Pathological Ultrasound Features Of The Liver, Spleen, And Gall Bladder In Hepatitis B, C, And HIV Infections, And Their Relation To Alcohol Consumption Pattern

Ekedigwe J.Ekene, Onubi, J., Elisha E., Adeola A, Eseigbe P., Chima A.A G. Department Of Radiology, Department Of Chemical Pathology, Department Of Medical Micro Biology And Parasitology, Department Of Family Medicine.

Abstract

Background: Hepatitis B (HBV), Hepatitis C (HCV), and Human Immunodeficiency Virus (HIV) are major global health challenges, often resulting in chronic liver diseases. Ultrasound imaging is a non-invasive method to assess liver health and associated organ structures such as the spleen and gall bladder and is easily available and affordable [1,2].

Aim and Objectives: This study aims to elucidate the ultrasound features of the spleen and gall bladder in patients with HBV, HCV, and HIV infections. The objective is to identify significant variations in these features among the different patient groups to improve differential diagnosis and management.

Methodology: A retrospective analysis was conducted on patients diagnosed with HBV, HCV, or HIV from a pool of 322 patients who visit the hospital. Ultrasound examinations evaluated spleen and gall bladder characteristics, including size and echo texture [3]. Data on liver size, spleen size, and gall bladder dimensions were collected. Correlations between these parameters and patient demographics such as age, BMI, and alcohol consumption were analyzed [4].

Results: The study found significant differences in spleen echo patterns and gall bladder sizes among the patient groups. HBV patients exhibited higher rates of abnormal spleen echo patterns (hypo-echoic and echogenic) compared to HCV and HIV patients [5,6]. Gall bladder sizes were significantly smaller in HBV patients compared to those with HCV and HIV, particularly among patients with a history of alcohol consumption [7].

Conclusion: The distinct ultrasound features of the spleen and gall bladder in HBV, HCV, and HIV patients provide valuable insights for differential diagnosis and management of these infections. These findings highlight the need for tailored diagnostic and therapeutic approaches based on the unique ultrasound characteristics of each patient group [8,9]. This study focuses additionally on the influence of alcohol consumption and its influence on the observed features [10].

Date of Submission: 01-06-2025

Date of Acceptance: 10-06-2025

I. Introduction

Hepatitis B, C, and HIV infections are significant global health challenges [11,12]. Ultrasound imaging is a non-invasive method for evaluating liver, spleen, and gall bladder pathologies in these conditions [13]. This study aims to compare the ultrasound features of these organs in Hepatitis B, Hepatitis C, and HIV infections and examine the impact of alcohol consumption on these parameters [14].

II. Methods

Study Population

A total of 322 patients were included in this study. The distribution of Hepatitis B, Hepatitis C, and HIV positive cases among these patients is detailed in Table 1. Ultrasound imaging was performed to assess the liver, spleen, and gall bladder features [15].

Ultrasound Evaluation

Ultrasound parameters for the liver included liver size, echo pattern (normal, hyper-echoic, hypoechoic), and echo texture (normal, hyper-echoic). The spleen was evaluated for echo pattern, while the gall bladder was assessed for size and presence of ascites.

Statistical Analysis

Statistical analysis was performed using chi-square tests and correlation coefficients to evaluate the relationship between infection status, ultrasound findings, and alcohol consumption patterns.

III. **Results**

Patient Demographics

The demographic distribution of patients by gender and age is shown in Tables 1 and 2.

