A Case Control Study On The Risk Factors Of Coronary Artery Disease Among Patients Attending Tertiary Care Hospital

Dr Raja Bhattacharya,
Associate Professor,Medical College,Kolkata
Dr. Angshuman Roy,
Senior Resident,Medical College,Kolkata
DrBodhibrata Banerjee, Senior Resident,General Medicine,Medical College,Kolkata
DrBhuranjanaBaghel, Senior Resident,General Medicine,Medical College,Kolkata
DrKajal Kora
MD, General Medicine, Medical College, Kolkata

I.Introduction:

Coronary artery disease(CAD) occurs due to an impairment in cardiac function because of inadequate blood flow to the heart compared to its needs.It is caused by obstructive changes in the coronary circulation.It presents with angina pectoris,myocardialinfarction,arrthythmias,heart failure and sudden death $[\mathbf{1 , 1 2}]$.
CAD should be considered an important public health problem due to changing lifestyles and an interplay of factors with regards to their existence, casualty and attributes ${ }^{[2,8,10]}$ It is a leading cause of death in India.The number of deaths due to CAD in 1985 was expected to have doubled by $2015^{[3,9]}$ As per reports of National Commission on Macroeconomics and Health,around 62 million people in India would have CAD by 2015 and around 23 million of them were below 40 years of age ${ }^{[4,11,13]}$ The conventional risk factors for CAD includes modifiable and nonmodifiable risk factors.The former includes diabetes mellitus,smoking,dyslipidemia,hypertension and obesity.The latter includes age,sex and family history.Recently a number of newer risk factors have been identified.Comparative studies on these newer risk factors show that Indiand have higher C-reactive proteins,plasminogen activator inhibitors and serum homocysteine levels ${ }^{[5]}$ Rapid urbanization and its accompanying lifestyle changes inckuding dietary habits,physicalinactivity,drugs and alcohol intake as well as increased prevalence of DM all contribute to increased incidence of $\mathrm{CAD}^{[6,7,14]}$.
Controlling the modifiable risk factors can significantly decrease premature morbidity and mortality due to CAD.

II.Materials and Methods:

Study area: General Medicine ward and Cardiology ward of Medical College,Kolkata
Study period: April 2018 - July 2019
Study Population: Case and control subjects as per inclusion and exclusion criteria
Definition of the case:
Definite CAD is based on any of the following:

1) Documented evidence of prior Acute Coronary Syndrome(ACS) or treatment for CAD
2) Documented history of undergoing coronary angioplasty or CABG
3) More than 50% of epicardial coronary stenosis by coronary angiography
4) ECG showing pathological Q wave
5) Imaging evidence of a loss of viable myocardium that is thinned and has a motion abnormality in absence of a non-ischemic cause
6) Angina plus ECG changes
7) Angina plus positive treadmill ECG Probable CAD is based on any of the following:
8) Angina without significant ECG changes
9) ECG changes without angina
10) Positive treadmeal ECG without angina
11) Absence of any of the other definite criteria

Definition of control:
A control is an individual who is admitted in the hospital or attends OPD for minor illness and not having any history of angina pectoris and myocardial infarction The total sample size of the study was 270(135 cases and 135 controls).

Inclusion criteria:

1) All newly diagnosed CAD patients irrespective of co-morbidities
2) Previously diagnosed CAD patients who are on follow up treatment
3) Patients who had prior PTCA or CABG will also be included in the study
4) Patients must be fully alert, conscious, oriented regarding time, place and person

Exclusion criteria:

1) Patients who donot give consent for the study
2) Patients who are unconscious, disoriented or unable to give proper history

Study design:

It is a paired matched case-control study in which patients were selected according to inclusion and exclusion criteria and grouped into cases and controls. Then they were assessed regarding the presence or absence of various risk factors of CAD.

Study variables:

These include different risk factors of CAD like:

- Demographic-

Age, sex, religion, residence, education, occupation, socioeconomic status, marital status

- Addiction history- Smoking, alcohol
- Dietary habits-

Vegetarian, non-vegetarian, mixed diet

- History of added salt intake-

Less than OR more than/equal to $5 \mathrm{~g} /$ day

- History of intake of oil/ghee
- Family history of CAD
- Physical inactivity
- Clinical parameters-

Height, weight, BMI, BP, Pulse

- Laboratory parameters-

CBC, FBS, PPBS, Urea, creatinine, LFT, Lipid profile,ECG-12 leads, Echocardiography

Study tool:

1. History taking and clinical examination
2. Assessment of subjects regarding associated risk factors as stated above
3. ECG-12 leads with long lead II
4. 2D Echocardiography
5. Estimation of CBC, FBS, PPBS, Urea, creatinine, LFT, Lipid profile

III.Result \& Analysis :

A total of 135 cases \& 135 controls were analyzed, mean age of cases \& controls were $58.57 \& 53.8$ respectively.

