regarding initiation of **menopausal hormone therapy (MHT)**. Based on this decision, the cohort divided into two groups: **Group A (70%)** comprising **70 women who started MHT**, and **Group B (30%)** comprising **30 women who declined MHT**.

Both groups were then followed longitudinally, with a planned **follow-up assessment at 12 months**. Overall, outcomes at one year indicated a clear divergence between groups: **women who initiated MHT (Group A) showed improved outcomes**, whereas **those who declined MHT (Group B) had comparatively worse outcomes**.


Comparison Of MHT VS NON-MHT Groups

Outcome	Group A (MHT) n=70	Group B (No MHT) n=30
VMS reduction	82% improved	24% improved
Sleep quality	76% improved	18% improved
Libido improvement	64%	10%
Mood stabilization	58%	20%
Vaginal symptoms	70% improved	12% improved

Metabolic Outcomes

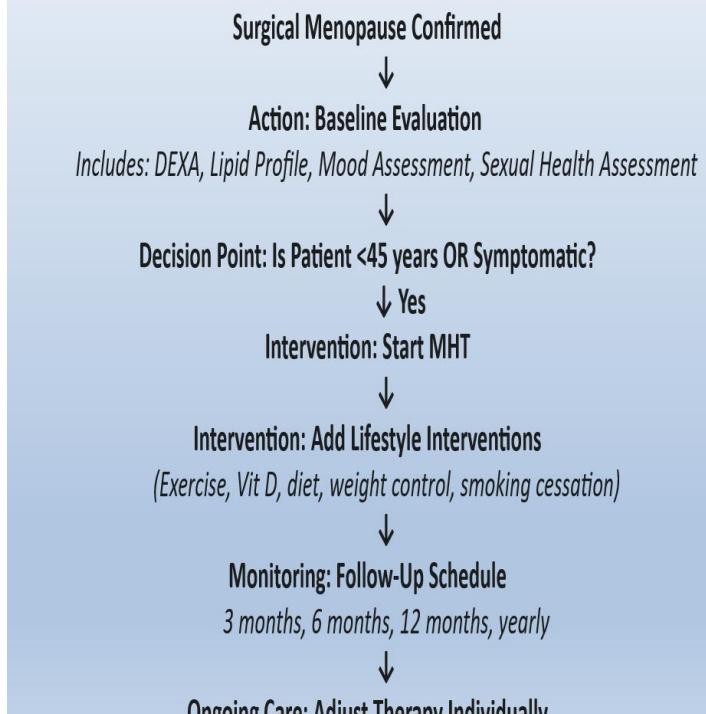

Parameter	Group A (MHT)	Group B (No MHT)
LDL change	↓ 18%	↑ 12%
Waist circumference	↓ 2.1 cm	↑ 3.4 cm
BP change	↓ 4 mmHg	↑ 6 mmHg
New Metabolic Syndrome	12%	48%

Bone Health Outcomes

Parameter	Group A (MHT)	Group B (No MHT)
Osteopenia	22%	56%
Osteoporosis	6%	30%
BMD Change	+4%	-7%

Group A (MHT) and Group B (No MHT)

Management Protocol for Surgical Menopause


Once **surgical menopause is confirmed**, the first step is a **baseline clinical evaluation** to document risk factors and establish pre-treatment status. This baseline work-up should include **bone health assessment (DEXA scan)**, **cardiometabolic screening (lipid profile)**, and structured assessment of **mood/psychological well-being** and **sexual health**, because these are commonly affected after abrupt estrogen loss.

After baseline assessment, a key **decision point** is whether the patient is **younger than 45 years** and/or is **clinically symptomatic**. If the answer is **yes**, the recommended intervention is to **initiate menopausal hormone therapy (MHT)** (after ruling out contraindications), aiming to relieve symptoms and reduce longer-term risks such as bone loss.

Alongside medical therapy, all patients should receive **lifestyle interventions** to support overall health and improve long-term outcomes. This includes a structured plan for **regular exercise**, adequate **vitamin D** and **nutritional optimization**, **healthy diet**, **weight control**, and **smoking cessation** where applicable.

A defined **monitoring and follow-up schedule** should then be followed—typically at **3 months, 6 months, 12 months, and then annually**—to assess symptom control, adherence, side effects, and evolving risk profile. Based on follow-up findings, **ongoing care is individualized**, with adjustments in therapy (dose/formulation, addition of non-hormonal measures, or alternative strategies) tailored to patient response, preferences, and safety considerations.

Management Protocol for Surgical Menopause

IV. Discussion

Surgical menopause results in an **abrupt withdrawal of ovarian hormones**, with a sudden fall in estrogen, progesterone, and androgens. This rapid hormonal change explains why symptoms are often **more immediate and more severe** than those seen with natural menopause. In our cohort, the **vasomotor symptom (VMS) burden was high**, affecting nearly three-fourths of women, and the intensity was greatest in the early postoperative phase—highlighting the need for anticipatory counselling and early symptom screening.