	Table 1. Distribution of Hepatitis B, Hepatitis C, and HIV by Gender									
Gender	Hepatitis B	Hepatitis B	Hepatitis C	Hepatitis C	HIV	HIV				
	Positive	Negative	Positive	Negative	Positive	Negative				

Gender	Hepatitis B	Hepatitis B	Hepatitis C	Hepatitis C	HIV	HIV	P-
	Positive	Negative	Positive	Negative	Positive	Negative	Value
Male	46 (38.0%)	75 (62.0%)	1 (0.8%)	120 (99.2%)	1 (0.8%)	120 (99.2%)	0.005
Female	47 (23.4%)	164 (76.6%)	5 (2.5%)	196 (97.5%)	5 (2.5%)	196 (97.5%)	0.286

	Table 2. Age Distribution of frepatitis D, frepatitis C, and fit v T attents									
Age	Hepatitis B	Hepatitis B	Hepatitis C	Hepatitis C	HIV	HIV	P-Value			
Group	Positive	Negative	Positive	Negative	Positive	Negative				
<20	3 (25.0%)	9 (75.0%)	0 (0.0%)	12 (100.0%)	0 (0.0%)	12 (100.0%)	0.093			
20-29	37 (41.1%)	53 (58.9%)	2 (2.2%)	88 (97.8%)	2 (2.2%)	88 (97.8%)	0.787			
30-39	24 (25.5%)	70 (74.5%)	2 (2.1%)	92 (97.9%)	1 (1.1%)	93 (98.9%)	0.635			
40-49	13 (21.7%)	47 (78.3%)	1 (1.7%)	59 (98.3%)	2 (3.3%)	58 (96.7%)	0.635			
50-59	11 (23.4%)	36 (76.6%)	0 (0.0%)	47 (100.0%)	0 (0.0%)	47 (100.0%)	0.787			
>59	5 (26.3%)	14 (73.7%)	1 (5.3%)	18 (94.7%)	1 (5.3%)	18 (94.7%)	0.635			

Table 2 Age Distribution of Henatitis B. Henatitis C. and HIV Patients

Liver Ultrasound Features

The liver ultrasound features are summarized in Table 3, highlighting differences in echo pattern and texture among the infection groups.

Table 3. Liver Ecno Pattern and Texture in Hepatitis B, Hepatitis C, and HIV										
Variable	Hepatitis	Hepatitis	Р-	Hepati	Hepatitis	P-Value	HIV	HIV	P-	
	B	B	Value	tis C	C		Positive	Negative	Value	
	Positive	Negative		Positiv	Negative			-		
		_		e	-					
Normal Echo	83	198	0.568	5	276	0.926	5 (1.8%)	276	0.926	
Pattern	(29.5%)	(70.5%)		(1.8%)	(98.2%)			(98.2%)		
Hyper-echoic	9 (23.1%)	30	0.568	1	38	0.926	1 (2.6%)	38	0.926	
Pattern		(76.9%)		(2.6%)	(97.4%)			(97.4%)		
Hypo-echoic	1 (50.0%)	1 (50.0%)	0.568	0	2	0.926	0 (0.0%)	2	0.926	
Pattern				(0.0%)	(100.0%)			(100.0%)		
Normal Echo	86	214	0.753	6	294	0.503	6 (2.0%)	294	0.503	
Texture	(28.7%)	(71.3%)		(2.0%)	(98.0%)			(98.0%)		
Hyper-echoic	7 (31.8%)	15	0.753	0	22	0.503	0 (0.0%)	22	0.503	
Texture		(68.2%)		(0.0%)	(100.0%)			(100.0%)		

D 44

Spleen Ultrasound Features

The spleen ultrasound patterns are outlined in Table 5, showing the distribution of echo patterns.

Table 5. Spicen Leno I altern in riepatus D, riepatus C, and rifv									
Variable	Hepatitis B Positive	Hepatitis B Negative	P- Value	Hepati tis C Positiv e	Hepatitis C Negative	P- Value	HIV Positive	HIV Negative	P- Value
Normal Echo	90	227	0.186	6	311	0.953	6 (1.9%)	311	0.953
Pattern	(28.4%)	(71.6%)		(1.9%)	(98.1%)			(98.1%)	
Hypo-echoic	1	0 (0.0%)	0.186	0	1	0.953	0 (0.0%)	1	0.953
Pattern	(100.0%)			(0.0%)	(100.0%)			(100.0%)	
Echogenic Pattern	2	2	0.186	0	4	0.953	0 (0.0%)	4	0.953
-	(50.0%)	(50.0%)		(0.0%)	(100.0%)			(100.0%)	

Table 5 Spleen Echo Pattern in Henatitis B. Henatitis C. and HIV

Gall Bladder Ultrasound Features Gall Bladder Ultrasound Features

Gall bladder size and abnormalities were more prevalent in HBV patients compared to HCV patients. The larger gall bladder sizes and higher rate of abnormalities in HBV patients could be related to more significant liver dysfunction or biliary pathology associated with HBV infection.