AGE

Table 1: Age-wise distribution of cases and controls

	CASE	CONTROL
DOI: $10.9790 / 0853-2206094051$	www.iosrjournal.org	P-

A Case Control Study On The Risk Factors Of Coronary Artery Disease Among Patients.....

AGE	FREQUENCY	PERCENT	FREQUENCY	PERCENT	
$31-40$	5	3.7%	28	20.7	VALUE
$41-50$	33	24.4%	35	25.9	
$51-60$	45	33.3%	32	23.7	
$61-70$	33	24.4%	23	17.0	0.00046
>70	19	14.1%	17	12.6	

Chi-Square $=20.1808$
28 patients out of 135patients in control group and 5 patients in the case group were in the age group of 31-40 years comprising 20.7% \& 3.7% of total controls and cases respectively.

SEX
Table 2: Sex wise distribution of cases and controls

	CASE		CONTROL	P-	VALUE	
SEX	FREQUENCY	PERCENT	FREQUENCY	PERCENT		
F	42	31.1	67	49.6		
M	93	68.9	68	50.3	0.01929	

Chi-Square $=9.6159$
67 patients out of 135patients in control group and 42 patients in the case group were female, comprising 49.6\% \& 31.1% of total controls and cases respectively.

RELIGION

Table 3: Religion wise distribution of cases and controls

	CASE						CONTROL		P-VALUE
	FREQUENCY	PERCENT		PERCENT					
	101	74.8	100	74.1	0.889033				
	34	25.2	35	25.9					

Chi-Square $=0.0195$
100 patients out of 135 patients in control group and 101 patients in the case group were Hindu, comprising $74.1 \% \& 74.8 \%$ of total controls and cases respectively.

MARITAL STATUS

Table 4: Marital status wise distribution of cases and controls

MARITAL STATUS	CASE		CONTROL		P-VALUE
	FREQUENCY	PERCENT	FREQUENCY	PERCENT	
MARRIED	127	94.1	131	97.0	0.237504
UNMARRIED	8	5.9	4	3.0	

Chi-Square $=1.3953$
131 patients out of 135 patients in control group and 127 patients in the case group were married, comprising $97 \% \& 94.1 \%$ of total controls and cases respectively.

RESIDENCE

Table 5: Residence wise distribution of cases and controls

	CASE	CONTROL	PDDS P- RATIO			
RESIDENCE	FREQUENCY	PERCENT	FREQUENCY	PERCENT		
RURAL	50	37.04	41	30.37	0.24657	1.22
URBAN	85	62.96	94	69.63	2	1.2

$$
\text { Chi-Square }=1.3426
$$

41 patients out of 135patients in control group and 50 patients in the case group were rural residents, comprising
30.37% \& 37.04% of total controls and cases respectively .

EDUCATION LEVEL

Table 6: Education Level wise distribution of cases and controls

EDUCATION LEVEL	CASE		CONTROL		P-VALUE
	FREQUEN CY	PERCENT	FREQUENC Y	PERCENT	
ILLITERATE	24	17.78	21	15.56	
PRIMARY (UPTO TO $5^{\text {TH }}$ STD)	33	24.44	35	25.93	0.95696
$\begin{aligned} & \text { SECONDARY } \\ & \left(6^{\mathrm{TH}} \mathrm{TO} 10^{\mathrm{TH}}\right) \end{aligned}$	52	38.51	54	37.78	
HS AND ONWARDS	26	19.26	25	18.52	

Majority of the patients from case $\operatorname{gr}(52,38.51 \%) \&$ control $\operatorname{gr}(54,37.78 \%)$ were educated upto secondary level $\left(6^{\text {th }} 10^{\text {th }}\right.$ standard $)$.

EMPLOYMENT STATUS

Table 7 : Employment status wise distribution of cases and controls

| | CASE | CONTROL | | | P- | PALUE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Odds

Ratio\end{array}\right]\)

Chi-Square $=7.1708$
57.8% of the patients from case gr.\& 41.5% of patients from control groups were employed.