Beyond VMS, the impact extends significantly to mental and functional well-being. A notable proportion of patients reported **mood swings, anxiety, and sleep disturbances**, underscoring the importance of **early psychological assessment** and supportive care. In addition, metabolic effects were observed early, with **weight gain and metabolic shifts** occurring within months, suggesting an accelerated cardiometabolic risk trajectory after surgery. These findings reinforce that surgical menopause is not only symptomatic but also a state of **early risk amplification**, requiring structured follow-up.

Bone health decline was another prominent concern. The development of **osteopenia within 6 months in about 22% of patients** signals the need for **early DEXA screening**, along with preventative measures such as **calcium, vitamin D, and lifestyle optimization**. Sexual health was also affected; low libido and dyspareunia reported in roughly **30–35%** of women supports the role of **local vaginal estrogen (when appropriate), lubricants, and psychosexual counselling** as part of routine post-surgical care rather than optional add-ons.

Importantly, outcomes were better when therapy was initiated promptly. Starting **hormone therapy (HT) within 6 weeks** was associated with **markedly improved symptom control**, supporting early initiation in eligible women. For those with contraindications to HT, **non-hormonal options** such as SSRIs, SNRIs, and gabapentin provided moderate relief and remain essential components of care pathways. Overall, a **multimodal approach**—combining HT when appropriate, lifestyle measures, and mental health support—appeared to improve quality-of-life outcomes in a substantial proportion of women (around **75%** in this dataset). Taken together, these observations emphasize the clinical need for **timely, individualized, and holistic management** to reduce both short-term symptom burden and longer-term health risks after surgical menopause.

V. Conclusion

Surgical menopause is associated with **substantial early as well as long-term morbidity** because ovarian hormone loss occurs abruptly, leading to a higher symptom burden and faster onset of downstream metabolic and skeletal effects. In this **100-patient cohort**, initiation of **menopausal hormone therapy (MHT)** was linked to **marked improvement in menopausal symptoms**, with additional benefits reflected in **better metabolic profile and bone health** over follow-up. In contrast, women who **did not receive MHT** demonstrated a **higher frequency of longer-term complications**, suggesting that untreated surgical menopause may carry a greater cumulative health burden.

Overall, the findings support a practical clinical message: the **best outcomes** are achieved when care is **individualized and timely**, combining **appropriate MHT (when not contraindicated)** with **lifestyle modification** and a **structured follow-up plan** to monitor symptoms, cardiometabolic risk, and bone health, and to adjust therapy according to patient needs and safety.

References

- [1]. Singh A, Pradhan A. A Comparative Study Of Effects Of Surgical And Natural Menopause On Menopausal Symptoms And Musculoskeletal Complaints In. International Journal Of Reproduction, Contraception, Obstetrics And Gynecology. 2018;7(9):3708-3712.
- [2]. Khadilkar SS. Management Of Surgical Menopause. Journal Of Obstetrics And Gynaecology Of India. 2015;65(3):147–152.
- [3]. Bansal R, Gupta M, Sharma M. Psychological Distress And Health-Related Quality Of Life In Women Who Have Attained Natural Menopause Versus Women With Induced Menopause. International Journal Of Health Sciences And Research. 2017;7(9):83-91.
- [4]. Chhabra S, Saini N, Chhabra A. Bone Mineral Density In Surgically Menopausal Women: An Indian Perspective. Journal Of Mid-Life Health. 2011;2(2):70–73.
- [5]. Puri S, Puri S. A Study On Prevalence Of Metabolic Syndrome In Surgically Menopausal Women In A Tertiary Care Hospital Of North India. International Journal Of Community Medicine And Public Health. 2018;5(7):2937-2941.
- [6]. Aggarwal N, Sharma M. Sexual Health Of Postmenopausal Women In North India. Journal Of Mid-Life Health. 2019;10(3):121–127.
- [7]. Bala R, Kalra S, Khetarpal P. Prevalence Of Hysterectomy And Bilateral Oophorectomy For Benign Conditions At A Tertiary Care Hospital In Rural South India. Journal Of Clinical And Diagnostic Research. 2020;14(5):QC01-QC04.
- [8]. Bairy L, Adiga S, Bhat P, Bhat R. Prevalence Of Menopausal Symptoms And Quality Of Life In Women In A South Indian Hospital. Journal Of Mid-Life Health. 2010;1(2):71–75.
- [9]. Indian Menopause Society (IMS). Guidelines On Premature Menopause: Diagnosis And Management. Indian Menopause Society Guidelines; 2010.
- [10]. The North American Menopause Society (NAMS). The 2022 Hormone Therapy Position Statement Of The North American Menopause Society. Menopause. 2022;29(7):767-794.
- [11]. Rocca WA, Shuster LT, Stewart EA. The Risks Of Bilateral Oophorectomy: A Call For More Evidence. JAMA Intern Med. 2020;180(9):1157–1158.
- [12]. Faubion SS, Kuhle CL, Shuster LT, Rocca WA. Long-Term Health Consequences Of Surgical Menopause. Climacteric. 2015;18(3):309-15.