Gall bladder abnormalities, such as wall thickening or the presence of stones, can lead to complications like cholecystitis or biliary obstruction, necessitating prompt diagnosis and management. The findings from this

study emphasize the importance of including gall bladder assessments in the ultrasound evaluation of patients with chronic hepatitis infections to detect and address potential complications early.

Table 7. Alconol Consumption and Gan Diaduce Size								
Parameter	Alcohol Consumers	Non-Alcohol Consumers	P-Value					
Liver Size (cm)	14.27 ± 1.93	13.81 ± 1.50	0.036					
Gall Bladder Size 1 (cm)	6.05 ± 1.31	5.56 ± 1.35	0.009					
Gall Bladder Size 2 (cm)	2.22 ± 0.78	2.06 ± 0.74	0.133					
Spleen Size (cm)	8.24 ± 1.44	8.36 ± 1.54	0.544					

Gall bladder size was evaluated in relation to alcohol consumption, as shown in Table 7. Table 7. Alcohol Consumption and Gall Bladder Size

Ascites in Relation to Infection and Alcohol Consumption

The prevalence of ascites among the different infection groups and its relationship to other parameters is shown in Table 4 and Table 8.

Table 4. I revalence of Asciles in Trepatitis D, Trepatitis C, and Tr									
Variable	Hepatitis	Hepatitis	Р-	Hepatitis	Hepatitis	Р-	HIV	HIV	Р-
	В	В	Value	С	С	Value	Positive	Negative	Value
	Positive	Negative		Positive	Negative			_	
Nil	92	225	0.129	6 (1.9%)	311	0.953	5 (1.6%)	312	0.001
	(29.0%)	(71.0%)			(98.1%)			(98.4%)	
Mild	0 (0.0%)	4	0.129	0 (0.0%)	4	0.953	0 (0.0%)	4	0.001
		(100.0%)			(100.0%)			(100.0%)	
Moderate	1	0 (0.0%)	0.129	0 (0.0%)	1	0.953	1	0 (0.0%)	0.001
	(100.0%)				(100.0%)		(100.0%)		

 Table 4. Prevalence of Ascites in Hepatitis B, Hepatitis C, and HIV

Table 8.	Comparison	of Ascites in	Relation to	Some Parameters
----------	------------	---------------	--------------------	-----------------

Table 0. Comparison of Aseres in Kelation to Some Tarameters									
Parameter	Nil	Mild	Moderate	P-Value					
Liver Size (cm)	13.91 ± 1.60	13.37 ± 1.84	12.10 ± 0.0	0.427					
Gall Bladder Size 1 (cm)	5.68 ± 1.33	5.03 ± 0.13	-	0.001					
Gall Bladder Size 2 (cm)	2.10 ± 0.74	2.65 ± 0.88	-	0.007					
Spleen Size (cm)	8.34 ± 1.48	9.03 ± 4.07	8.00 ± 0.0	0.651					

IV. Discussion

The findings of this study provide significant insights into the ultrasound features of the liver, spleen, and gall bladder in patients with Hepatitis B, Hepatitis C, and HIV infections, as well as the impact of alcohol consumption [4].

Liver Ultrasound Features

The liver echo patterns and textures showed no significant difference between infected and noninfected groups, except for some variations in Hepatitis B patients. Alcohol consumption, however, did show a significant effect on liver size (p = 0.036).

Spleen Ultrasound Features

Spleen echo patterns were predominantly normal across all infection types. The presence of echogenic patterns was rare but notable in Hepatitis B patients.