OCCUPATION

Table 8: Occupation wise distribution of cases and controls

OCCUPATION	CASE			CONTROL
	FREQUENCY	PERCENT	FREQUENCY	PERCENT
BUSINESSMAN	24	17.78	23	17.03
LABOUR	10	7.41	8	5.92
OTHERS(housewives, retired,nil etc.)	98	72.59	97	71.85
SERVICE	3	2.22	7	5.18

Chi-Square $=1.8486$
8 patients out of 135 patients in control group and 10 patients in the case group were labours, comprising 5.92% \& 7.41% of total controls and cases respectively.

H/O SMOKING

Table 9: H/O Smoking wise distribution of cases and controls

	CASE	CONTROL	P- VALUE	ODDS RATIO		
H/O SMOKING	FREQUENCY	PERCENT	FREQUENCY	PERCENT		
YES	85	62.96	61	45.18		2.06

| NO | 50 | 37.04 | 74 | 0.004 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Chi-Square $=8.5904$
61 patients out of 135patients in control group and 85 patients in the case group were smokers, comprising 45.18\% \& 62.96\% of total controls and cases respectively.
FREQUENCY OF SMOKING
Table 10: Frequency of smoking wise distribution of cases and controls

FREQUENCY OF SMOKING	CASE		CONTROL			$\begin{aligned} & \hline \text { ODDS } \\ & \text { RATIO } \end{aligned}$
	FREQUENCY	PERCENT	FREQUENCY	PERCENT	0.000063	4.05
≥ 10 day	55	64.70	19	31.14		
<10/day	30	35.29	42	68.85		

Chi-Square $=16.0007$
64.70% of total smokers in case gr \& 31.14% of total smokers in control gr. smoked $>10 /$ day.

F/H CHD

Table 11: F/H CHD wise distribution of cases and controls

F/H CHD	CASE		CONTROL		P-VALUE	$\begin{aligned} & \text { ODDS } \\ & \text { RATIO } \end{aligned}$
	FREQUENCY	PERCENT	FREQUENCY	PERCENT		
YES	43	31.85	3	2.22		
NO	92	68.15	132	97.78		

Chi-Square=41.9255
31.85% of total cases \& 2.22% of total control gr patients had a positive family history of CHD.

ALCOHOL INTAKE

Table 12:H/O alcohol intake wise distribution of cases and controls

	CASE					

9 patients out of 135 in the control group and 26patients in the case group had history of alcohol intake, comprising
6.67% \& 19.26% of total controls and cases respectively.

H/O HTN

Table 13: H/O HTN wise distribution of cases and controls

	CASE		CONTROL		$\begin{array}{\|l\|} \hline \text { P- } \\ \text { VALUE } \end{array}$	$\begin{aligned} & \hline \text { ODDS } \\ & \text { RATIO } \end{aligned}$
$\begin{aligned} & \mathrm{H} / \mathrm{O} \\ & \mathrm{HTN} \end{aligned}$	FREQUENCY	PERCENT	FREQUENCY	PERCENT	0.00001	3.43
YES	71	52.59	34	25.18		
NO	64	47.40	101	74.81		

Chi-Square $=41.9255$

34 patients out of 135patients in control group and 71patients in the case group had history of hypertension, comprising 25.18% \& 52.59% of total controls and cases respectively.

H/O DM

Table 14: H/O DM wise distribution of cases and controls

	CASE		CONTROL		P- VALUE	ODDS RATIO
$\begin{aligned} & \mathrm{H} / \mathrm{O} \\ & \mathrm{DM} \end{aligned}$	FREQUENCY	PERCENT	FREQUENCY	PERCENT		
YES	45	33.33	13	9.63	0.00001	4.69
NO	90	66.67	122	90.37		

Chi-Square $=22.4854$
13 patients out of 135 in control group and 45 patients in the case group had history of DM, comprising 9.63% \&
33.33% of total controls and cases respectively.

PHY. ACT.

Table 15: Physical activity wise distribution of cases and controls

	CASE	CONTROL	P-		
	FREQUENCY	PERCENT	FREQUENCY	PERCENT	VALUE
PHY. ACT.	80	59.26	56	41.48	
SEDENTARY	55		79	58.52	0.003486
NON					
SEDENTARY	55	40.74		10	
TOTAL	135	100	135	100	
Chi-Square $=8.5338$					

80 patients out of 135patients in case group and 56 patients in the control group performed sedentary activity, comprising 59.26% \& 41.48% of total cases and controls respectively.

DIETARY HABITS

Table 16: Dietary habits wise distribution of cases and controls

	CASE		CONTROL			
DIETARY HABITS	FREQUENCY	PERCENT	FREQUENCY	PERCENT	PALUE	ODDS RATIO
MIX	123	91.11	120	88.89	0.542802	1.28
VEG	12	8.89	15	11.11		

Chi-Square $=0.3704$
120 patients out of 135 in control group and 123 patients in the case group had h/o intake of mix diets, comprising 88.89% \& 91.11% of total controls and cases respectively .

ADDED SALT

Table 17: Added salt wise distribution of cases and controls

	CASE		CONTROL			
ADDED					P-	ODDS

				VALUE	RATIO	
SALT	FREQUENCY	PERCENT	FREQUENCY	PERCENT		0.896991
YES	90	66.67	91	67.41	0.97	
NO	45	33.33	44	32.59		

CHI-SQUARE=0.0168
90 patients out of 135 in the case gr \& 91 patients in control group had h/o added salt intake ,comprising 66.67% \& 67.41% respectively.

AMOUNT OF ADDED SALT

Table 18:Amount of added salt wise distribution of cases and controls

Table 18:Amount of added sait wise distribution of cases and controls						
	CASE					

Chi-Square $=8.6436$.
27 patients out of 135patients in control group and 46 patients in the case group took added salt greater than or equal to $5 \mathrm{gm} /$ day, comprising $20 \% \& 34.07 \%$ of total controls and cases respectively.

EXCESS SATURATED FAT / OIL INTAKE

Table 19:H/O excess saturated fat/oil intake wise distribution of cases and controls

H/O EXCESS SATURATED FAT / OIL INTAKE	CASE		CONTROL		P- VALUE	ODDS RATIO
	FREQUENCY	PERCENT	FREQUENCY	PERCENT		
YES	39	28.89	4	2.96	0.00001	13.30
NO	96	71.11	131	97.04		

Chi-Square $=33.8848$
4 patients out of 135patients in control group and 39 patients in the case group had h/o excess saturated fat/oil intake in their diets, comprising $2.96 \% \& 28.89 \%$ of total controls and cases respectively.

SOCIO ECONOMIC CLASS

Table 20: Socio economic class wise distribution of cases and controls

SOCIO- ECONOMIC CLASS	CASE		CONTROL		P-
	FREQUENCY	PERCENT	FREQUENCY	PERCENT	
Class I	11	8.15	16	11.85	
Class II	46	34.07	47	34.81	0.43313
Class III	31	22.96	38	28.15	
Class IV	42	31.11	31	22.96	
Class V	5	3.70	3	2.22	

Chi-Square=3.8044
Majority of patients in the case $\operatorname{gr}(46,34.07 \%) \&$ control $\operatorname{gr}(47,34.81 \%)$ belonged to socio-economic class -II .

DYSLIPIDEMIA

Table 21: Dyslipidemia wise distribution of cases and controls

A Case Control Study On The Risk Factors Of Coronary Artery Disease Among Patients...

DYSLIPID EMIA	CASE		CONTROL		P-	$\begin{aligned} & \text { ODDS } \\ & \text { RATIO } \end{aligned}$
	FREQUENCY	PERCENT	FREQUENCY	PERCENT		
PRESENT	93	68.89 \%	57	42.22 \%	0.00001	3.03
ABSENT	42	31.11 \%	78	57.78 \%		

Chi-Square=19.44
93 patients out of 135 in the case gr.\& 57 patients in the control gr had h/o dyslipidemia comprising 68.89% of total cases \& 42.22% of total controls respectively.

OBESITY

Table 22: Obesity wise distribution of cases and controls

$\begin{aligned} & \text { OBESITY } \\ & \left(\text { BMI }>25 \mathrm{~kg} / \mathrm{m}^{2}\right) \end{aligned}$	CASE		CONTROL		P- VALUE	$\begin{aligned} & \text { ODDS } \\ & \text { RATIO } \end{aligned}$
	FREQUENCY	PERCENT	FREQUENCY	PERCENT		
YES(>25)	28	20.74	12	8.89		
$\mathrm{NO}(<25)$	107	79.26	123	91.11	${ }^{0.00612} 5$	2.68

Chi-square=7.513
28 patients out of 135 in case gr. \& 12 patients in control gr. were obese,comprising 20.74% \& 8.89% of toal cases \& controls respectively.