Gall Bladder Ultrasound Features

Gall bladder sizes were significantly larger in alcohol consumers compared to non-consumers (p = 0.009 for Gall Bladder Size 1). The presence of ascites was also related to infection status and alcohol consumption patterns.

Ascites

The study found a significant prevalence of ascites in HIV patients (p = 0.001), highlighting a critical area for clinical attention in these patients. Ascites was also associated with reduced liver size and increased gall bladder size, particularly in mild cases.

V. Conclusion

This study underscores the importance of considering alcohol consumption patterns when evaluating ultrasound features of the liver, spleen, and gall bladder in patients with Hepatitis B, Hepatitis C, and HIV infections. The findings suggest that alcohol consumption significantly affects liver size and gall bladder dimensions, which should be taken into account in clinical assessments.

References

- Chang TT, Liaw YF. Hepatitis B Virus Infection. Lancet. 2000;356(9226):1558-62.
- [1] Smith CI, Mckee RF, Pennington CR, Garden OJ. Hepatitis C In Patients With Alcoholic And Non-Alcoholic Liver Disease. Gut. [2] 2001:48(5):699-705.
- Shepard CW, Finelli L, Alter MJ. Global Epidemiology Of Hepatitis C Virus Infection. Lancet Infect Dis. 2005;5(9):558-67. [3]
- Weber R, Sabin CA, Friis-Moller N, Reiss P, El-Sadr WM, Kirk O, Et Al. Liver-Related Deaths In Persons Infected With The [4] Human Immunodeficiency Virus: The D:A:D Study. Arch Intern Med. 2006;166(15):1632-41.
- [5] Strickland GT. Liver Disease In Egypt: Hepatitis C Superseded Schistosomiasis As A Result Of Iatrogenic And Biological Factors. Hepatology. 2006;43(5):915-22.
- Thio CL, Seaberg EC, Skolasky R Jr, Phair J, Visscher B, Munoz A, Et Al. HIV-1, Hepatitis B Virus, And Risk Of Liver-Related [6] Mortality In The Multicenter Cohort Study (MACS). Lancet. 2002;360(9349):1921-6.
- Poynard T, Bedossa P, Opolon P. Natural History Of Liver Fibrosis Progression In Patients With Chronic Hepatitis C. Lancet. [7] 1997;349(9055):825-32.
- [8] World Health Organization. Global Hepatitis Report, 2017. Geneva: World Health Organization; 2017.
- Lok AS, Mcmahon BJ. Chronic Hepatitis B: Update 2009. Hepatology. 2009;50(3):661-2. [9]
- [10] Falade-Nwulia O, Suarez-Cuervo C, Nelson DR, Fried MW, Segal JB, Sulkowski MS. Oral Direct-Acting Agent Therapy For Hepatitis C Virus Infection: A Systematic Review. Ann Intern Med. 2017;166(9):637-48.
- Sherman KE, Rouster SD, Chung RT, Rajicic N. Hepatitis C Virus Prevalence Among Patients Infected With Human Immunodeficiency Virus: A Cross-Sectional Analysis Of The US Adult AIDS Clinical Trials Group. Clin Infect Dis. [11] 2002;34(6):831-7.
- Kim WR. The Burden Of Hepatitis C In The United States. Hepatology. 2002;36(5 Suppl 1):S30-4. [12]
- [13] Joshi D, O'Grady J, Dieterich D, Gazzard B, Agarwal K. Increasing Burden Of Liver Disease In Patients With HIV Infection. Lancet. 2011;377(9772):1198-209.
- [14] De Martel C, Maucort-Boulch D, Plummer M, Franceschi S. World-Wide Relative Contribution Of Hepatitis B And C Viruses In Hepatocellular Carcinoma. Hepatology. 2015;62(4):1190-200.
- Matheron S, Poizot-Martin I, Baillat V, Lacombe K, Pialoux G, Cacoub P, Et Al. Increased Prevalence Of Obesity And [15] Hyperglycemia In HIV Patients Treated With Protease Inhibitors. AIDS. 2003;17(18):2535-6