Table 23: Age and sex-wise distribution of cases and controls

Age group (in years)	CASE			CONTROL		
	Male No. (\%)	$\|$Female \quad No. $(\%)$	$\begin{array}{\|l\|} \hline \text { TOTAL } \\ \text { No. (\%) } \\ \hline \end{array}$	Male No. (\%)	Female $(\%)$$\quad$ No.	$\begin{array}{\|l\|} \hline \text { TOTAL } \\ \text { No. (\%) } \\ \hline \end{array}$
≤ 40	3 (2.2\%)	$\begin{aligned} & 2 \\ & (1.5 \%) \\ & \hline \end{aligned}$	5 (0.0\%)	$\begin{aligned} & 13 \\ & (9.6 \%) \end{aligned}$	$\begin{aligned} & 15 \\ & (11.1 \%) \end{aligned}$	$\begin{aligned} & 28 \\ & (20.7 \%) \end{aligned}$
41-50	$\begin{array}{\|l\|} \hline 26 \\ (19.3 \%) \\ \hline \end{array}$	7 (5.2 \%)	$\begin{array}{\|l\|} \hline 33 \\ (3.7 \%) \\ \hline \end{array}$	22 (16.3\%)	$\begin{aligned} & 13 \\ & (9.6 \%) \\ & \hline \end{aligned}$	35 (25.9\%)
51-60	$\begin{aligned} & \hline 28 \\ & (20.7 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 17 \\ & (12.6 \%) \\ & \hline \end{aligned}$	45 (24.4\%)	14 (10.4\%)	18 (13.3\%)	32 (23.7\%)
61-70	$\begin{aligned} & \hline 26 \\ & (19.3 \%) \\ & \hline \end{aligned}$	7 (5.2 \%)	$3333.3 \%)$	7 (5.2\%)	16 (11.6\%)	23 (16.8\%)
>70	9 (7.4 \%)	$\begin{array}{\|l\|l\|} \hline 10 \\ (6.7 \%) \\ \hline \end{array}$	19 (38.5\%)	$\begin{aligned} & \hline 12 \\ & (8.8 \%) \\ & \hline \end{aligned}$	5 (3.6\%)	$\begin{array}{\|l} \hline 17 \\ (12.45) \\ \hline \end{array}$
TOTAL	$\begin{aligned} & 92 \\ & (68.1 \%) \end{aligned}$	$\begin{aligned} & \hline 43 \\ & (31.9 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 135 \\ & (100 \%) \\ & \hline \end{aligned}$	68 (50.3\%)	67 (49.7\%)	$\begin{array}{\|l\|} \hline 135 \\ (100 \%) \end{array}$

Table 24: Comparison of various risk factors among cases \& controls

RISK FACTORS	CASE	CONTROL		
SMOKING	85	62.96	61	45.18
ALOCHOL	26	19.26	9	6.67
H/O HTN	71	52.59	34	25.18
H/O DM	45	33.33	13	9.63
SENDENTARY				
ACTIVITY(LIGHT)	80	59.26	56	44.48
ADDED SALT	90	66.66	91	67.4
DYSLIPIDEMIA	93	68.84	57	42.22
F/H CHD	43	31.85	3	2.22

Table ${ }^{\text {FACTORS }}$	CASE				CONTROL			
	MALE		FEMALE		MALE		FEMALE	
	$\begin{aligned} & \text { FREQUEN } \\ & \text { CY } \end{aligned}$	$\begin{aligned} & \text { PERCEN } \\ & \mathbf{T} \end{aligned}$	$\underset{\mathbf{Y}}{\mathbf{F R E Q U E N C}}$	$\begin{aligned} & \text { PERCE } \\ & \text { NT } \end{aligned}$	FREQUENC Y	$\begin{aligned} & \text { PERC } \\ & \text { ENT } \end{aligned}$	FREQUENCY	PERCENT
SMOKING	85	62.96	0	0	61	$\begin{aligned} & 45.1 \\ & 8 \end{aligned}$	0	0
ALCOHOL	26	19.26	0	0	9	6.67	0	0
H/O HTN	47	34.81	23	17.04	14	$\begin{aligned} & 10.3 \\ & 7 \end{aligned}$	20	14.81
H/O DM	30	22.22	15	11.11	5	3.70	8	5.92
$\begin{aligned} & \text { ADDED } \\ & \text { SALT } \\ & \text { INTAKE } \end{aligned}$	57	42.22	33	24.44	46	$\begin{aligned} & 34.0 \\ & 7 \end{aligned}$	45	33.33
$\begin{aligned} & \text { DYSLIPIDE } \\ & \text { MIA } \end{aligned}$	64	47.40	29	21.48	29	$\begin{aligned} & 21.4 \\ & 8 \end{aligned}$	28	20.74
$\begin{aligned} & \mathrm{F} / \mathrm{H} \text { OF } \\ & \mathrm{CHD} \end{aligned}$	28	20.74	15	11.11	1	0.74	2	1.48

Different risk factors \& their frequency in male \& female subjects between case $\boldsymbol{\&}$ control groups

Table 26: Distribution of various risk factors \& their statistical significance in case \& control subjects

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}\hline \begin{array}{l}\text { SMOKIN } \\ \text { G }\end{array} & 85 & \begin{array}{ll}62.9 \\ 6\end{array} & & 50 & 37.0 \\ 4\end{array}\right)$

IV. Discussion :

The present study is designed as hospital based Case-control study to asses the role of various behavioral risk factors in the occurrence of coronary artery disease.A total of 270 subjects(135 cases \& 135 controls) were studied. Among the total 135 cases 68.89% were males \& 31.11% were females,male predominance has also been reported by Zodpay et.al. ${ }^{27}$ also observed that prevalence of CAD was significantly ($\mathrm{P}<0.001$) higher in men as compared to women in both urban ($11 \% \mathrm{vs} 6.9 \%$) and rural ($3.9 \% \mathrm{vs}$
2.6%) respectively.
Demographic data of the study population revealed that mean age of the cases \& controls were $58.57 \mathrm{yrs} \& 53.8 \mathrm{yrs}$ respectively. Largest no of cases were present in the age group 51-60yrs(33.3\%) followed by $41-50 \mathrm{yrs}(24.4 \%) \&$

61-70yrs(24.4\%).
Significantly higher no of cases were belong to urban area $(85,62.96 \%$) as compared to rural area $(50,37.04 \%)$, similar urban-rural difference was observed.The high prevalence of CAD among urban dwellers may be due to accumulation of various risk factors.

With regard to religion majority of cases were $\operatorname{Hindu}(101 / 135,74.8 \%)$ \& Muslims were (34/135,25.18\%). The controls comprise 100 no of $\operatorname{Hindus}(74.07 \%) \& 35$ no of Muslims(25.9\%) \&Out of 135 no of cases 127 no of subjects (94.07%) were married.

Regarding the educational status majority $(52,38.51 \%)$ were educated up to secondary level $\left(6^{\text {th }}-10^{\text {th }}\right.$ standard).

Socio-economic classes were defined according to Modified BG Prasad Socioeconomic classification, Update2019 \& majority of cases were belong to socioeconomic class-II($46,34.07 \%$). In the present study, higher socioeconomic status was significantly associated with CAD. Singh et al(1997) ${ }^{15}$.cited that higher socioeconomic status was significantly associated with CAD in both sexes.

In the present study, positive family h/o CHD was significantly associated with CAD. Gillurkar et al. $(\mathbf{1 9 9 8})^{16}$ also reported similar findings with that of present study. In their case-control study history of CHD was present in 17.8% of patients $\left(\mathrm{OR}=3.06, \mathrm{x}^{2}=9.03, \mathrm{P}<0.01\right.$). In our study, positive family history of CHD was present in 31.85% of $\operatorname{cases}(\mathrm{OR}=20.56, \mathrm{P}<0.00001)$. family history of CHD is known to increase the risk of premature death. Genetic factors appear to play an important role along with conventional and emerging risk factors.

Regarding dietary habits 127 no of cases $(91 \%$) take mix diet as compared to $12(8.89 \%)$ no of cases take veg diet. W.H.O stated that salt is an independent risk factor for hypertension, and intake of salt should be up to or less than
$5 \mathrm{gm} /$ day to prevent CAD^{17}. In current study consumption of salt more than $5 \mathrm{gm} /$ day found to be more among cases $(46,34.07 \%)$ as compared to controls $(27,20 \%)$. W.H.O also stated that high fat intake (dietary fat representing 40% or over of the energy supply and a higher proportion of saturated fats is a major risk factor for

CAD ${ }^{18}$. In present study, significantly higher no of cases (28.89%) were consumed excess saturated fats per day than controls(2.96%).
Hypertension is a very important risk factor for developing cardiac diseases.
In the present study person with hypertension $(71,52.59 \%)$ is at 3.43 times higher risk of CAD than normotensive subjects. Yoshihiro Miyake et $\mathbf{a l (2 0 0 0)}{ }^{\mathbf{1 7}}$. W.H.O.international case-control study (1997) ${ }^{\mathbf{1 9}}$ also observed that hypertension was significantly associated with AMI.

In our study, diabetes mellitus was associated with increased risk of $\mathrm{CAD}(\mathrm{OR}=4.69, \mathrm{P}-0.00001)$. Similar results were reported in the previous studies ${ }^{\mathbf{2 0}}$. Both diabetic men and women are susceptible to coronary artery disease.

The most common cause of death in these patients are cardiovascular diseases. ${ }^{\mathbf{2 1}}$
This study showed association between dyslipidemia and CAD.(OR=3.03, P-
0.00001). Similar findings also noted by ToobaKazemi et al. ${ }^{22}$

In the present study, significant association was observed between smoking and $\mathrm{CAD}(\mathrm{OR}=2.06, \mathrm{P}$ $0.004)$ and a dose-response relationship was also observed between the frequency of smoking per day and CAD (OR=4.05, $\mathrm{P}-$
0.000063) which are well correlated with the observations of PremPais et al . ${ }^{23}$ in their study.

Significant association was also observed between alcohol drinking and CAD which is similar with the findings of SubrataBagchi et al. ${ }^{24}$

In present study, unhealthy behavior like smoking(62.96%), alcohol(19.26%) consumption were more among the males as compared to females in both cases and controls, similar findings were also observed by Waldron $\mathbf{I}^{\mathbf{2 5}}$ in their study. Possible reason may be that these types of unhealthy behaviors are more socially acceptable for males than for females.

Obesity has been defined as $\mathbf{B M I}>\mathbf{2 5 K g} / \mathbf{m}^{\mathbf{2}}$ as per Consensus statement for diagnosis of obesity, abdominal obesity and the metabolic syndrome for asian Indians ${ }^{\mathbf{2 6}}$. Obesity has been identified as a risk factor for CAD in study conducted by Zopady et al. ${ }^{27}$; in present study, significant association was also observed between obesity and $\mathrm{CAD}(\mathrm{OR}=2.68, \mathrm{P}-0.006125)$.

In the present study, sedentariness was significantly associated with the risk of $\mathrm{CAD}(\mathrm{OR}=2.05, \mathrm{P}$ $0.003486)$.

Gupta et al(1995) ${ }^{\mathbf{2 8}}$. Also found higher prevalence of CHD and sedentary lifestyle in urban population. Sedentary lifestyle has been shown to be important in the genesis of caloric imbalance, resulting obesity and all consequences of obesity.

The present study has a number of limitations: -

Ideally, to identify association of risk factor to disease should be done through a prospective cohort study, but time constraint and limited resources bound us to choose a hospital-based case-control study.

1. Being a hospital-based case-control study the cases and controls may not be the representative of the general population.
2. To mitigate against confounding effects of multiple risk factors present in a patient, logistic regression analysis should have been done.
3. The study was confined to small no of subjects and period.

V. Conclusion:

The present study assessed the prevalence of various risk factors of CAD among cases \& controls \& their individual influence in the causation of CAD.

In conclusion, the present case-control study showed that CAD is associated with several common but mostly preventable risk factors.

Hence we recommend a national initiative to quit smoking, to have more physical activities, to improve lifestyles and to promote healthy diets. We also propose screening programs for earlier detection of elevated blood pressure, high blood glucose, dyslipidemia and control of these atherosclerotic risk factors to reduce CAD.

References:

[1]. Bedi HS, 2005; Ahmad N, Bhopal R, 2005; Wannammethee GS, 2006
[2]. Misra A, Nigam P, Hills AP, et al. Consensus physical activity guidelines for Asian Indians. Diabetes TechnolTher 2012;14:83-98.
[3]. Indrayan A. Forecasting vascular disease cases and associated mortality in India. Reports of the National Commission on Macroeconomics and Health, Ministry of Health and Family Welfare, India, 2005.
[4]. Reddy KS, Yusuf S. Emerging epidemic of cardiovascular disease in developing countries. Circulation 1998;97:596-601.
[5]. Murray CJL, Lopez AD. Alternative projection of mortality and morbidity by cause 1990-2020:; Global Burden of Disease Study. Lancet 1997;349:1498-504.
[6]. Deepa R, Arvind K, Mohan V. Diabetes and risk factors for coronary artery disease. CurrSci 2002;83:1497-505.
[7]. Eagle K (2008) Coronary artery disease in India; challenges and opportunities. Lancet 371(9622): 13941395.
[8]. Dalen JE, Alpert JS, Goldberg RJ, Weinstein RS (2014) The epidemic of the (20th) century: Coronary heart disease. Am J Med 127(9): 807-812.
[9]. Shanmugma N, Román-Rego A, Ong P, Kaski JC (2010) Atherosclerotic plaque regression fact or fiction? Cardiovasc Drugs Ther 24(7): 311-317.
[10]. Manolis SA, Manolis TA, Melita H (2012) Atherosclerosis: An atherothrombo-inflammatory disease. Hospital Chronicles 7(4): 195-209.
[11]. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease,NEngl J Med 352(16):1685-1695.
[12]. Mehta NJ, Khan IA (2002) Cardiologys 10 greatest discoveries of the 20th century. Tex Heart Inst J 29(3):164-171.
[13]. Faxon DP, Fuster V, Libby P, Beckman JA, Hiatt WR, et al. (2004) Atherosclerotic vascular disease conference: writing group III: Pathophysiology. Circulation 109(21): 2617-2625.
[14]. Singh RB, Niaz M. A., Ghosh S.and Sharma J.P (1997) Rural Urban Differences in Prevalence Rate, Plasma Insulin Responses, Food Intake and Risk of Coronary Artery Disease in Elderly Population of North India. Journal of Association of Physicians of India; 45, 2:109-113.
[15]. GillurkarC.S.andNarlawar U (1998). Risk Factors in Coronary Heart Disease: A Case Control Study. Indian Heart Journal; 50, 11:615.
[16]. Miyake Y (2000).Risk Factors for Nonfatal Acute Myocardial Infarction in Middle Aged and Older Japanese. Japan Circulation Journal; 64:103,109.
[17]. Prevention of coronary heart disease. Report of a WHO Expert Committee. WHO, Geneva. Tech. Rep. Ser.1982;678:pg 8.
[18]. W.H.O.(1997) Collaborative Study of Steroid Hormone
[19]. Contraception Group. A.M.I. and Combined Oral Contraceptive: Results of international multicentre case control study .Lancet 349:1202-9.
[20]. American Diabetes Association. Standards of medical care in diabetes-2008. Diabetes Care. 2008;31(Suppl 1):S12-54.
[21]. Franco OH, Steyerberg EW, Hu FB, Mackenbach J, Nusselder W. Associations of diabetes mellitus with total life expectancy and life expectancy with and without cardiovascular disease. Arch Intern Med. 2007;167(11):1145-1151.
[22]. Kazemi T, Sharifzadeh GR, Zarban A, Fesharakinia A, Rezvani MR, Moezy SA, Risk factors for premature myocardial infarction: a matched case-control study. JRHS. 2011;11(2):77-82.
[23]. Pais P, Pogue J, Gerstein H, Zachariah E, Savitha D, Jayprakash S, et al. Risk factors for acute myocardial infarction in Indians: A case- control study. Lancet 1996;348:358-63.
[24]. SubrataBagchi, Ranadeb Biswas, Bhadra UK, Aniruddha Roy, Malay Mundle, Dutta PK. Smoking, alcohol consumption and coronary heart disease- A Risk factor study. Indian J Commun Med 2001;26:208-11.
[25]. Waldron I. Why do women live longer than men? SocSci Med 1976;10:349-62.
[26]. Misra A, Chowbey P, et al. Consensus Statement for Diagnosis of
[27]. Obesity, Abdominal Obesity and the Metaboli Syndrome for Asian
[28]. Indians and Recommendations for Physical Activity, Medical and Surgical Management . JAPI. VOL 57. FEBRUARY 2009
[29]. Zodpey SP, Kulkarni HR, Vasudeo ND, Kulkarni SW. Risk factors for coronary heart disease: A case control study. Indian J Commun Med 1998;23:7-14.
[30]. Gupta R,PrakashH,MajumdarS,Sharma S and Gupta
[31]. VP(1995).Prevalence of coronary heart disease and coronary risk factors in urban population of Rajasthan
[32]. .Indian Heart Journal;42:331-338.

